LQ placeholderPoint, line, square, cube, tesseract

Point, line, square, cube, tesseract

Exploring the spectral properties of subgraphs of the hypercube and Hamming graphs for insights into coding theory and models of evolution.

Related papers

LQ placeholder

Eigenvalues of subgraphs of the cube

B. Bollobás, J. Lee, S. Letzter

European Journal of Combinatorics

LQ placeholder

Eigenvalues of neutral networks: Interpolating between hypercubes

T. Reeves, R. Farr, J. Blundell, A. Gallagher, T. Fink

Discrete Mathematics

LQ placeholder

Transference for the Erdős-Ko-Rado theorem

J. Balogh, B. Bollobas, B. Narayanan

Forum of Mathematics, Sigma

See related papers >

The simplest model of dimension is the hypercube. When the coordinates are given by a binary string, the distance between two strings is the number of spelling mistakes between them. By considering strings made of up more than two symbols, and connecting strings that differ by just one spelling mistake, the hypercube can be generalized into Hamming graphs. In information theory, messages are sent as strings which are subject to errors in transmission. To correct these mistakes, variants of a string must code for the same message as the string itself. In this way error correction is deeply connected to partitioning the Hamming graph into compact clusters.

In this project, we investigate the spectral properties of subgraphs of the hypercube and Hamming graphs. By studying a diffusing population on these graphs, we develop an analogy between mutational robustness and the eigenvalues of subgraphs that code for the same phenotype.

The spectral theory of Hamming graphs has direct applications to the theory of neutral evolution, in which biological information is carried by strings of nucleotides or amino acids. It is also at the heart of Hamming and other error correcting codes, and Hamming graphs feature in association schemes in coding theory.

Related papers

LQ placeholder

Eigenvalues of subgraphs of the cube

B. Bollobás, J. Lee, S. Letzter

European Journal of Combinatorics

LQ placeholder

Eigenvalues of neutral networks: Interpolating between hypercubes

T. Reeves, R. Farr, J. Blundell, A. Gallagher, T. Fink

Discrete Mathematics

LQ placeholder

Transference for the Erdős-Ko-Rado theorem

J. Balogh, B. Bollobas, B. Narayanan

Forum of Mathematics, Sigma

See related papers >