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Innovation is to organizations what evolution is to organisms: it is how organizations adapt to

environmental change and improve. Yet despite advances in our understanding of evolution,

what drives innovation remains elusive. On the one hand, organizations invest heavily in

systematic strategies to accelerate innovation. On the other, historical analysis and individual

experience suggest that serendipity plays a significant role. To unify these perspectives, we

analysed the mathematics of innovation as a search for designs across a universe of com-

ponent building blocks. We tested our insights using data from language, gastronomy and

technology. By measuring the number of makeable designs as we acquire components, we

observed that the relative usefulness of different components can cross over time. When

these crossovers are unanticipated, they appear to be the result of serendipity. But when we

can predict crossovers in advance, they offer opportunities to strategically increase the

growth of the product space.
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Innovation is how governments, institutions and firms adapt to
changes in the environment and improve1. Organizations that
innovate are more likely to prosper and stand the test of time;

those that fail to do so fall behind their competitors and succumb
to market and environmental change2, 3. Despite the importance
of innovation, what drives innovation remains elusive1, 4.
Research on macro-economic development suggests that more
complex, diverse or re-purposable5–8 production capabilities
result in greater economic growth at a national level9, 10. At a
micro-economic level, there is a perennial tension between a
strategic approach, which views innovation as a rational process
which can be measured and prescribed11–13; and a belief in ser-
endipity and the intuition of extraordinary individuals14–16.

The strategic approach is seen in firms like P&G and Unilever,
which use process manuals and consumer research to maintain a
reliable innovation factory17, and Zara, which systematically
scales new products up and down based on real-time sales data.
In scientific discovery, “traditional scientific training and thinking
favour logic and predictability over chance”14. If discoveries are
actually made in the way that published papers suggest, the path
to invention is a step-wise, rational process.

On the other hand, a serendipitous approach is seen in firms
like Apple, which is notoriously opposed to making innovation
choices based on incremental consumer demands, and Tesla,
which has invested for years in their vision of long-distance
electric cars18. In science, many of the most important discoveries
have serendipitous origins, in contrast to their published step-by-
step write-ups, such as penicillin, heparin, X-rays and nitrous
oxide14. The role of vision and intuition tend to be under-
reported: a study of 33 major discoveries in biochemistry “in
which serendipity played a crucial role” concluded that “when it
comes to ‘chance’ factors, few scientists ‘tell it like it was’”19, 20.

To unify these two perspectives and understand what drives
innovation, in this Article we do four things. First, we study data
from three sectors: language, gastronomy and technology. We
measure how the number of makeable products (words, recipes

and software products) grows as we acquire new components
(letters, ingredients and development tools). We observe that the
relative usefulness of components is not fixed, but cross each
other in time. Second, to explain these crossovers, we prove a
conservation law for the innovation process over time. The
conserved quantity is a combination of the usefulness of com-
ponents and the complexity of products. We use it to forecast
crossovers in the future based on information we already have
about the products we can make. Third, we identify a spectrum of
innovation strategies dependent on how far into the future we
forecast: from short-term gain to long-term growth. A short-
sighted strategy maximizes what a new component can do for us
now, whereas a far-sighted strategy maximizes what it could do
for us later. We apply both strategies to our three sectors and find
that they differ from each other to the extent that each sector
contains crossovers. Fourth, we resolve the tension between the
strategic and serendipitous interpretations of innovation. Both
can be viewed as different manifestations of the changing
importance of components over time. When component cross-
overs are unexpected, they appear to stem from serendipity. But
when we can forecast crossovers in advance, they provide an
opportunity to strategically increase the growth of our product
space.

Results
Lego game. We begin by illustrating our ideas using Lego bricks.
Think back to your childhood days. You’re in a room with two
friends Bob and Alice, playing with a big box of Lego bricks—say,
a fire station set. All three of you have the same goal: to build as
many new toys as possible. As you continue to play, each of you
searches through the box and chooses those bricks that you
believe will help you reach this goal. Let us now suppose each
player approaches this differently. Your approach is to follow
your gut, arbitrarily selecting bricks that look intriguing. Alice
uses what we call a short-sighted strategy, picking Lego men and
their firefighting hats to immediately make simple toys.
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Fig. 1 Products, components and usefulness for three sectors. We studied products and components from three sectors. a In language, the products are
79,258 English words and the components are the 26 letters. b In gastronomy, the products are 56,498 recipes from the databases allrecipes.com,
epicurious.com and menupan.com23, and the components are 381 ingredients. c In technology, the products are 1158 software products catalogued by
stackshare.io and the components are 993 development tools used to make them. d–f The usefulness of a component is the number of products we can
make that contain it. We find that the relative usefulness of a component depends on how many other components have already been acquired. For each
sector, we show the usefulness of three typical components: averaged at each stage over all possible choices of the other acquired components and—for
gastronomy—for a particular random order of component acquisition (points)
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Fig. 2 a–c Crossovers in the mean usefulness of components. The relative usefulness of different components changes as the number of components we
possess increases. For example a, if you are only allowed six letters, the ones that show up in the most words are a, e, i, o, s, r. For gastronomy b and
technology c, for clarity we only show the 40 components most useful when we have all N components. A pure short-sighted strategy attempts to acquire
components in the order that they intersect the diagonal, whereas a pure far-sighted strategy attempts to acquire them in the order that they intersect a
vertical. If there are no crossovers, the strategies are the same
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Meanwhile, Bob chooses pieces such as axles, wheels and small
base plates that he noticed are common in more complex models,
even though he is not able to use them straightaway to produce
new toys. We call this a far-sighted strategy.

Who wins. At the end of the day, consider who will have inno-
vated the most, by building the most new toys. We find that, in
the beginning, Alice will lead the way, surging ahead with her
impatient strategy. But as the game progresses, fate will appear to
shift. Bob’s early moves will begin to look serendipitous when he
is able to assemble a complex fire truck from his choice of initially
useless axles and wheels. It will seem that he was lucky, but we
will soon see that he effectively created his own serendipity. As for
you, picking components on a hunch, you will have built the

fewest toys. Your friends had an information-enabled strategy,
while you relied on chance.

Spectrum of strategies. The Lego example highlights an impor-
tant concept. If innovation is a search process, then your com-
ponent choices today matter greatly in terms of the options they
will open up to you tomorrow. You can pick components that
quickly form simple products and give you a return now, or you
can choose those components that give you a higher future option
value. By understanding innovation as a search for designs across
a universe of components, we made a surprising discovery.
Information about the unfolding process of innovation can be
used to form an advantageous innovation strategy. But there is no
one superior strategy. As we shall see, the optimal strategy
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Fig. 3 Recipes broken down by complexity, showing why crossovers happen. On the right is a big kitchen with 381 ingredients. On the left is a small kitchen
with one-third as many ingredients. In the big kitchen b, we can make a total of 56,498 recipes. Each bar counts recipes with the same number of
ingredients (complexity). When we move to the smaller kitchen a, the number of makeable recipes shrinks dramatically to 597, or 1.0%. But this reduction
is far from uniform across different bars. Higher bars shrink more, on average by an extra factor of 3 with each bar. Thus, the number of recipes of
complexity one (first bar) shrinks about threefold; the number of complexity two (second bar) ninefold, and so on. Of all the recipes in the big kitchen, 4801
contain cocoa d and 7950 contain cayenne f. The cayenne recipes tend to be more complex, containing on average 10.6 ingredients, whereas the cocoa
recipes are simpler, averaging 7.2 ingredients. Because higher bars suffer stronger reduction, overall fewer cayenne recipes (0.5%) survive in the smaller
kitchen e than cocoa recipes (1.8%) c. Thus, cayenne is more useful in the big kitchen, but cocoa is more useful in the small kitchen
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depends on time—how far along the innovation process we have
advanced—and the sector—some sectors contain more oppor-
tunities for strategic advantage than others.

Components and products. Just like the Lego toys are made up
of distinct kinds of bricks, we take products to be made up of
distinct components. A component can be an object, like a touch
screen, but it can also be a skill, like using Python, or a routine,
like customer registration. Only certain combinations of com-
ponents form products, according to some predetermined uni-
versal recipe book of products. Examples of products and the
components used to make them are shown in Fig. 1. Now sup-
pose that we possess a basket of distinct components, which we
can combine in different ways to make products. We have more
than enough copies of each component for our needs, so we do
not have to worry about running out. There are N possible
component types in total, but at any given stage n we only have n
of these N possible building blocks. At every stage, we pick a new
type of component to add to our basket.

Usefulness. The usefulness of a component is the number of
products we can make that contain it. In other words, the use-
fulness uα of some component α is how many more products we
can make with α in our basket than without α in our basket. As
we gather more components, uα increases or stays the same; it
cannot decrease. We write uα(n) to indicate this dependence on n:
uα(n) is the usefulness of α given possession of α and a specific set
of n − 1 other components, the combined set of components
being n. Averaging over all choices of the n − 1 other components
from the N − 1 that are possible gives the mean usefulness,
uαðnÞ. We make no assumptions about the values of different
products, which will depend on the market environment and may
change with time. But we can be sure that maximizing the
number of products is a proxy for maximizing any reasonable
property of them. A similar proxy is used in evolutionary models,
where evolvability is defined as the number of new phenotypes in

the adjacent possible (1-mutation boundary) of a given
phenotype; see ref. 21.

Usefulness experiment. To measure the mean usefulness of dif-
ferent components as the innovation process unfolds and we
acquire more components, we did the following experiments.
Using data from each of our three sectors, we put a given com-
ponent α into an empty basket, and then added, one component
at a time, the remaining N − 1 other components, measuring the
usefulness of α at every step. We averaged uα(n) over all possible
orders in which to add the N − 1 components to obtain uαðnÞ.
(We explain how in “Proof of components invariant” in
the Methods section.) We repeated this process for all of the
components α. Results for typical components are shown in
Fig. 1. We find that the mean usefulnesses of different compo-
nents cross each other as the number of components in our
basket increases. As Fig. 1 shows for gastronomy, this is true for
both the mean usefulness and the usefulness itself, measured for a
specific random ordering of components (points). What the mean
usefulness does, the usefulness tends to do also, because it is an
unbiased estimate of its mean.

Bumps charts. To visualize the relative usefulness of components
over time, for each sector we created its “bumps chart” (Fig. 2 and,
more complete, in Supplementary Figs. 1b and 2b). These show
the rank order of mean usefulness at every stage of the innovation
process. We see that the crossovers in Fig. 1 are commonplace,
but that some sectors contain more crossovers than others. There
are few crossings in language, some in gastronomy and many in
technology. This means, for example, that the most useful letters
for making words in Scrabble (a basket of seven letters) are nearly
the same as the most useful letters for making words with a full
basket (26 letters); the key ingredients in a small kitchen (20
ingredients) are moderately different from those in a big one (80
ingredients); the most-used development skills for a young soft-
ware firm (experience with 40 tools) are significantly different
from those for an advanced one (160 tools).
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Conservation law. To understand why crossovers happen, let us
have a closer look at how the usefulness increases for a single
component (Fig. 3). To make a product of complexity c, we must
possess all c of its distinct components. So making a complex
product is harder than making a simple one, because there are
more ways that we might be missing a necessary component. We
therefore group together the products we can make containing α
according to their complexity. That is, the usefulness uα(n, c) of
component α is how many more products of complexity c we can
make with α in our basket than without α in our basket. Summing
uα(n, c) over c gives uα(n). The advantage of this refined grouping
is that, by understanding the behaviour of uαðn; cÞ, we can
understand the more difficult uαðnÞ. Our key result, which we

prove in the Methods section, is that uαðn; cÞ n = n
c

� �
is constant

over all stages of the innovation process, where
n
c

� �
is the

binomial coefficient. In other words, for two stages n and n′,

uαðn; cÞ n =
n

c

� �
¼ uα n′; cð Þn′= n′

c

� �
: ð1Þ

Solving this for uαðn′; cÞ, this tells us that the number of products
containing α of complexity c grows much faster for higher
complexities than for lower complexities. Early on, uαðn; cÞ will
tend to be small for higher complexities, but depending on how
far ahead we look, the bigger growth rate can more than com-
pensate for this, as we see in Fig. 3. Summing Eq. (1) over size c

and approximating
n
c

� �
and

n′
c

� �
by nc and n′c, we find

uαðn′Þ ’ uαðn; 1Þ þ uαðn; 2Þ x þ uαðn; 3Þ x2 þ ¼ ; ð2Þ

where x = n′/n. Because the usefulness is an unbiased estimate of
its mean, we can approximate uαðn; cÞ on the right-hand side of

Eq. (2) with uα(n, c), which we know at the present time. With
these substitutions, we use Eq. (2) to calculate uαðn′Þ at some
point in the future. This is then an estimator for the usefulness for
any superset of n of size n′ (a superset because we can only add
components to our basket). This enables us to make predictions
about future usefulness entirely from information we have in the
present.

Valence. So far we have only characterized a component by its
usefulness: the number of products we can make that contain it.
Now we introduce another way of describing a component: the
average complexity of the products it appears in. We call this the
valence, and it affects (Fig. 4) how the importance of components
changes over time. The valence vα(n) of component α is the
average complexity of the products it appears in at stage n. Think
of the valence as the typical number of co-stars a component
performs with, plus one. We show the usefulness and valence at
stage N for different components in Fig. 5a–c and, more com-
plete, in Supplementary Figs. 1a and 2a. More valent components
are unlikely to be useful until we possess a lot of other compo-
nents, so that we have a good chance of hitting upon the ones
they need. These are the wheels and axles in our Lego set. On the
other hand, less valent components are likely to boost our pro-
duct space early on, when we have acquired fewer components.
These are the Lego men and their firefighting hats. This insight
suggests that more valent components will tend to rise in relative
usefulness, and less valent components fall. This is verified in our
experiments: components on the right of the plots in Fig. 5a–c
tend to rise in the bumps charts, such as onion, tomato, Javascript
and Git, whereas components on the left tend to fall, like cocoa,
vanilla, Google Apps and SendGrid. Figure 4 shows this effect
visually.
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Discussion
A crossover in the usefulness of components means that the
things that matter most today are not the same as the things that
will matter most tomorrow. How we interpret crossovers in
practice depends on whether they are unanticipated, and take us
by surprise, or anticipated, and can be planned for and exploited.
When they are unanticipated, beneficial crossovers can seem to be
serendipitous. But when they can be anticipated, crossovers
provide an opportunity to strategically increase the growth of our
product space. To harness this opportunity, we turn to forecasting
component crossovers using the complexity of products con-
taining them.

To maximize the size of our product space when crossovers are
unanticipated, the optimal approach is to acquire, at each stage,
the component that is most useful now. Think of this as a
“greedy”, or short-sighted, approach. It has a geometric inter-
pretation: it is attempting to acquire the components that inter-
sect the diagonals in Fig. 2. At every stage we lock in to a specific
component, unaware of the future implications of the choices we
make. A component poorly picked is an opportunity lost.

Using only information about the products we can already
make with our existing components, however, we can forecast the
usefulness of our components into the future applying a far-
sighted strategy. Equation (2) shows us how, and we give an
example in “Forecasting crossovers in usefulness” in the Methods
section. Here the optimal approach is to acquire, at each stage, the
component that will be most useful at some later stage n′. This
also has a geometric interpretation: it is attempting to acquire the
components that intersect a vertical at n′ in Fig. 2, and thus
depends on how far into the future we forecast.

A short-sighted strategy considers only the usefulness uα,
whereas a far-sighted strategy considers both the usefulness uα
and the valence vα. Short-sighted maximizes what a potential new
component can do for us now, whereas far-sighted maximizes
what it could do for us later. Depending on our desire for short-
term gain vs. long-term growth, we have a spectrum of strategies
dependent on n′. A pure short-sighted strategy (n′ = n) and a pure
far-sighted strategy (n′ =N) are compared in Fig. 5d–f. Like the
Lego approaches of Bob and Alice, both strategies beat acquiring
components at random. As our theory predicts, the extent to
which the two strategies differ from each other increases with the
number of crossovers. For language, they are nearly identical,
because there are few crossovers. For gastronomy, short-sighted
has a twofold advantage at first, but later far-sighted wins by a
factor of two. For technology, short-sighted surges ahead by an
order of magnitude, but later far-sighted is dominant. While we
do not fully understand why some datasets have more crossovers
than others, our results suggest that a dataset with a broader
spectrum of valences tends to have more crossovers. For lan-
guage, gastronomy and technology the standard deviations of
valence vα(N) are 0.32, 2.0 and 18.

Writing about the The Three Princes of Serendip, Horace
Walpole records that the princes “were always making dis-
coveries, by accidents and sagacity, of things they were not in
quest of”. Serendipity is the fortunate development of events, and
many organizations and researchers stress its importance14, 15.
Crossovers in component usefulness help us see why. Compo-
nents which depend on the presence of many others can be of
little benefit early on. But as the innovation process unfolds and
the acquired components pay off, the results will seem serendi-
pitous, because a number of previously low-value components
become invaluable. Thus, what appears as serendipity is not
happenstance but the delayed fruition of components reliant on
the presence of others. After the acquisition of enough other
components, these components flourish. For example, the initially
useless axles and wheels were later found to be invaluable to

building many new toys. In a similar way, the low value attributed
to Flemming’s initial identification of lysozyme was later revised
to high value in the years leading to the discovery of penicillin,
when other needed components emerged, such as sulfa drugs
which showed that safe antibiotics are possible14. Interestingly,
the word “serendipity” does not have an antonym. But as our
bumps charts show, for every beneficial shift in a crossover, there
is a detrimental one. Each opportunity for serendipity goes hand-
in-hand with a chance for anti-serendipity: the acquisition of
components useful now but less useful later. Avoiding these over-
valued components is as important as acquiring under-valued
ones to securing a large future product space.

Our research shows that the most important components—
materials, skills and routines—when an organization is less
developed tend to be different from when it is more developed.
The relative usefulness of components can change over time, in a
statistically repeatable way. Recognizing how an organization’s
priorities depend on its maturity enable it to balance short-term
gain with long-term growth. For example, our insights provide a
framework for understanding the poverty trap. When a less-
developed country imitates a more-developed country by
acquiring similar production capabilities7, it is unable to quickly
reap the rewards of its investment, because it does not have in
place enough other needed capabilities. This in turn prevents it
from further investment in those needed components. Our ana-
lysis gives quantitative backing to the “lean start-up” approach to
building companies and launching products22. Start-ups are wise
to employ a short-sighted strategy and release a minimum viable
product. Without the resources to sustain a far-sighted approach,
they need to quickly bring a simple product to market. On the
other hand, firms that can weather an initial drought will see their
sacrifice more than paid off when their far-sighted approach kicks
in. By tracking how potential new components combine with
existing ones, organizations can develop an information-
advantaged strategy to adopt the right components at the right
time. In this way they can create their own serendipity, rather
than relying on intuition and chance.

Methods
Data. Our three data sets—described in Fig. 1—were obtained as follows. In
language, our list of 79,258 common English words is from the built-in WordList
library in Mathematica 10.4. Of the 84,923 KnownWords, we only considered those
made from the 26 letters a–z, ignoring case: we excluded words containing a
hyphen, space, etc. In gastronomy, the 56,498 recipes can be found in the Sup-
plementary Material in ref. 23. In technology, the 1158 software products and the
development tools used to make them can be found at the site stackshare.io.

Proof of components invariant. Let N be the set of N possible components, let α
be one of those components, and let N1 be the set of N − 1 other components not
including α. Let n1 be a subset of n − 1 components chosen from N1, and let c1 be a
subset of c − 1 components chosen from n1. The usefulness uα(n, c) is how many
more products of complexity c that we can make from the components n1 together
with α, than from the components n1 alone:

uαðn; cÞ ¼
X
c1�n1

prod α \ c1ð Þ � prod c1ð Þ; ð3Þ

where prod(α ∩ c1) takes the value 0 if the combination of components α ∩ c1 forms
no products of complexity c and 1 if α ∩ c1 forms one product of complexity c.
(Occasionally, the same combination of components α ∩ c1 forms multiple pro-
ducts: for example, in our gastronomy data, beef, butter and onion together form
two distinct recipes of length three. In such cases, prod(α ∩ c1) takes the value 2 if α
∩ c1 forms two products, and so on.) The mean usefulness of component α,

uαðn; cÞ, is the average of uα(n, c) over all subsets n1 ⊆ N1; there are
N � 1
n� 1

� �
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such subsets. Therefore,

uαðn; cÞ ¼ 1=
N � 1

n� 1

� � X
n1�N1

uαðn; cÞ; ð4Þ

¼ 1=
N � 1

n� 1

� � X
n1�N1

X
c1�n1

prod α \ c1ð Þ � prod c1ð Þ: ð5Þ

Consider some particular combination of components c1 ′. The double sum above
will count c1 ′ once if c = n, but multiple times if c< n, because c1 ′ will belong to
multiple sets n1. How many? In any set n1 that contains c1, there are n − c free
elements to choose, from N − c other components. Therefore the double sum will

count every combination c1 a total of
N � c
n� c

� �
times, and

uαðn; sÞ ¼
N � c

n� c

� �
=

N � 1

n� 1

� � X
c1�N1

prod α \ c1ð Þ � prod c1ð Þ ð6Þ

¼ N=n
n

c

� �
=

N

c

� �
uαðN; cÞ: ð7Þ

The same must be true when we replace n by n′, and therefore

uαðn; cÞ n =
n

c

� �
¼ uα n′; cð Þn′= n′

c

� �
: ð8Þ

The usefulness uα(n, c) of some specific choice of components n is an unbiased
estimate of the mean usefulness uαðn; cÞ averaged over all possible sets n. This
estimate is equivalent to taking a sample size of one in the average in Eq. (4). This
can be a good estimate for two reasons: the samples are highly correlated, and the
number of possible samples approaches one as n approaches N. Therefore the
equation for mean usefulness can give an estimation for usefulness,

uαðn; cÞ n =
n

c

� �
’ uα n′; cð Þn′= n′

c

� �
: ð9Þ

When the number of components is big compared to the product size n; n′ � cð Þ,
we can approximate

n
c

� �
and

n′
c

� �
by nc and n′c, and

uαðn; cÞ = nc�1 ’ uα n′; cð Þ= n′c�1: ð10Þ

Equation (8) is exact even in the presence of correlations between the occurrence of
different components in products; at no point in our proof did we assume com-
ponent independence. Therefore correlations do not impact the accuracy of our
forecasted mean, though they can lead to more fluctuations around the mean, or
less precision. Typical fluctuations can be seen for two gastronomy ingredients in
Fig. 1b.

Forecasting crossovers in usefulness. Here we show how we can forecast the
usefulness of components at stage n′ from information we have at some earlier
stage n, where n is the number of components we have acquired. As in Fig. 3, we
have a set k of k = 127 ingredients in a small kitchen—almond to fenugreek—and a
set K of K = 381 ingredients in a big kitchen—almond to zucchini.

In the small kitchen, we can make a total of 597 recipes. Of these 597 recipes, 43
contain cayenne, but they are not all equally complex. Two of the 43 recipes
contain one ingredient (namely, cayenne itself) and have complexity one; one
recipe contains two ingredients and has complexity two; 18 contain three
ingredients and have complexity three; and so on. Similarly, 89 of the 597 recipes
contain cocoa: six have complexity one; 22 have complexity two; and so on.
Substituting these values into Eq. (2), we can estimate the mean usefulness of these
two components at different stages as

uca n′ kjð Þ ’ 2þ x þ 18x2 þ 12x3 þ 8x4 þ x5 þ x7

and

uco n′ kjð Þ ’ 6þ 22x þ 37x2 þ 16x3 þ 8x4; ð11Þ

where x = n′/127. As expected,

uca k kjð Þ ¼ 43

and

uco k kjð Þ ¼ 89: ð12Þ

In the big kitchen, we can make a total of 56,498 recipes. Of these, 7950 contain

cayenne and 4801 contain cocoa. Again using Eq. (2),

uca n′ Kjð Þ ’ 2þ 19x þ 64x2 þ � � � þ 2x28 þ 2x30

and

uco n′ Kjð Þ ’ 6þ 54x þ 195x2 þ � � � þ 2x20 þ 3x21; ð13Þ

where x = n′/381. As expected,

uca K Kjð Þ ¼ 7950

and

uco K Kjð Þ ¼ 4801: ð14Þ

So far, none of this is surprising. The punchline is that we can estimate the
usefulness of components in the big kitchen from what we know about our small
kitchen. To do so, we simply evaluate the small-kitchen polynomials at the big-
kitchen stage:

uca K Kjð Þ ’ uca K kjð Þ ’ 3569

and

uco K Kjð Þ ’ uco K kjð Þ ’ 1485: ð15Þ

This predicts the crossover of cayenne and cocoa in Fig. 3. In log terms, these
estimates are accurate to be within 9 and 13% of the true values. The reason we
consider log usefulness is because the size of the product space grows
combinatorially with the number of acquired components, as can be seen in Fig. 1.

Data availability. All relevant data are available in ref. 23 or from the corre-
sponding authors upon reasonable request.
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