https://doi.org/10.48550/arXiv.2406.12820
 https://doi.org/10.48550/arXiv.2406.12820
 https://doi.org/10.48550/arXiv.2406.12820
 https://doi.org/10.48550/arXiv.2406.12820
 https://doi.org/10.48550/arXiv.2406.12820
 https://doi.org/10.48550/arXiv.2406.12820
 https://doi.org/10.48550/arXiv.2406.12820
 https://doi.org/10.48550/arXiv.2406.12820
 https://doi.org/10.48550/arXiv.2406.12820
 https://doi.org/10.48550/arXiv.2406.12820
 https://doi.org/10.48550/arXiv.2406.12820
 https://doi.org/10.48550/arXiv.2406.12820
 https://doi.org/10.48550/arXiv.2406.12820
 https://doi.org/10.48550/arXiv.2406.12820
 https://doi.org/10.48550/arXiv.2406.12820
 https://doi.org/10.48550/arXiv.2406.12820

Fibonacci anyons

Quantum physics

Realizing string-net condensation: Fibonacci anyon braiding for universal gates and sampling chromatic polynomials

In press Nature Communications (2025)

Z. K. Minev, K. Najafi, S. Majumder, J. Wang, A. Stern, E. Kim, C. Jian, G. Zhu

Topologically ordered quantum systems host anyons that, when braided, support fault-tolerant quantum computation. Yet creating Fibonacci string-net condensates, which support universal quantum gates and sample classically hard graph polynomials, has remained elusive. We demonstrate a scalable method of creating such condensates using superconducting qubits to dynamically create, measure and braid Fibonacci anyons.

In press Nature Communications (2025)

Z. K. Minev, K. Najafi, S. Majumder, J. Wang, A. Stern, E. Kim, C. Jian, G. Zhu