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a b s t r a c t

A neutral network is a subgraph of a Hamming graph, and its principal eigenvalue
determines its robustness: the ability of a population evolving on it to withstand errors.
Here we consider the most robust small neutral networks: the graphs that interpolate
pointwise between hypercube graphs of consecutive dimension (the point, line, line and
point in the square, square, square and point in the cube, and so on). We prove that the
principal eigenvalue of the adjacency matrix of these graphs is bounded by the logarithm
of the number of vertices, and we conjecture an analogous result for Hamming graphs of
alphabet size greater than two.

© 2015 Elsevier B.V. All rights reserved.

The eigenvalues of neutral networks – subgraphs of Hamming graphs – is a fascinating subject, yet one which seems to
have received little attention from the mathematics community. A recent surge of scientific interest has been motivated by
advances in the theory of neutral evolution [9,2], in which the evolution of a mutating population is captured by spectral
properties of its underlying neutral network [8].

A genome is the set of all genotypes, or a-ary strings, of length d and alphabet size a. Typically a is small: a = 2 (hydrophilic
and hydrophobic), a = 4 (nucleic acids) or a = 20 (amino acids). On the other hand, d can range from 3 (codons) to 108

(chromosomes).We represent the genomeby a d-dimensionalHamming graphHd,a ⌘ (Ka)
d ⌘ (Ka⇤ . . . ⇤Ka), whereKa is the

complete graph on a vertices and ⇤ is the Cartesian product [4]. Each of the ad vertices in the Hamming graph corresponds
to a genotype, and two vertices share an edge if the genotypes differ by a singlemutation (Hamming distance one). A neutral
network is the set of genotypes with the same phenotype (observable characteristics); it is just a subgraph of Hd,a. In this
Note we use neutral network and phenotype interchangeably.

Assuming the phenotype has achieved high fitness, adjoining phenotypes will have a relatively negligible growth rate
and act as effective absorbing boundaries. Now consider a mutating population on the neutral network. That portion
which mutates off of it will be lost, whereas that portion which stays on will survive. The robustness r of a neutral
network is the long-term probability that a randomly selected individual mutating in a random direction survives. It is
the principal eigenvalue � of the adjacency matrix of the neutral network divided by the number of directions for mutation:
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Fig. 1. The first 16 ‘‘bricklayer’s graphs’’, which are the Hamming graphs and the interpolations between them. Below each is the principal eigenvalue of
its adjacency matrix.

r = �/(d(a � 1)). This Note is about the maximum robustness that a neutral network can have, which for small neutral
networks are themselves Hamming graphs and interpolations between them, shown for a = 2 in Fig. 1. Surprisingly, this
ceases to be true for larger neutral networks on longer sequences (d = 19 and above), which we demonstrate by way of
counterexamples in the form of star graphs.

This Note is divided into six parts. In the first part, we derive the relation between the robustness r of a neutral network
and its principal eigenvalue �: r = �/(d(a � 1)). In the second part, we present our main result, �n  log2 n, where �n

is the eigenvalue of the nth bricklayer’s graph (see Fig. 1). We prove it for all values of n apart from n = 2d ± 1 using a
geometric staircase argument. In the third part, we set the stage for the remainder of the proof by constructing polynomials
with eigenvalues �2d±1 as roots. In the fourth and fifth parts, we bound the eigenvalues �2d�1 and �2d+1. In the sixth part
we conjecture a generalization of our main result for higher a and conclude with some extensions.

A secondary motivation of this paper is to introduce mathematicians to the connection between neutral networks and
spectral graph theory and to encourage them to extend this work.

1. Relation between the robustness and the principal eigenvalue

In this section we derive the relation r = �/(d(a� 1)), first given in [8]. First, we define the phenotype robustness r as a
weighted average over genotype robustness; second, we define it as the extent to which mutation off the neutral network
does not deplete the growth due to fitness. Readerswho are less interested in the biologicalmotivationmay skip this section.

Genotype and phenotype robustness. Consider a neutral network P , and let its adjacency matrix be A. The genotype
robustness ri [9] of a genotype gi is the probability of a mutation being neutral: the number of neutral edges incident to gi
(i.e. edges which do not lead to a different phenotype) divided by the total number of incident edges d(a� 1). The genotype
robustness can therefore be written as

ri =

P
j
Aij

d(a � 1)
. (1)

For a neutral network, let n(t) be its population vector at time t , with the ith component ni(t) corresponding to the
population on genotype gi. The normalized population is distributed according to n(t)/

P
i ni(t). Suppose for now that in the

limit t ! 1, the normalized population is distributed according to a unique distribution. Then we define the phenotype
robustness r to be the long-time population-weighted average of the genotype robustnesses ri:

r =

P
i
ni(1)ri

P
i
ni(1)

. (2)

It is the fraction of the population flux that is neutral. We will now determine this limit.
Mutational flux and fitness. Mutation induces a population flux across neighbouring genotypes. If the mutation rate per

letter isµ, themutational flux is 1�(1�µ)d(a�1) ⇡ µd(a�1) forµd(a�1) ⌧ 1. It is the fraction of a population thatmutates
per generation. Some of this mutational flux will also cross phenotypic boundaries when neighbouring genotypes lie in two
different phenotypes. That which does not cross phenotypic boundaries is neutral. The fitness f is the raw reproductive rate
of the phenotype. After t generations, the total population of a neutral network will have changed by a factor of f t , in the
absence of mutations.

Mutation matrix. The action of mutation on the population distribution over a single generation can be expressed by the
mutation matrixM:

M = (1 � µd(a � 1))I + µA. (3)

The first term is the probability that no mutation occurs and the second the probability of mutating. Being symmetric, A can
be diagonalized by an orthonormal set of eigenvectors xi:

M = (1 � µd(a � 1))
X

i

xix
|
i + µ

X

i

xi⌫ix
|
i , (4)
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where the xi satisfy the eigenvalue equation Axi = ⌫ixi. The population vector n(t) is obtained by transforming an initial
vector n(0) by Mt and multiplying it by f t :

n(t) = f tMtn(0) =
X

i

x|
i n(0)f

t
✓
1 � µd(a � 1)

✓
1 � ⌫i

d(a � 1)

◆◆t

xi. (5)

Let ⌫1 be the largest (principal) eigenvalue of A, denoted hereafter �. Since |⌫i|  d, all terms i > 1 decay exponentially with
respect to the first for µ > 0. In the large time limit the sum is dominated by the first term, whose eigenvalue ⌫1 ⌘ � is
largest:

nt ⇡ x|
1n(0)f

t
✓
1 � µd(a � 1)

✓
1 � �

d(a � 1)

◆◆t

x1. (6)

We now show that defining the robustness as �/(d(a�1)) agreeswith the definition of phenotype robustness in (2). Indeed,
plugging (1) into (2),

r =

P
ij
Aijni(1)

d(a � 1)
P
i
ni(1)

=

P
j

�nj(1)

d(a � 1)
P
i
ni(1)

= �

d(a � 1)
.

The quantity r thereforemeasures howwell the shape of the neutral network can reduce the rate of deleteriousmutation
acting on the population as a whole. We see from (6) that at large time t at every generation, a fraction µd(a � 1)(1 � r)
of the population mutates off the neutral network, and the growth rate (1 � µd(1 � r))f is the fitness that can be usefully
employed to increase the population and not spent replenishing population lost to deleterious mutations incurred at the
boundary. The steady state distribution of the population depends only on the shape of the neutral network and on neither
the mutation rate µ nor the fitness f .

2. Neutral networks with large eigenvalues

Bricklayer’s graphs. Just how robust a phenotype can be – or how large an eigenvalue a neutral network can have – has
remained an open question. For short sequences (d  4, a = 2), we found from exhaustive enumeration that the most
robust neutral networks are themselves hypercubes or interpolations between them, illustrated in Fig. 1. Computational
sampling for slightly longer sequences (5  d  9, a = 2) agrees with this. We generalize the sequence of graphs and
interpolations between them in Fig. 1 for a > 2 as follows: suppose all vertices {q} in Hd,a are labelled as integers from 0 to
ad � 1, and two vertices share an edge if their base a representations differ in exactly one digit. Then Gn,a is the subgraph
induced by the vertices q < n. We call these graphs Gn,a ‘‘bricklayer’s graphs’’ because they form the sequence by which
a bricklayer would instinctively fill in the Hamming graph Hd,a. For the remainder of this Note we set the alphabet size
a = 2, so we are only concerned with hypercubes and their subgraphs. For simplicity we denote Gn,2 by Gn. We conjecture
an extension of our main result for general a in the Conclusion.

For neutral networks on sequences of short length d, the bricklayer’s graphs Gn are the most robust; they have maximal
principal eigenvalues. For longer lengths d, however, a surprise is in store: the Gn are not the most robust neutral networks.
In particular, we discovered the following counterexamples for d = 19 and above. Let Sn be the star graph: a tree with
one internal vertex and n leaf vertices. The principal eigenvalue of Sn is readily found to be

p
n. Now let us compare the

eigenvalue of a star of n vertices, Sn�1, to the eigenvalue �n of Gn. As we prove below, �n  log2 n. For the bricklayer’s graphs
Gn to win, we need

p
n � 1 < �n, implying

p
n � 1 < log2 n.

However, this not true for n � 20. It is an open question as to what shape does maximize the eigenvalue for larger graphs.
In the concluding remarks of [3], the authors consider the possibility that Hamming balls (graphs consisting of all points
that are most a given distance from a point) are asymptotic maximizers of hypercube subgraphs, but then provide some
evidence that they are not.

Our main result. In this Note we prove that the principal eigenvalue �n of the bricklayer’s graph Gn satisfies �n  log2 n.
Our general approach is to show by a geometric staircase argument that for d � 3, a slightly stronger inequality (�n <
log2(n� 1)) holds for most n; it will then suffice to examine the cases where n = 2d ± 1, using polynomials that have �2d±1
as roots.
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Fig. 2. The ‘‘staircase’’ argument for the proof of Lemma2.1. Because each bricklayer’s graph is a subgraph of its successor, knowing the principal eigenvalue
of a bricklayer’s graph immediately places restrictions on higher-dimensional bricklayer’s graphs (as demonstrated by the staircase figures of each colour).

Theorem. For all graphs Gn, we have �n  log2 n, with equality if and only if n is a power of 2.

Equality is attained in the Theorem if n is a power of 2 since �n must lie between the mean and maximum vertex
degree [1], and for n a power of 2, all vertices are of degree log2 n. We wish to show that if n is not a power of 2, there
is strict inequality. We make two observations. Observation 1: Since the principal eigenvalue of a proper subgraph of a
connected graph is less than the principal eigenvalue of the graph itself, it follows that if n < m then �n < �m. Observation
2: Since G2n = Gn⇤K2, and the spectrum of a Cartesian product of graphs is the sum of their individual spectra [1], it follows
that if �n < log2 n then �2n = �n + 1 < log2 2n. Using these observations, we claim:

Lemma 2.1. The Theorem is true for all n if for some k,

�n < log2(n � 1) for 2k + 2  n  2k+1 � 1, (7)

and also

�2d�1 < log2(2
d � 2), d � 5, and (8)

�2d+1 < log2(2
d + 1

2 ), d � 3. (9)

Proof. The ‘‘staircase’’ argument is illustrated in Fig. 2. We verify numerically that the Theorem is true for n  16 and (7)
holds for k = 3. Now if (7) is true for some k, then by Observation 2,

�2n < log2(2n � 2) for 2k + 2  n  2k+1 � 1. (10)

By Observation 1 we have the expansion

�2n�2 < �2n�1 < �2n < log2(2n � 2) < log2(2n � 1) < log2 2n (11)

for 2k + 2  n  2k+1 � 1, so that �m < log2 m for 2k+1 + 2  m  2k+2 � 2. Conditions (8) and (9) then ensure that
�m < log2 m for m = 2k+1 + 1 and m = 2k+2 � 1 as well, proving the Theorem for 2k+1  n  2k+2. Finally, note that (11)
together with (8) and (9) implies that (7) holds with k replaced by k + 1, so we may repeat our induction indefinitely. ⇤

Therefore, the Theorem reduces to (8) and (9), which we will prove by looking at polynomials that have the eigenvalues
of our desired graphs as roots. We will make use of the following standard theorem in linear algebra:
(Cauchy’s Interlacing Theorem [5]). Let A be an n ⇥ n symmetric nonnegative matrix with eigenvalues a1  · · ·  an, and let B
be an m ⇥ m principal submatrix of A with eigenvalues b1  · · ·  bm. Then for all j < m + 1, aj  bj  an�m+j.

3. Polynomials with eigenvalues �
2

d±1

as roots

Let �n be the characteristic polynomial of the adjacency matrix of Gn. Enumerating the hypercube spectrum, we find

�2d(x) =
dY

i=0

(x � (d � 2i))(
d
i),
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so we may define the polynomial

P2d(x) = �2d(x)
d�1Q
i=1

(x � (d � 2i))(
d
i)�1

=
dY

i=0

(x � (d � 2i)). (12)

By applying Cauchy’s Interlacing Theorem to the adjacency matrices of G2d+1 and G2d (thus ‘‘sandwiching’’ the spectrum
of �2d+1 by that of �2d ), we see from the multiplicity of the eigenvalues (of �2d ) that �2d+1(x) has the factor

Qd�1
i=1 (x � (d �

2i))(
d
i)�1. A similar argument shows that �2d�1(x) has the same factor. So we may define the polynomials

P2d±1(x) = �2d±1(x)
d�1Q
i=1

(x � (d � 2i))(
d
i)�1

.

Furthermore, we see that �2d�1 has at most d simple roots, all of which are also roots of the d-degree polynomial P2d�1.
The reason we use the polynomials P is related to the fact that G2d�1 is a Hamming ball of radius d� 1 in Hd,2. We define

Bd,r , the d-dimensional ball of radius r , as the set of points inHd,2 that are Hamming distance at most r from the ‘‘origin’’ (the
point labelled ‘‘0’’ according to the labelling scheme specified in the first paragraph of Section 2). We determine recursive
equations that give �, the principal eigenvalue of Bd,r . Consider the corresponding eigenvectorw, and note that by symmetry
the component of w corresponding to a given vertex depends only on the distance of the vertex from the origin. Therefore,
let wk be the value of the component of w corresponding to a vertex of distance k from the origin. By matrix multiplication,
we find that

�w0 = dw1 (13)
�wk = kwk�1 + (d � k)wk+1 for 1  k < r (14)
�wr = rwr�1. (15)

By setting w0 = 1 and following the equations above for each fixed r , we find that the principal eigenvalue of Bd,r is a root
of the polynomial pr(�), where p0 = �, p1 = �2 � d, and

pr = �pr�1 � r(d � r + 1)pr�2 for r � 2.

Applying this to �2k�1, we can generate polynomials in � with coefficients in d (say fk(d, �)) such that when k is
substituted for d, the resulting polynomial in � has �2k�1 as a root. Then f1(d, �) = �, f2(d, �) = �2 � d and, in general,

fk(d, �) = �fk�1(d, �) � (k � 1)(d � k + 2)fk�2(d, �), (16)

and fk(k, �) has �2k�1 as a root. In fact, fk(k, �) has every simple eigenvalue of G2k�1 as a root (by the reasoning of the
derivation). Since the degree of fk(k, �) as a polynomial in � is d, and we have from above that �2d�1 has at most d simple
roots (all of which are also roots of the d-degree polynomial P2d�1), it must be the case that

P2k�1(�) = fk(k, �). (17)

4. Bounding �
2

d�1

Rewriting the right side of (8) by applying the Taylor expansion with Lagrange remainder gives

log2(2
d � 2) = d + log2

✓
1 � 2

2d

◆
> d + 1

log 2

✓
� 2

2d � 22

22d�1

◆
.

Therefore, for d � 5,

log2(2
d � 2) > d � 3

2
2
2d . (18)

Now we deal with the left side of (8).

Lemma 4.1. �2d�1 < d � P2d�1(d)/P 0
2d�1(d).

Proof. Note that the function P2d�1(x) is convex on x � �2d�1. To see this, let f (x) = Qn
i=1(x� ri) be any monic polynomial

with all real roots and observe that

f 00(x) = 2
nX

j1,j2=1
j1<j2

"
nY

i=1,i6=j1,i6=j2

(x � ri)

#

,
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which is always nonnegative if x is at least the largest root of f . Now since the tangent linear approximation of a convex
function is an underestimate, we obtain P2d�1(d) + P 0

2d�1(d) · (�2d�1 � d) < 0, which implies the lemma. ⇤

We evaluate the desired values of P2d�1 and its derivative using (17) and the recursive relation in (16).

Lemma 4.2. P2d�1(d) = d!
Proof. Recall the definition of fk(d, �) from the previous section and the fact that P2k�1(�) = fk(k, �). We seek to prove that
fk(k, k) = k!, and to do this we will prove a stronger claim that for i, k 2 N+,

fk(i, i) = (i)k,

where (i)k = i(i� 1)(i� 2) · · · (i� k+ 1) is the Pochhammer symbol. We use induction on k. For k = 1 we have f1(i, i) = i
and f2(i, i) = i2 � i = i(i � 1). Supposing the claim is true for fk�2(i, i) and fk�1(i, i), we find from (16) that

fk(i, i) = ifk�1(i, i) � (k � 1)(i � k + 2)fk�2(i, i)
= i(i)k�1 � (k � 1)(i � k + 2)(i)k�2

= (i)k. ⇤

Lemma 4.3.

P 0
2d�1(d) = d!

d�1X

j=0

2j

j + 1
.

Proof. With respect to the polynomials fk(d, �), let f 0
k(d, �) denote @

@�
fk(d, �). Then P 0

2k�1(�) = f 0
k(k, �), and f 0

1(d, �) = 1,
f 0
2(d, �) = 2�, and for k � 3, from (16),

f 0
k(d, �) = fk�1(d, �) + �f 0

k�1(d, �) � (k � 1)(d � k + 2)f 0
k�2(d, �).

We seek to prove that f 0
k(k, k) = k!Pk�1

j=0
2j
j+1 , and to do this we will prove a stronger claim that for integers k > 0, i � 0,

f 0
k(k + i, k + i) = k!

k�1X

j=0

✓
k � j + i � 1

i

◆
2j

j + 1
.

We use induction on k. For the base cases k = 1 and k = 2 we find that f 0
1(1+ i, 1+ i) = 1 and f 0

2(2+ i, 2+ i) = 2(2+ i),
as desired. Now supposing the claim is true for f 0

k�2(k + i, k + i) and f 0
k�1(k + i, k + i), it follows that

f 0
k(k + i, k + i) = fk�1(k + i, k + i) + (k + i)f 0

k�1(k + i, k + i) � (k � 1)(i + 2)f 0
k�2(k + i, k + i)

= (k + i)k�1 + (k + i)(k � 1)!
k�2X

j=0

(k � j + i � 1)!
(i + 1)!(k � j � 2)!

2j

j + 1
� (k � 1)!

k�3X

j=0

(k � j + i � 1)!
(i + 1)!(k � j � 3)!

2j

j + 1

= (k + i)!
(i + 1)! + (k � 1)

(k + i)!
(i + 1)! +

k�2X

j=0


(k � 1)!

(k � j � 2)!
(k � j + i)!

(i + 1)! + j
(k � 1)!

(k � j � 2)!
(k � j + i � 1)!

(i + 1)!

�
2j

j + 1

� (k � 1)(k � 2)
(k + i � 1)!

(i + 1)! �
k�2X

j=2

(k � 1)!
(k � j � 2)!

2j�1

j
(k � j + i)!

(i + 1)!

= (k + i)!
(i + 1)! + (k � 1)

(k + i)!
(i + 1)! + (k � 1)(k � 2)

(k + i � 1)!
(i + 1)!

+
k�2X

j=2


(k � 1)!

(k � j � 2)!
2j

j + 1
+ (j � 1)

(k � 1)!
(k � j � 1)!

2j�1

j

�
(k � j + i)!

(i + 1)!

+ (k � 2)(k � 1)! 2
k�2

k � 1
� (k � 1)(k � 2)

(k + i � 1)!
(i + 1)! �

k�2X

j=2

(k � 1)!
(k � j � 2)!

2j�1

j
(k � j + i)!

(i + 1)!

= k
(k + i)!
(i + 1)! +

k�2X

j=2


(k � 1)!

(k � j � 2)!

✓
2j

j + 1
� 2j�1

j

◆
+ (j � 1)

(k � 1)!
(k � j � 1)!

2j�1

j

�
(k � j + i)!

(i + 1)!

+ [2(k � 1)(k � 1)! � k!] 2k�2

k � 1
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= k
(k + i)!
(i + 1)! +

k�2X

j=2

k!
(k � j � 1)!

✓
2j

j + 1
� 2j�1

j

◆
(k � j + i)!

(i + 1)! + k!
✓
2k�1

k
� 2k�2

k � 1

◆

= k!
k�1X

j=0


(k � j + i)!

(i + 1)!(k � j � 1)!
2j

j + 1
� (k � j � 1)(k � j + i � 1)!

(i + 1)!(k � j � 1)!
2j

j + 1

�

= k!
k�1X

j=0

(k � j + i � 1)!
i!(k � j � 1)!

2j

j + 1
. ⇤

Now substituting the results of Lemmas 4.2 and 4.3 into Lemma 4.1,

�2d�1 < d � 1
d�1P
j=0

2j
j+1

. (19)

A simple induction with base cases 1  d  3 shows that the sum in the denominator of the second term of (19) on the
right-hand side can be bounded by

dX

j=1

2j

j
< 3

2d

d
. (20)

Therefore,

d � 1
d�1P
j=0

2j
j+1

< d � 2
3

d
2d . (21)

Since we may combine the bounds (21) and (18) for d � 5, we have proved (8).

5. Bounding �
2

d+1

Rewriting the right side of (9) in much the same way as the previous section, we find that for d � 3,

log2
�
2d + 1

2

�
> d +

1
2

2d . (22)

As for the left side of (9), we have a computational shortcut:

Lemma 5.1. Let G be a graph, and let e be a bridge of G (i.e., e is an edge such that removing it would increase the number of
connected components of G). Let G⇤ be the graph G with e removed, and G⇤⇤ be the graph G with e and its endpoints removed.
Then �G = �G⇤ � �G⇤⇤ , where �G is the characteristic polynomial of the adjacency matrix of G.

Proof. This is an extension of Lemma 1 in [6], which states the result whenG is a forest and e is any edge, and is also Theorem
1.3 in [7]. The proof involves expanding the matrix whose determinant is �G, using Laplacian expansion and linearity of the
determinant. ⇤

Corollary 5.2. �2d+1(�) = ��2d(�) � �2d�1(�), and so dividing by
Qd�1

i=1 (x � (d � 2i))(
d
i)�1,

P2d+1(�) = �P2d(�) � P2d�1(�).

Lemma 5.3. �2d+1 < d � P2d+1(d)/P 0
2d+1(d).

Proof. From the preceding corollary,

P 00
2d+1(x) = 2P 0

2d(x) + xP 00
2d(x) � P 00

2d�1(x).

We wish to show that this is nonnegative on x � d. From the argument of the proof of Lemma 4.1, P 0
2d(x) � 0 for x � d,

and from the equation for the second derivative of a polynomial there, P 00
2d(x) > P 00

2d�1(x) for x � d since the roots of P2d�1
interlace those of P2d by Cauchy’s Interlacing Theorem. So P2d+1(x) is convex on x � d, and so by linear approximation,
P2d+1(d) + P 0

2d+1(d) · (�(G2d+1) � d) < 0, which implies the lemma. ⇤

Now as in the previous section, we evaluate the desired values of P2d+1(d) and its derivative.



1290 T. Reeves et al. / Discrete Mathematics 339 (2016) 1283–1290

Lemma 5.4. P2d+1(d) = �d!.
Proof. Using Corollary 5.2 and Lemma 4.2, P2d+1(d) = dp2d(d) � p2d�1(d) = 0 � d!. ⇤

Lemma 5.5.

P 0
2d+1(d) = d!

 

d 2d �
d�1X

j=0

2j

j + 1

!

.

Proof. Differentiating (12) and then plugging in d gives P 0
2d(d) = 2dd!. Then using Corollary 5.2 and Lemma 4.3,

P 0
2d+1(d) = P2d(d) + dP 0

2d(d) � P 0
2d�1(d)

= 0 + d 2dd! � d!
d�1X

j=0

2j

j + 1

= d!
 

d 2d �
d�1X

j=0

2j

j + 1

!

. ⇤

Substituting the results of Lemmas 5.4 and 5.5 into Lemma 5.3,

�2d+1 < d + 1

d 2d �
d�1P
j=0

2j
j+1

. (23)

From (20), we obtain that for d > 1,

d + 1

d 2d �
d�1P
j=0

2j
j+1

< d + 1
(d � 3

2d )2
d
. (24)

Since we may combine the bounds (24) and (22) for d � 5, we have proved (9).
This concludes the proof of the Theorem.

6. Conclusion

As an additional remark, if we bound log2(2d � N) for general N in the manner of (18), we can deduce an asymptotic
result: for any N , there exists D so large that �2d�1 < log2(2d � N) for all d > D. Similarly generalizing (22) leads to the
result that for any ✏ > 0, there exists D so large that �2d+1 < log2(2d + ✏) for all d > D.

Throughout most of this paper, we have set a = 2. We conjecture an extension of the Theorem for general a:

Conjecture. For all graphs Gn,a, we have �n,a  (a � 1) loga n, with equality if and only if n is a power of a.

There are several interesting and potentially important questions that we have not considered here, which merit further
investigation. We prove that the form of the hypercube subgraph with maximal eigenvalue is a bricklayer’s graph for small
d but the general form of the maximizers is unknown. Indeed it is an open avenue of study to find even non-trivial bounds
on the eigenvalue of a hypercube subgraph in terms of its number of vertices s. While for small dimension d the bricklayer’s
graphs are optimal, for s � 20 and d � s � 1, Hamming balls of radius 1 are superior. For large s and d ⌧ s, Hamming balls
of larger radius may eventually dominate, but this is unproven. How these transitions extend to larger values of alphabet
size a is also an open question, though it seems that the critical dimension separating bricklayer’s graphs and balls grows
with a. We hope that further research by others will shed light on these questions.

References

[1] A.E. Brouwer, W.H. Haemers, Spectra of Graphs, 2011, p. 33.
[2] J. Draghi, T. Parsons, G. Wagner, J. Plotkin, Mutational robustness can facilitate adaptation, Nature 463 (2010) 353–355.
[3] J. Friedman, J.-P. Tillich, Generalized Alon-Boppana theorems and error-correcting codes, SIAM J. Discrete Math. 19 (3) (2005) 700–718.
[4] R. Hammack, W. Imrich, S. Klav∫ar, Handbook of Product Graphs, second ed., 2011, p. 267.
[5] S.-G. Hwang, Cauchy’s interlace theorem for eigenvalues of hermitian matrices, Amer. Math. Monthly 111 (2004) 157–159.
[6] L. Lovász, J. Pelikán, On the eigenvalues of trees, Period. Math. Hungar. 3 (1973) 175–182.
[7] D. Stevanovi¢, Spectral Radius of Graphs, 2015, p. 7.
[8] E. van Nimwegen, J.P. Crutchfield, M. Huynen, Neutral evolution of mutational robustness, Proc. Natl. Acad. Sci. USA 96 (1999) 9716–9720.
[9] A. Wagner, Robustness and evolvability: a paradox resolved, Proc. Roy. Soc. B 275 (2008) 91–100.

http://refhub.elsevier.com/S0012-365X(15)00410-0/sbref2
http://refhub.elsevier.com/S0012-365X(15)00410-0/sbref3
http://refhub.elsevier.com/S0012-365X(15)00410-0/sbref5
http://refhub.elsevier.com/S0012-365X(15)00410-0/sbref6
http://refhub.elsevier.com/S0012-365X(15)00410-0/sbref8
http://refhub.elsevier.com/S0012-365X(15)00410-0/sbref9

	Eigenvalues of neutral networks: Interpolating between hypercubes
	Relation between the robustness and the principal eigenvalue
	Neutral networks with large eigenvalues
	Polynomials with eigenvalues  λ2d± 1  as roots
	Bounding  λ2d- 1 
	Bounding  λ2d+ 1 
	Conclusion
	References


