Eigenvalues of neutral networks: Interpolating between hypercubes

T. Reeves, R. Farr, J. Blundell, A. Gallagher, T. Fink

Discrete Mathematics 339, 1283 (2016)


Download the PDF

LQ placeholderThe first 16 ‘‘bricklayer’s graphs’’ and the principal eigenvalue of their adjacency matrices.

The first 16 ‘‘bricklayer’s graphs’’ and the principal eigenvalue of their adjacency matrices.

A neutral network is a subgraph of a Hamming graph, and its principal eigenvalue determines its robustness: the ability of a population evolving on it to withstand errors. Here we consider the most robust small neutral networks: the graphs that interpolate pointwise between hypercube graphs of consecutive dimension (the point, line, line and point in the square, square, square and point in the cube, and so on). We prove that the principal eigenvalue of the adjacency matrix of these graphs is bounded by the logarithm of the number of vertices, and we conjecture an analogous result for Hamming graphs of alphabet size greater than two.

LQ placeholder

Degree-correlations in a bursting dynamic network model

F. Vanni, P. Barucca

Journal of Economic Interaction and Coordination

LQ placeholder

Scale of non-locality for a system of n particles

S. Talaganis, I. Teimouri

Sub. to Physical Review D

LQ placeholder

Changes to Gate Closure and its impact on wholesale electricity prices: The case of the UK

A. Facchini, A. Rubino, G. Caldarelli, G. Liddo

Energy Policy

LQ placeholder

How much can we influence the rate of innovation?

T. Fink, M. Reeves

Science Advances

LQ placeholder

The statistical physics of real-world networks

G. Cimini, T. Squartini, F. Saracco, D. Garlaschelli, A. Gabrielli, G. Caldarelli

Nature Reviews Physics

LQ placeholder

PopRank: Ranking pages’ impact and users’ engagement on Facebook

A. Zaccaria, M. Vicario, W. Quattrociocchi, A. Scala, L. Pietronero


128 / 128 papers