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Higher derivative theories of gravity are associated with a mass scale to insure the correct di-
mensionality of the covariant derivatives. This mass scale is known as the scale of non-locality. In
this paper, by considering a higher derivative toy model, we show that for a system of n parti-
cles the effective mass scale is inversely proportional to the square root of the number of particles.
We demonstrate that as the number of particles increases the corresponding effective mass scale
associated with the scattering amplitude decreases.

I. INTRODUCTION

Modified theories of gravity are expedient approach to
resolve some of the problems of the Einstein theory of
general relativity [1]. Modifying general theory of rela-
tivity can be done in numerous ways. For instance, it
is possible to generalise the Einstein Hilbert action by
writing a power series for the scalar curvature. This ap-
proach is known as f(R) gravity [2]. It is also natural to
add higher order curvatures to the gravitational action,
examples of this modification are best known by Love-
lock gravity [3] or Gauss-Bonnet gravity, which is the
simplified version of the Lovelock gravity. In addition to
these modifications, one can consider higher derivative
actions. In these cases one can act covariant derivatives
on the curvature.

Recently, inspired by string field theory, [4] proposed
a gravitational action where the Einstein-Hilbert action
is modified by adding higher order terms where infinite
number of covariant derivatives act on scalar curvature,
Ricci and Riemann tensors. Such type of action is allowed
by general covariance. It has been shown that such action
provides interesting features; for instance such theory is
shown to be ghost-free, or that it prevents singularity.
Different aspects of this theory were studied in [5–9].

Inspired by such gravitational theory, it is always pos-
sible to construct a toy model where the action contain
scalar fields rather than Riemannian tensors. In this case,
we are going to keep the covariant derivatives and oper-
ate them on the scalar fields. Such approach simplifies
the action essentially and hence studying the properties
of the higher derivative theories would be easier. Some of
the features of such toy model were explored extensively
in [10–12].

Scattering amplitude plays a crucial rule in quantum
field theory (QFT). It is possible to obtain the S-matrix
from the scattering amplitude and extract information
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about probability amplitude and the cross sections of var-
ious interactions [13]. Moreover, in the limit of large cen-
ter of mass energy one can use eikonal approximation to
obtain the behaviour of scattering amplitude [14]. Simi-
lar analysis was done in [11] to show that in the context
of infinite derivative.

Previously it has been shown that, in a scattering
event, as the number of particles increases the scattering
amplitude becomes more exponentially suppressed [11].
In this paper we demonstrate that the amplitude is as-
sociated to an effective mass scale. The effective mass
scale Meff satisfies, for large n, Meff ∼ M/

√
n, where M

is the mass scale (i.e. scale of non-locality) and n is the
number of particles.

II. SCALE OF NON-LOCALITY

We want to find the scale of non-locality for a system of
n particles. Let us consider the following scalar toy model
(for the sake of simplicity, we consider cubic interactions
in the toy model; in principle, quartic interactions can
also be considered):

S = Sfree + Sint , (1)

where

Sfree =
1
2

∫
d4x (φ�a(�)φ) (2)

and

Sint = λ

∫
d4x (φ�φa(�)φ) . (3)

We choose

a(�) = e−�/M2

, (4)

where M is the mass scale at which the non-local modi-
fications become important. The propagator in momen-
tum space is then given in Euclidean space by

Π(k2) =
−i

k2ek̄2 , (5)
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FIG. 1: The tree-level 6-point scattering diagram. The

external momenta in the middle are p5 and p6.

where barred 4-momentum vectors denote k̄ = k/M . The
external momenta can also be analytically continued to
Euclidean space. The vertex factor for the three incoming
momenta k1, k2, k3, which satisfies the following conser-
vation law,

k1 + k2 + k3 = 0 , (6)

is given by

λV (k1, k2, k3) = −iλ
[
k2
1(e

k̄2
2 + ek̄2

3 ) + k2
2(e

k̄2
3

+ek̄2
1 ) + k2

3(e
k̄2
1 + ek̄2

2 )
]

. (7)

The dressed propagator is given by [10]

Π̃(p2) =
Π(p2)

1 − Π(p2)Γ2,1r(p2)
=

−i

p2ep̄2 − M4

M2
P

f (p̄2)
, (8)

where f(p̄2) grows as e
3p̄2

2 as p̄2 → ∞. Hence, at large
momenta, the dressed propagator goes as [11]

Π̃(p2) ≈ (1 + 4p̄−2)−1 e−
3p̄2

2 . (9)

Suppose we have a tree-level 6-point scattering amplitude
(see Fig. 1). We have that

iM = λ4V (p1, p2,−p1 − p2)V (p3, p4, p1 + p2 + p5 + p6)

× V (p1 + p2, p5,−p1 − p2 − p5)

× V (p1 + p2 + p5, p6,−p1 − p2 − p5 − p6)

×
i

(p1 + p2)2e(p̄1+p̄2)2

1
(p1 + p2 + p5)2e(p̄1+p̄2+p̄5)2

×
1

(p1 + p2 + p5 + p6)2e(p̄1+p̄2+p̄5+p̄6)2
. (10)

We have, from conservation of momentum, that,

p1 + p2 + p3 + p4 + p5 + p6 = 0 . (11)

Suppose we have n vertices in the tree-level diagram

and we want to find Meff . From (10), we have,

M = λ4
{[

p2
1(e

p̄2
2 + e(p̄1+p̄2)

2

) + p2
2(e

p̄2
1 + e(p̄1+p̄2)

2

)

+(p1 + p2)
2(ep̄2

1 + ep̄2
2)
]

×
[
p2
3(e

p̄2
4 + e(p̄1+p̄2+p̄5+p̄6)

2

) + p2
4(e

p̄2
3 + e(p̄1+p̄2+p̄5+p̄6)

2

)

+(p1 + p2 + p5 + p6)
2(ep̄2

3 + ep̄2
4)
]

×
[
p2
5(e

(p̄1+p̄2)
2

+ e(p̄1+p̄2+p̄5)
2

)

+ (p1 + p2)
2(ep̄2

5 + e(p̄1+p̄2+p̄5)
2

)

+(p1 + p2 + p5)
2(ep̄2

5 + e(p̄1+p̄2)
2

)
]

×
[
p2
6(e

(p̄1+p̄2+p̄5)
2

+ e(p̄1+p̄2+p̄5+p̄6)
2

)

+(p1 + p2 + p5)
2(ep̄2

6 + e(p̄1+p̄2+p̄5+p̄6)
2

)

+(p1 + p2 + p5 + p6)
2(ep̄2

6 + e(p̄1+p̄2+p̄5)
2

)
]}

×
1

(p1 + p2)2e(p̄1+p̄2)2

1
(p1 + p2 + p5)2e(p̄1+p̄2+p̄5)2

×
1

(p1 + p2 + p5 + p6)2e(p̄1+p̄2+p̄5+p̄6)2
. (12)

If we expand (12), we shall get terms of the form,
∑

(polynomial in p)e
∑

(polynomial in p)/M2

, (13)

coming from the vertices.
Suppose now that we dress the four vertices. At suffi-

ciently high loop order n (when n > 4), the exponents in
the dressed vertices become negative. The vertex factors
are:

eαnp̄2
1+βnp̄2

2+γnp̄2
3 , (14)

where p1, p2, p3 are the incoming vertex momenta. We
have [11]

αn = βn = γn = αn−1 +
1
3
(βn−1 + γn−1) −

1
2

. (15)

For the 3-point bare vertices, we have α0 = 1 and β0 =
γ0 = 0. When the loop order n of the dressed vertices is
equal to 4, that is, n = 4, the exponents for the dressed
vertices in (14) become negative [10, 11]:

α4 = β4 = γ4 = −
11
27

. (16)

Then, going to Euclidean space, we have, for the largest
external momentum contribution, (n = 4),

M
′

∼ e−
11p̄2

1
27 e−

11p̄2
2

27 e−
11p̄2

3
27 e−

11p̄2
4

27 e−
11p̄2

5
27 e−

11p̄2
6

27

× e−
22(p1+p2)2

27M2 e−
22(p1+p2+p5)2

27M2 e−
22(p1+p2+p5+p6)2

27M2

× e−
(p1+p2)2

M2 e−
(p1+p2+p5)2

M2 e−
(p1+p2+p5+p6)2

M2

= e−
11p̄2

1
27 e−

11p̄2
2

27 e−
11p̄2

3
27 e−

11p̄2
4

27 e−
11p̄2

5
27 e−

11p̄2
6

27 e−
49(p1+p2)2

27M2

× e−
49(p1+p2+p5)2

27M2 e−
49(p1+p2+p5+p6)2

27M2 . (17)
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If |p1| = |p2| = |p3| = |p4| = |p5| = |p6| = |p| and
p1 = p3 = p5 = p, p2 = p4 = p6 = −p, then

M
′

∼ e−
115p̄2

27 . (18)

Now suppose we have an 8-point tree-level scattering
diagram. Then we have, for the largest external momen-
tum contribution, (n = 4),

M
′

∼ e−
11p̄2

1
27 e−

11p̄2
2

27 e−
11p̄2

3
27 e−

11p̄2
4

27 e−
11p̄2

5
27 e−

11p̄2
6

27 e−
11p̄2

7
27 e−

11p̄2
8

27

× e−
22(p1+p2)2

27M2 e−
22(p1+p2+p5)2

27M2 e−
22(p1+p2+p5+p6)2

27M2

× e−
22(p1+p2+p5+p6+p7)2

27M2 e−
22(p1+p2+p5+p6+p7+p8)2

27M2

× e−
(p1+p2)2

M2 e−
(p1+p2+p5)2

M2 e−
(p1+p2+p5+p6)2

M2

× e−
(p1+p2+p5+p6+p7)2

M2 e−
(p1+p2+p5+p6+p7+p8)2

M2

= e−
11p̄2

1
27 e−

11p̄2
2

27 e−
11p̄2

3
27 e−

11p̄2
4

27 e−
11p̄2

5
27 e−

11p̄2
6

27 e−
11p̄2

7
27 e−

11p̄2
8

27

× e−
49(p1+p2)2

27M2 e−
49(p1+p2+p5)2

27M2 e−
49(p1+p2+p5+p6)2

27M2

× e−
49(p1+p2+p5+p6+p7)2

27M2 e−
49(p1+p2+p5+p6+p7+p8)2

27M2 .
(19)

Again, from the conservation of momentum:

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 = 0 . (20)

If |p1| = |p2| = |p3| = |p4| = |p5| = |p6| = |p7| = |p8| =
|p| and p1 = p3 = p5 = p7 = p, p2 = p4 = p6 = p8 = −p,
then

M
′

∼ e−
186p̄2

27 = e−
62p̄2

9 . (21)

We observe that the 8-point diagram is even more
strongly exponentially suppressed in the UV as compared
to the 6-point diagram.

For a 2n-point tree-level diagram with dressed vertices,
where |pi| = p, i = 1, . . . , 2n, p2j−1 = p, p2j = −p,
j = 1, . . . , n, we have (n ≥ 2)

M
′

∼ e−
(22n+49(n−2))p̄2

27 = e−
(71n−98)p̄2

27 . (22)

We can write the equation above as:

M
′

∼ e
−
(

p
Meff

)2

, (23)

where

Meff =

(
27

71n − 98

)1/2

M . (24)

A. External momenta on the external legs

Suppose we have external momenta on the external
legs in a 6-point, tree-level diagram (one on one of the legs
on the left-hand side of the diagram and the other on one

of the legs on the right-hand side of the diagram). Now
we will compute the amplitude M. Employing dressed
vertices, we obtain:

M ∼ e−
115p̄2

27 . (25)

B. Dressing the vertices with 1-loop diagram in the
middle

A 1-loop diagram with external momenta p, −p goes
as e3p̄2/2 for large external momenta. Adding a 1-loop
diagram in the middle in Fig. 1, where the propagators
and the vertices are both dressed, gives us a scattering
amplitude that goes to zero for large external momenta.
Thus:

M
′

∼ e−
11p̄2

1
27 e−

11p̄2
2

27 e−
11p̄2

3
27 e−

11p̄2
4

27 e−
11p̄2

5
27 e−

11p̄2
6

27 e−
22(p1+p2)2

27M2

× e−
22(p1+p2+p5)2

27M2 e−
22(p1+p2+p5+p6)2

27M2

× e−
(p1+p2)2

M2 e−
2(p1+p2+p5)2

M2 e
3(p1+p2+p5)2

2M2 e−
(p1+p2+p5+p6)2

M2

= e−
11p̄2

1
27 e−

11p̄2
2

27 e−
11p̄2

3
27 e−

11p̄2
4

27 e−
11p̄2

5
27 e−

11p̄2
6

27 e−
49(p1+p2)2

27M2

× e−
71(p1+p2+p5)2

54M2 e−
49(p1+p2+p5+p6)2

27M2 . (26)

If |p1| = |p2| = |p3| = |p4| = |p5| = |p6| = |p| and
p1 = p3 = p5 = p, p2 = p4 = p6 = −p, then,

M
′

∼ e−
203p̄2

54 . (27)

For a 2n-point tree-level diagram with dressed vertices,
where |pi| = p, i = 1, . . . , 2n, p2j−1 = p, p2j = −p,
j = 1, . . . , n, we have (n ≥ 2)

M
′

∼ e−
(44n+98(n−2)−27)p̄2

54 = e−
(142n−223)p̄2

54 . (28)

We can write the equation above as

M
′

∼ e
−
(

p
Meff

)2

, (29)

where

Meff =

(
54

142n − 223

)1/2

M . (30)

C. Dressing both the propagators and the vertices

Suppose we dress both the propagators and the vertices
in Fig 1. We wish to find the behaviour of the scattering
amplitude M

′
for large external momenta. We have,

M
′

∼ e−
11p̄2

1
27 e−

11p̄2
2

27 e−
11p̄2

3
27 e−

11p̄2
4

27 e−
11p̄2

5
27 e−

11p̄2
6

27 e−
22(p1+p2)2

27M2

× e−
22(p1+p2+p5)2

27M2 e−
22(p1+p2+p5+p6)2

27M2

× e−
3(p1+p2)2

2M2 e−
3(p1+p2+p5)2

2M2 e−
3(p1+p2+p5+p6)2

2M2

= e−
11p̄2

1
27 e−

11p̄2
2

27 e−
11p̄2

3
27 e−

11p̄2
4

27 e−
11p̄2

5
27 e−

11p̄2
6

27 e−
125(p1+p2)2

54M2

× e−
125(p1+p2+p5)2

54M2 e−
125(p1+p2+p5+p6)2

54M2 . (31)
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If |p1| = |p2| = |p3| = |p4| = |p5| = |p6| = |p| and
p1 = p3 = p5 = p, p2 = p4 = p6 = −p, then

M
′

∼ e−
257p̄2

54 . (32)

For a 2n-point tree-level diagram with dressed vertices,
where |pi| = p, i = 1, . . . , 2n, p2j−1 = p, p2j = −p,
j = 1, . . . , n, we have (n ≥ 2)

M
′

∼ e−
(44n+125(n−2))p̄2

54 = e−
(169n−250)p̄2

54 . (33)

We can write the equation above as:

M
′

∼ e
−
(

p
Meff

)2

, (34)

where

Meff =

(
54

169n − 250

)1/2

M . (35)

We observe that Meff decreases as the number of par-
ticles n increases. By dimensional analysis, one can write
down the effective length scale Leff as Leff ∼ M−1

eff .
Hence, one can see that the effective length scale Leff

increases as the number of particles n increases.

III. CONCLUSION

In this paper we considered a scalar field toy model
which is constructed by infinite derivatives and inspired
by infinite derivative gravity (the issue of unitarity in infi-
nite derivative gravity shall be investigated in a forthcom-
ing paper). It is possible to recast the infinite derivative
function as e−�/M2

, where we observe a mass scale due
to the d’Alembertian operator’s dimensionality. We have
shown for such theory, there exists an effective mass scale
which can be calculated by obtaining the relevant scatter-
ing amplitude. This effective mass scale Meff is propor-
tional to the mass scale of the theory (i.e. scale of non-
locality), M, and it is also, for large n, inversely propor-
tional to the square root of the number of incoming parti-
cles in a scattering event that is: Meff ∼ M/

√
n to be pre-

cise. By dimensional analysis it is possible to relate the
mass scale with the length scale (i.e. [Leff ] = [Meff ]−1).
Since in string theory one would expect higher curvature
term, namely infinite derivative contribution in curvature
from α′ corrections [15], it would be interesting to see if
there is any possible relation between the effective length
scale, Leff , and string length (the natural length that ap-
pears in string theory), ls (we shall note that α′ = l2s).
However, this requires one to apply the scattering anal-
ysis given in this paper straight to gravitational theory,
which indeed is a challenging task.
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