# Eigenvalues of neutral networks: Interpolating between hypercubes

T. Reeves, R. Farr, J. Blundell, A. Gallagher, T. Fink

*Discrete Mathematics* 339, 1283 (2016)

#spectraltheory#biomathematics#discretemath

The first 16 ‘‘bricklayer’s graphs’’ and the principal eigenvalue of their adjacency matrices.

A neutral network is a subgraph of a Hamming graph, and its principal eigenvalue determines its robustness: the ability of a population evolving on it to withstand errors. Here we consider the most robust small neutral networks: the graphs that interpolate pointwise between hypercube graphs of consecutive dimension (the point, line, line and point in the square, square, square and point in the cube, and so on). We prove that the principal eigenvalue of the adjacency matrix of these graphs is bounded by the logarithm of the number of vertices, and we conjecture an analogous result for Hamming graphs of alphabet size greater than two.

#### Degree-correlations in a bursting dynamic network model

F. Vanni, P. Barucca

*Journal of Economic Interaction and Coordination*

#### Phase transition creates the geometry of the continuum from discrete space

R. Farr, T. Fink

*Physical Review E*

#### Intelligently chosen interventions have potential to outperform the diode bridge in power conditioning

F. Liu, Y. Zhang, O. Dahlsten, F. Wang

*Scientific Reports *

#### Portfolio analysis and geographical allocation of renewable sources: A stochastic approach

A. Scala, A. Facchini, U. Perna, R. Basosi

*Energy Policy*

#### Changes to Gate Closure and its impact on wholesale electricity prices: The case of the UK

A. Facchini, A. Rubino, G. Caldarelli, G. Liddo

*Energy Policy*

#### The statistical physics of real-world networks

G. Cimini, T. Squartini, F. Saracco, D. Garlaschelli, A. Gabrielli, G. Caldarelli

*Nature Reviews Physics*

#### PopRank: Ranking pages’ impact and users’ engagement on Facebook

A. Zaccaria, M. Vicario, W. Quattrociocchi, A. Scala, L. Pietronero

*PLoS ONE *

128 / 128 papers