# Spin systems on hypercubic Bethe lattices: a Bethe–Peierls approach

*Journal of Physics A* 48, 255001 (2015)

#spinsystems#thermodynamics#statisticalphysics

Hypercubic Bethe lattices retain many of the loops of the topology of realistic spin systems.

We study spin systems on Bethe lattices constructed from d-dimensional hypercubes. Although these lattices are not tree-like, and therefore closer to real cubic lattices than Bethe lattices or regular random graphs, one can still use the Bethe–Peierls method to derive exact equations for the magnetization and other thermodynamic quantities. We compute phase diagrams for ferro- magnetic Ising models on hypercubic Bethe lattices with dimension d = 2, 3, and 4. Our results are in good agreement with the results of the same models on d-dimensional cubic lattices, for low and high temperatures, and offer an improvement over the conventional Bethe lattice with connectivity k = 2d.

#### Phase transition creates the geometry of the continuum from discrete space

R. Farr, T. Fink

*Physical Review E*

#### The statistical physics of real-world networks

G. Cimini, T. Squartini, F. Saracco, D. Garlaschelli, A. Gabrielli, G. Caldarelli

*Nature Reviews Physics*

#### On defining the Hamiltonian beyond quantum theory

D. Branford, O. Dahlsten, A. Garner

*Foundations of Physics*

#### Reconstructing grain-shape statistics from electron back-scatter diffraction microscopy

R. Farr, Z. Vukmanovic, M. Holness, E. Griffiths

*Physical Review Materials*

#### Tackling information asymmetry in networks: a new entropy-based ranking index

P. Barucca, G. Caldarelli, T. Squartini

*Journal of Statistical Physics*

#### Eigenvalues of subgraphs of the cube

B. Bollobás, J. Lee, S. Letzter

*European Journal of Combinatorics*

#### Maximum one-shot dissipated work from Rényi divergences

N. Halpern, A. Garner, O. Dahlsten, V. Vedral

*Physical Review E *

123 / 123 papers