Spin systems on hypercubic Bethe lattices: a Bethe–Peierls approach

A. Mozeika, A. Coolen

Journal of Physics A 48, 255001 (2015)


Download the PDF

LQ placeholderHypercubic Bethe lattices  retain many of the loops of the topology of realistic spin systems.

Hypercubic Bethe lattices retain many of the loops of the topology of realistic spin systems.

We study spin systems on Bethe lattices constructed from d-dimensional hypercubes. Although these lattices are not tree-like, and therefore closer to real cubic lattices than Bethe lattices or regular random graphs, one can still use the Bethe–Peierls method to derive exact equations for the magnetization and other thermodynamic quantities. We compute phase diagrams for ferro- magnetic Ising models on hypercubic Bethe lattices with dimension d = 2, 3, and 4. Our results are in good agreement with the results of the same models on d-dimensional cubic lattices, for low and high temperatures, and offer an improvement over the conventional Bethe lattice with connectivity k = 2d.

LQ placeholder

Degree-correlations in a bursting dynamic network model

F. Vanni, P. Barucca

Journal of Economic Interaction and Coordination

LQ placeholder

Scale of non-locality for a system of n particles

S. Talaganis, I. Teimouri

Sub. to Physical Review D

LQ placeholder

Changes to Gate Closure and its impact on wholesale electricity prices: The case of the UK

A. Facchini, A. Rubino, G. Caldarelli, G. Liddo

Energy Policy

LQ placeholder

How much can we influence the rate of innovation?

T. Fink, M. Reeves

Science Advances

LQ placeholder

The statistical physics of real-world networks

G. Cimini, T. Squartini, F. Saracco, D. Garlaschelli, A. Gabrielli, G. Caldarelli

Nature Reviews Physics

LQ placeholder

PopRank: Ranking pages’ impact and users’ engagement on Facebook

A. Zaccaria, M. Vicario, W. Quattrociocchi, A. Scala, L. Pietronero


128 / 128 papers