# Serendipity and strategy in rapid innovation

T. Fink, M. Reeves, R. Palma, R. Farr

*Nature Communications* 8, 2002 (2017)

#innovation#statisticalphysics#combinatorics

In systems of innovation, the relative usefulness of different components changes as the number of components we possess increases.

Innovation is to organizations what evolution is to organisms: it is how organisations adapt to changes in the environment and improve. Yet despite steady advances in our understanding of evolution, what drives innovation remains elusive. On the one hand, organizations invest heavily in systematic strategies to accelerate innovation. On the other, historical analysis and individual experience suggest that serendipity plays a significant role in the discovery process. To unify these two perspectives, we analyzed the mathematics of innovation as a search process for viable designs across a universe of component building blocks. We then tested our insights using historical data from language, gastronomy and technology. By measuring the number of makeable designs as we acquire more components, we observed that the relative usefulness of different components is not fixed, but cross each other over time. When these crossovers are unanticipated, they appear to be the result of serendipity. But when we can predict crossovers ahead of time, they offer an opportunity to strategically increase the growth of our product space. Thus we find that the serendipitous and strategic visions of innovation can be viewed as different manifestations of the same thing: the changing importance of components over time.

#### Economic complexity: From useless to keystone

Serendipity and strategy in rapid innovation

Nature Physics, 2018-01-05

#### Serendipity and strategy in rapid innovation

Serendipity and strategy in rapid innovation

Money Science, 2018-01-13

#### Serendipity and strategy in rapid innovation

Serendipity and strategy in rapid innovation

Money Science, 2017-05-04

#### Phase transition creates the geometry of the continuum from discrete space

R. Farr, T. Fink

*Physical Review E*

#### The statistical physics of real-world networks

G. Cimini, T. Squartini, F. Saracco, D. Garlaschelli, A. Gabrielli, G. Caldarelli

*Nature Reviews Physics*

#### On defining the Hamiltonian beyond quantum theory

D. Branford, O. Dahlsten, A. Garner

*Foundations of Physics*

#### Reconstructing grain-shape statistics from electron back-scatter diffraction microscopy

R. Farr, Z. Vukmanovic, M. Holness, E. Griffiths

*Physical Review Materials*

#### Tackling information asymmetry in networks: a new entropy-based ranking index

P. Barucca, G. Caldarelli, T. Squartini

*Journal of Statistical Physics*

#### Eigenvalues of subgraphs of the cube

B. Bollobás, J. Lee, S. Letzter

*European Journal of Combinatorics*

#### Maximum one-shot dissipated work from Rényi divergences

N. Halpern, A. Garner, O. Dahlsten, V. Vedral

*Physical Review E *

123 / 123 papers