# Eigenvalues of subgraphs of the cube

*European Journal of Combinatorics* 70, 125 (2018)

B. Bollobás, J. Lee, S. Letzter

We consider the problem of maximising the largest eigenvalue of subgraphs of the hypercube Q d of a given order. We believe that in most cases, Hamming balls are maximisers, and our results support this belief. We show that the Hamming balls of radius o ( d ) have largest eigenvalue that is within 1 + o ( 1 ) of the maximum value. We also prove that Hamming balls with fixed radius maximise the largest eigenvalue exactly, rather than asymptotically, when d is sufficiently large. Our proofs rely on the method of compressions..

#### Network valuation in financial systems

P. Barucca, M. Bardoscia, F. Caccioli, M. D’Errico, G. Visentin, G. Caldarelli, S. Battiston

*Mathematical Finance*

#### The space of functions computed by deep layered machines

A. Mozeika, B. Li, D. Saad

Sub. to *Physical Review Letters*

#### Replica analysis of overfitting in generalized linear models

T. Coolen, M. Sheikh, A. Mozeika, F. Aguirre-Lopez, F. Antenucci

Sub. to *Journal of Physics A*

#### Degree-correlations in a bursting dynamic network model

F. Vanni, P. Barucca

*Journal of Economic Interaction and Coordination*

#### Phase transition creates the geometry of the continuum from discrete space

R. Farr, T. Fink

*Physical Review E*

#### Intelligently chosen interventions have potential to outperform the diode bridge in power conditioning

F. Liu, Y. Zhang, O. Dahlsten, F. Wang

*Scientific Reports *

123 / 123 papers