Scale of non-locality for a system of n particles

Tree-level 6-point scattering diagram.

Submitted to Physical Review D (2019)

S. Talaganis, I. Teimouri

LQ placeholderTree-level 6-point scattering diagram.

Higher derivative theories of gravity are associated with a mass scale to insure the correct dimensionality of the covariant derivatives. This mass scale is known as the scale of non-locality. In this paper, by considering a higher derivative toy model, we show that for a system of n particles the effective mass scale is inversely proportional to the square root of the number of particles. We demonstrate that as the number of particles increases the corresponding effective mass scale associated with the scattering amplitude decreases.

LQ placeholder

Imaginary replica analysis of loopy regular random graphs

F. Lopez, T. Coolen

Sub. to Journal of Physics A

LQ placeholder

Taming complexity

M. Reeves, S. Levin, T. Fink, A. Levina

Harvard Business Review

LQ placeholder

Degree-correlations in a bursting dynamic network model

F. Vanni, P. Barucca

Journal of Economic Interaction and Coordination

LQ placeholder

Scale of non-locality for a system of n particles

S. Talaganis, I. Teimouri

Sub. to Physical Review D

122 / 122 papers