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Realizing string-net condensation: Fibonacci
anyon braiding for universal gates and
sampling chromatic polynomials

Zlatko K. Minev 1,8, Khadijeh Najafi1,2,9, Swarnadeep Majumder1,9,
Juven Wang 3,4, Ady Stern 5, Eun-Ah Kim 6,7 , Chao-Ming Jian 6 &
Guanyu Zhu1

The remarkable complexity of a topologically ordered many-body quantum
system is encoded in the characteristics of its anyons. Quintessential predic-
tions emanating from this complexity employ the Fibonacci string net con-
densate (Fib SNC) and its anyons: sampling Fib-SNCwould estimate chromatic
polynomials while exchanging its anyons would implement universal quantum
computation. However, physical realizations remained elusive.We introduce a
scalable dynamical string net preparation (DSNP) that constructs Fib SNC and
its anyons on reconfigurable graphs suitable for near-term superconducting
processors. Coupling the DSNP approach with composite error-mitigation on
deep circuits, we create, measure, and braids Fibonacci anyons; charge mea-
surements show94%accuracy, and exchanging the anyons yields the expected
golden ratio ϕ with 98% average accuracy. We then sample the Fib SNC to
estimate chromatic polynomial at ϕ + 2 for several graphs. Our results estab-
lish the proof of principle for using Fib-SNC and its anyons for fault-tolerant
universal quantum computation and aim at a classically hard problem.

In principle, complex quantum many-body states can efficiently
encode solutions to provably hard computational problems. However,
protocols to generate such states, coveted even for intermediate-scale
systems, without relying on random gates, remain elusive1. Surpris-
ingly, a state of topological quantum matter considered for fault-
tolerant universal quantum computation could also harbor such
solutions. Specifically, a fascinating connection between a string-net
condensate wave function supporting Fibonacci anyons2,3 and a clas-
sically hard problem of evaluating chromatic polynomials has been
noted4–7.

String-net condensates (see Fig. 1a) aremany-body vacuum states,
encompassing essentially all parity- and time-reversal-invariant topo-
logical phases2. A string-net condensate is a complex superposition of

‘string nets’, which can be visualized as trivalent graphs representing
spins in an excited state ∣1i or ground state ∣0i and subject to local
geometric rules. The simplest condensatewhose geometric rules allow
a string to ‘branch’ into two strings is the Fibonacci string-net con-
densate (Fib-SNC) (Fig. 1b)2,3. This simple ‘branching rule’ for the Fib-
SNC nevertheless leads to a remarkably complex state when combined
with ‘F-move’ rules (see Fig. 1c), which mandate intricate relationships
among the superposition amplitudes, dictatedwith the golden ratioϕ.
In this state, the modulus-squared amplitude of a string-net is deter-
mined by4–7 the chromatic polynomial8 of its dual graph evaluated at
ϕ + 2. Evaluating the chromatic polynomial is generally #P-hard and
even its approximation is computationally hard9–13. Note that for
counting problems, #P is the analog of the more familiar class NP for
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decisionproblems.Hence, realizing the Fib-SNCcould open adoor to a
new class of classically-hard problems.

Another complexity of Fib-SNC is its role as a vacuum state sup-
porting emergent anyons, capable of fault-tolerant universal quantum
computation2,3. The underlying universal nature of these anyons is
captured by a long-wavelength effective theory treatment2, which
combines two time-reversed copies of a topological quantum field
theory (TQFT)14–16. In principle, even a single copy allows for universal
quantum computation17, but no microscopic blueprint exists for
manifesting just a single copy. Each copy resembles the TQFT

proposed for filling-factor 12/5 quantum Hall state18 and supports an
anyon type τ, whose multi-anyon Hilbert space dimension follows the
Fibonacci sequence. This arises from a ‘fusion rule’ (see Fig. 1d) where
two τ anyons brought together can either annihilate (resulting in 1) or
fuse into a single τ. The ‘doubling’ leads to three anyons types, τ1, 1τ,
and ττ19, with Fib-SNC providing a microscopic blueprint. A triplet of
any of these anyons can encode a logical qubit, capitalizing on the two
possible fusion outcomes of the τ. For instance, realizing Fib-SNC and
creating two pairs of τ1 allows for encoding logical information to the
fusion outcome of the first two τ1 anyons (see Fig. 1d)20. Exchanging

(i)

(j) F-move

Q1 Q2 Q3

(k) (l)

(b)(a) (c)

(f )

(g)

string-net condensate

Q1

Q2

Q3

...

...

...

...

...

...

2D string-net

31 2 31 2
(d)

Fib-SNC branching

(e)

F :

R :

F-move

R-move

F and R

(h)

non-topological state

Article https://doi.org/10.1038/s41467-025-61493-8

Nature Communications |         (2025) 16:6225 2

www.nature.com/naturecommunications


Fig. 1 | Principle of the dynamical string-net preparation (DSNP) approach and
experiment. a Typical string-net configurations of spins in ∣1i state, for a trivial
state (left) and for a string-net condensate (right).b Branching rule for the Fib-SNC.
A dashed line represents a qubit in the ∣0i state while a solid line represents a qubit
in the ∣1i. c Five-qubit F-move relating allowed string-net configurations among five
qubits. When one or two pairs of four outer legs are identified, this becomes four-
qubit or three-qubit F-moves. d Logical qubit encoding using a triplet of τ1 anyons.
Logical ∣0i and ∣1i differ by the fusion outcomes of the first two τ1 anyons. The red
lines in the figure represent the space-time trajectory of anyons. e Pairwise braiding
among the triplet of τ1 anyons implements a non-Clifford gate on the logical state
encoded on the triplet of anyons(see SM Sec. I A). f Schematic outline of DSNP.
Yellow dots represent qubits in SNC, and empty dots represent reserve qubits in ∣0i

state. (see SMSec. IV for details).gThe Fib-SNC can be visualizedwith a pair of two-
dimensional surfaces representing two time-reversed copies of TQFT. To create
two τ1 anyons, we bring in an open string from above. F- and R-moves bring the
endsof the open string to join the twocopies of TQFT throughwormholes, with the
ends piercing the wormholes and localizing anyons. h The R-moves (or its complex
conjugate) to resolve the over-crossing (see SM Sec. I A for more details). i A deep
quantum circuit for braiding two τ1 anyons using hardware-native gates (see Fig. 3).
j DSNP for the smallest Fib-SNC. k Quantum circuit corresponding to two S gates
followed by the 3-qubit F-move, implementing all the steps of panel (j). l The
probability weight of different string-net configurations corresponding to the
depicted string nets for theminimal Fib-SNC. The red ×marks the vertices violating
the branching rule. Only 5% of the shots violate the branching rule.
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Fig. 2 | Fibonacci anyons: creating anyon pairs and certifying their anyon
charges. a–c Building a minimal two-plaquette string-net and creating a pair of τ1
anyons. a Qubits Q1--Q4 are initialized in ∣0i encoding an empty two-plaquette
graph, Q5 and Q7 initialized in ∣1i support the open string in the upper sheet. Q6 in
∣0i is an ancillary unoccupied string segment. b An F-move transforms the graph
into a 3D configuration. c An R-move on Q6 yields a pair of τ1 anyons localized on
the left and right plaquettes, withQ5 andQ7acting as their tail qubits. The resulting
open string threads through the upper plane, with its two ends supporting the τ1
anyons that pierce the two wormholes in the sheets (recall Fig. 1g). One further
applies F-moves flipping edge Q2 and Q4 to reach the configuration in (d). d, e The
anyon type is diagnosed by a charge measurement performed using a further F-
move flipping edge Q6 to deform the graph into two connected plaquettes (e),

joined at Q6. fUnitaries U act on pairs (Q4, Q1) and (Q2, Q3) to place Q4 and Q2 on
the open string. g The circuit for the anyon type certification. h The compilation of
the unitary U with three 2-qubit ECR gates (See SM Sec. VI) and a few single-qubit
gates for the 2-qubit unitary U. i The contrast experiment prepares a pair of 1τ
anyons by replacing the R-move with its complex conjugate. Thus, in the final
measurement stage, the open string goes through the bottomplane with qubits Q1
andQ3 in its path. jTheory (gray bars) vs. experiment (colored bars) for the τ1 (left)
and 1τ (right) anyon pairs measured in the 2D graph in panel (e) before applying
U(upper) and the 3D graph in panel (f) after applying U(lower). The expectation
values j1h i 1jh i are indistinguishable in the 2D graph. However, in the 3D graph, the
∣1i-state expectation values of unpinned qubits Q1--4 certify the anyon type as the
measurement reveals the path of the open string.
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the anyons, braiding their space-time trajectories, enacts non-Clifford
logical gates, a primary requisite for universal quantum computation
(see Fig. 1e).

Unfortunately, faithfully realizing the Fib-SNC and its anyons has
been unreachable, despite successful implementation of topological
states with Abelian anyons21,22 and even non-Abelian Ising23,24 and D4

anyons25, whose braiding is restricted to Clifford gates at best. Con-
ventionally, the Fib-SNC is viewed as the ground state of a static
Hamiltonian on a hexagonal lattice marked by high-order, 12-spin
interactions2, which are exceptionally difficult for current capabilities.
Nevertheless, a recent experiment showed promise26. Yet, the for-
midable circuit depths necessary for F-moves forced the use of
approximations. Moreover, the need to control 12 qubits for the
smallest plaquette makes exploring the condensation of graph con-
figurations practically infeasible.

Results
The DSNP strategy
Our approach to creatingminimalistic Fib-SNC is the scalable dynamic
string-net preparation (DSNP) strategy (see Fig. 1f). As explained
below, we implement this strategy to create τ1 anyons, confirm their
anyon charges, and braid them to extract the golden ratio. Further-
more, DSNP allows us to make the first steps towards scaling up the
Fib-SNC to estimate the chromatic polynomial at the golden
ratio ϕ + 2.

DSNP leverages the inherent flexibility of graphs for efficient
dynamical preparation of the Fib-SNC (see Fig. 1f). This is in contrast to
the proposal of operating on a rigid lattice26,27. A similar graph-centric
perspective has proven productive for preparing states with Ising
anyons28. A single physical qubit can represent the smallest isolated
string-net, or ‘bead’, when prepared in a valid superposition through
the modular-S gate:

S =
1

ffiffiffiffiffiffiffiffiffiffiffiffi

1 +ϕ2
q

1 ϕ

ϕ �1

� �

: ð1Þ

The next step in building a larger-scale Fib-SNC is to insert a qubit
initialized in the ∣0i state between beads. Using F-moves (see Fig. 1c),
the beads can be entangled into a strip of plaquettes. This strip can
then be folded and sewn into a two-dimensional Fib-SNC through
additional F-moves. The dynamic nature of this process allows for the
optimization of resources for specific aims. The depth of the circuit
grows linearly with the system size, the best scaling expected for a
unitary circuit preparation of a topologically ordered state29, but with
the smallest prefactor to our knowledge compared to previous
proposals, such as ref. 27. To prepare the Fib-SNC with N ×N
plaquettes, ref. 27 estimated ≈ 120N layers of parallel CNOTS. With
DSNP, the required depth scales as 2N 5-qubit F-moves. Using a
conservative estimation of 40 CNOTs per 5-qubit F-moves27, the depth
of the DSNP scales as 80N CNOT layers, with all other steps being
parallelizable.

Creation of anyons must change the topology of the many-body
state. In order to establish a protocol that allows explicit association
between the circuit implementation and the evolving topology of the
many-body state, we introduce a three-dimensional (3D) graphical
representation where each copy of the TQFT is depicted as a two-
dimensional surface (see Fig. 1g). While the anyon-free Fib-SNC can be
visualized entirely through two-dimensional (2D) graphs, the creation
of anyonswhose ‘anyon charge’ labels which of the two copies of TQFT
is affected necessitates keeping track of the two copies. Anyons con-
nect the two surfaces through ‘worm holes’ at the locations of anyons.
Furthermore, to create anyons while allowing for the detection and
correctionof local errors,we follow the ‘tail anyon’ strategy20 that traps
the end of an open string to the ‘tail qubit’ located on a dangling edge

inside a plaquette. The τ1 or 1τ pair-creation can now be visualized as
bringing in anopen string fromaboveor below the two surfaces. Fig. 1g
illustrates inserting the strings from above into the Fib-SNC state
shared between the two surfaces, which requires undoing the over-
crossing using the ‘R-move’ shown in Fig. 1h.

As a flexible state preparation strategy built on graphs, DSNP
allows the preparation of Fib-SNC with an arbitrary number of pla-
quettes. The smallest of such only requires three qubits forming two
plaquettes, which can be prepared as shown in Fig. 1j using a circuit
with two S gates and a three-qubit F-move shown in Fig. 1k (see
“Methods” for more details). Fig. 1l shows the experimental result of
implementing this Fib-SNC on the 27-qubit IBM Falcon processor
ibm_peekskill. Using dynamical decoupling and readout-error
mitigation30, but without other error mitigation, we sample the prob-
ability distribution of computational bitstrings using 8192 experi-
mental shots. The x-axis labels represent bitstrings as their
corresponding graph configurations, with dashed (solid) lines indi-
cating qubits in the ∣0i (∣1i) state and red × ’s denoting broken strings.
Full tomography reconstruction of the experimental state yields a
fidelity of 0.87 ± 0.01 to the ideal state, which is not high in the abso-
lute sense. However, the state shows a much higher degree of 95%
adherence to the branching rule.

Anyon creation and certification
Nowwe create a pair of Fibonacci anyons and certify their anyon types
in the above two-plaquette Fib-SNC state. To create the τ1 pair, we
introduce an open string (red) of qubits (Q5 and Q7) above the two-
plaquette Fib-SNC (Fig. 2a). With an unoccupied string (Q6 initialized
in state ∣0i) as the bridge, we entangle the open stringwith the Fib-SNC
via F-moves and anR-move as illustrated in Fig. 2a–c (see “Method” for
details). Thesemoves restore the planarity of the graph and effectively
create twowormholes connectedby anopen string through theupper-
copy TQFT. Now, both plaquettes each host a τ1 anyon at the tail.
Although the qubits, except the tail qubits, now respect the local rules
of Fib-SNC, the two copies of the TQFT share a complex superposition
through thewormholes. To create the other anyon type, the 1τ anyons,
the open string should be inserted from underneath the two-plaquette
Fib-SNC rather than from above. Practically, this amounts to using the
conjugate R*-move instead of the R-move.

The canonical way to certify the anyon type would be to measure
the five-qubit plaquette operators for each plaquette in the two-
dimensional graph in Fig. 2c. However, to combat the noise obscuring
the certification in such extended measurements, we introduce an
alternative approach that reduces this certification to independent
single-qubitmeasurements.Wefirst deform thegraph so that theopen
string is pinned in themiddle to be shared between the two TQFT’s, as
shown in Fig. 2e. Now, eachplaquette can be independentlymeasured,
while the two tail qubits (Q5 and Q7) and the qubit bridging the pla-
quettes (Q6) are fixed to be in the ∣1i state, irrespective of the anyon
type τ1 or 1τ. At this point, all the qubits are still shared between the
two TQFT’s and we referred to this state as “2D graph”. We then lift the
remaining four qubits off the shared space through a basis-changing
unitary represented asU. In the end, the open string passes through all
but two of the qubits. In particular, measurements of lifted qubits (Q1,
Q4, Q2, Q3) in the final “3D graph” shown in Fig. 2f for τ1’s amount to
measuring the open string itself with a definite parity associated with
the anyon types (see “Method” for details on the implementation of
Fig. 2e, f).

To experimentally realize the anyon pair preparation and the
anyon charge measurements, we need high-accuracy circuits about
150 two-qubit-gate-layers deep. We use a 133-qubit IBM Heron pro-
cessor ibm_torino, featuring fast gates and reduced cross-talk, with
median single- and two-qubit gate fidelities of 3.6 × 10−4 and 4.6 × 10−3,
respectively (see SM Sec. VI). To address experimental noise, we
employ a composite error suppression and mitigation strategy,
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including real-time qubit selection, dynamical decoupling, twirling31,32,
zero-noise extrapolation33–35, and twirled readout-error mitigation30

(see SM Sec. VII).
We now create pairs of each anyon type and certify their type

through single qubit measurements over 8.8 × 106 experimental reali-
zations across 1100 quantum circuit instances (see SM Sec. VIII). In
Fig. 2j shows the resultingmeasurement outcome statistics for each of
the qubits corresponding to the two anyon types. We measured 2D
graphs like Fig. 2e and 3D graphs like Fig. 2f. Themeasurement results
shown in Fig. 2j confirm the prediction with high precision. Specifi-
cally, three pinned qubits Q5–7 are consistently measured in the ∣1i
state at all times. In the 2D graph, although single-qubitmeasurements
hide the anyon type even for the remaining four qubits (Q1–4), the
measured expectation value of j1h i 1jh i of 0.73 ± 0.04 as shown in the
upper histograms in Fig. 2j is consistent with the theoretically pre-
dicted value of ϕ2

ϕ2 + 1
� 0:72. However, these four qubits (Q1–4) show a

dramatic contrast between the two anyon types in 3D graphs, as shown
in the lower histograms in Fig. 2j. Since these four qubits are “lifted off”
the shared plane to belong to top or bottom TQFT, the open string
traverses the top TQFT with Q4 and Q2 (τ1) or the bottom TQFT with
Q1 and Q3 (1τ) depending on the anyon type. (see Method for more
details).

Braiding doubled Fibonacci anyons
Fully two-dimensional braiding must involve three or more pla-
quettes and two pairs of τ1 anyons. DSNP prescribes a scalable
strategy for creating plaquette strips of arbitrary lengths. In Fig. 3, we

demonstrate two-dimensional braiding in a scalable and error-
correctable manner using the minimalistic three-plaquette strip
and verify the braiding outcome through the fusion of a pair of
anyons (see Fig. 3a for the schematics). Repeating the anyon pair
preparation, we prepare two anyon pairs spread over three pla-
quettes as depicted in Fig. 3b. This amounts to time steps t0–t1 in
Fig. 3a. Initially, the logical qubit encoded to the triplet of τ1 anyons
(1,2,3) is in the ∣0i state since the anyon 1 and anyon 2 are created
from vacuum. Now, we braid τ1 anyons 2 and 3 using a sequence of
exact F-moves executing the time steps t1–t2 in Fig. 3a. Such braiding
is predicted to execute a non-Clifford gate σ2 (see Fig. 1e) on the
logical qubit, rotating the logical state to

σ2∣0i=ϕ�1e4π i=5∣0i+ϕ�1=2e�3π i=5∣1i : ð2Þ

Wecertify the predicted non-Clifford gate by fusing anyon 1 and anyon
3. For this, we bring anyon 1 and anyon3 together to share a single root
edge using anR-move and an F-move(see Fig. 3e). Now ameasurement
in the physical computational basis of the root edge onto either ∣0i or
∣1i projects the logical qubit to ∣0i or ∣1i, respectively. Hence, if the
braiding implements the correct logical gate in Eq. (2), the golden ratio
can be measured through j1h i 1jh i= j0h i 0jh i=ϕ.

As in the previous experiment, we implement this sequence on
ibm_torino using the composite mitigation strategy, but with double
the number of twirls and shots per twirl due to the increased circuit
complexity. We find j1h i 1jh i= j0h i 0jh i= 1:65±0:14, within 2% of the
golden ratio ϕ. Figure 3g shows the distribution of bootstrap
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Fig. 3 | Braiding of two τ1 anyons to implement a non-Clifford gate on a
topological logical state. a Worldlines depicting the creation of four τ1 anyons
from the vacuum 11, followed by the braiding of anyons 2 and 3, and concluding
with a fusion-based measurement to determine the logical gate implemented by
the braiding process. b Generalization of the protocol from Fig. 2, where four τ1
anyons (red dots labeled as 1–4) are initialized on three plaquettes. Labels for the
qubits (yellow dots) are suppressed. c, d Braiding is achieved through four five-
qubit F-moves, which permute anyons 2 and 3. The groups of five qubits under-
going the F-moves are indicated by the orange patches. e An R-move flips anyon 3

from the center to the left plaquette, forming a new configuration for fusion. f A
final F-move fuses anyons 1 and 3, resulting in a coherent superposition of two
fusion outcomes. g Experimental distributions of themeasured ratio 1j1h i= 0j0h i on
a logarithmic scale, derived via bootstrap resampling for both the braiding and
control experiments. The analysis accounts for error mitigation and statistical
uncertainty (see SMSec. VIII). Vertical dashed lines indicate theoretical predictions:
the golden ratio ϕ (yellow) and the control value (purple). Asymmetry in the dis-
tributions reflects the non-linear transformation of the ratio observable.
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resampling, providing confidence intervals (see SM Sec. VIII). In a
control experiment, we intentionally introduce bit-flip errors during to
break two strings, generating unwanted excitations (see SM Sec. VIII).
This modification alters the bitstring distribution. We now measure
j1h i 1jh i= j0h i 0jh i=0:30±0:025, consistent with the theoretical pre-

diction of 0.328 for the modified circuit.

Estimating the chromatic polynomials via string-net sampling
Nowwemoveonto themost ambitious pursuit of this paper, taking the
first step towards a new class of classically hard problems. In Fig. 4, we

realize a two-dimensional, four-plaquette Fib-SNC vacuum and sample
it to estimate the chromaticpolynomials for all possible trivalent graph
embedding. We perform all experiments on ibm_torino. Due to the
outstanding challenge of mitigating noise for sampling rather than
expectation values35, we only mitigate readout errors and not gate
errors. We use DSNP as illustrated in Fig. 4a–d, starting with a four-
bead strand and evolving each bead into one of the four-plaquettes of
the resulting Fib-SNC vacuum (see Fig. 4d). To reduce the circuit depth
of F-movesweuse 2 ancilla qubits(see SMSec. VIII), in addition to the 9
qubits participating in Fib-SNC.
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graphs are topologically equivalent (or isomorphic) within each isomorphism
class. The number of representative graphs (multiplicity) is listed for each iso-
morphism class. The relative probability with respect to empty configuration G0

is defined as ~Pð½G�Þ=Pð½G�Þ=Pð½G0�Þ. g Large panel: Probability distribution over all

211 bit-strings, including the two ancilla qubits (blue: theory; red: experiment).
Theoretically, non-zero bitstrings (47 in total) are ordered on the left. These
satisfy the branching rule, while the remaining bitstrings on the right do not.
Inset: zoom-in to bitstrings obeying the branching rule. The theoretical dis-
tribution reflects 7 isomorphism classes. Thick red line: themeasured probability
averaged over each isomorphism class. h Extracting the chromatic polynomial
values for graphs dual to the given string-net isomorphism class (blue: experi-
ment; green: theory). Error bars obtained from the standard deviation of the
graph representatives in each class. i The relative error and multiplicity of each
isomorphism class of graphs. A class with a larger multiplicity tends to have
smaller relative errors.
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It has long been predicted that the normalized probability weight
of a subgraph G in Fibonacci string-net condensate evaluates the
chromatic polynomial of a dual graph Ĝ (see Fig. 4e) at k =ϕ + 2 4–7, i.e.,

PðGÞ
PðG0Þ

=
1

ϕ+2
χðĜ,ϕ+2Þ , ð3Þ

where P(G) and P(G0) are probability weight of a subgraph G and the
empty configuration G0, respectively. While the chromatic polynomial
χðĜ, kÞ for a positive integer k counts the number ofways to k-color the
graph Ĝ8, a recurrence relation defining the polynomial allows for
extension of the polynomial to non-integer valued k, such asϕ + 2. As a
complex combinatorial problem, the evaluation or estimation of the
chromatic polynomial is a classically hard problem9–13 despite the
simplicity of the defining recurrence relation. Note that the proof of
refs. 11,12 is carried out for rational k, while one may expect that the
same conclusion holds for irrationals. This implies that the exact
theoretical evaluation of the Fib-SNC amplitude requires an
exponential-time classical algorithm in general(see SM Sec. III C).
Hence the experimental realization of the Fibonacci string-net
condensate may offer a new route for seeking quantum advantage.

Although the absence of an error-mitigation scheme poses a
challenge in sampling a general state that is not highly concentrated,
we can exploit the topological structure of Fib-SNC. Firstly, valid bit-
string configurations that satisfy the branching rules form a relatively
small subset of all possible bitstrings. Secondly, these valid bitstrings
further group into topologically equivalent isomorphism classes.
Specifically, for the four plaquette Fib-SNC we implemented, there are
6 classes as shown in Fig. 4f with different multiplicity among the
bitstrings that correspond to the class. Figure 4g shows the result of
sampling this Fib-SNC vacuum for 30 × 106 realizations. With two
ancilla qubits introduced to reduce the circuit depth, the probability
distribution is shown over 211 possible bit strings obtained on ibm_-
torino. Leveraging that the Fib-SNC amplitudes can be calculated for
the present scale Fib-SNC, we benchmark experimentally sampled
results against the exact predictions. The topological nature of Fib-
SNC predicts amplitudes of bitstrings to be non-zero only for 47
branching rule respecting bitstrings, with the same amplitude within
given isomorphism class (shown in blue in Fig. 4h).

The experimentally obtained probability distribution shows
robust suppression of branching-rule violating, forbidden bit-strings
(Fig. 4g). Moreover, class averages of the allowed bit-strings offer the
estimates of the chromatic polynomials:

χð½Ĝ1�, kÞ= k2 � k ð4Þ

χð½Ĝ2A�, kÞ= k3 � 3k2 + 2k ð5Þ

χð½Ĝ2B�, kÞ= k3 � 2k2 + k ð6Þ

χð½Ĝ3A�, kÞ= k4 � 6k3 + 11k2 � 6k ð7Þ

χð½Ĝ3B�, kÞ= k4 � 5k3 + 8k2 � 4k ð8Þ

χð½Ĝ4�, kÞ= k5 � 9k4 + 29k3 � 39k2 + 18k, ð9Þ

at k =ϕ + 2. For this, we estimate the relative probability P(G)/P(G0) in
Eq. (3) byCð½G�Þ=CðG0Þ, whereCð½G�Þ represents the average count of all
bitstrings corresponding to graphs topologically equivalent toG. For a
larger scale estimation, a graph class with higher multiplicity can be
used as a reference in place of the empty configuration in Eq. (3) (see
SM Sec. III E). We show the resulting estimates of the chromatic

polynomial in Fig. 4h, where uncertainty ranges are computed using
the standard deviation within each equivalent class. While the absence
of error mitigation limits the accuracy of the estimates, Fig. 4i shows
the multiplicity within each class countering errors. Specifically, the
larger the multiplicity, the more accurate the estimates are. In parti-
cular, the experimental estimate based on the average over [G1]-class
bitstrings yields 1.82 for the golden ratio ϕ, with 13% relative error.

Discussion
In summary, our work introduces and implements a new scalable
approach, DSNP, to preparing Fib-SNC and creating, certifying, and
braiding the Fibonacci anyons the Fib-SNC supports.While the present
experiments with physical qubits are limited by noise, the prospect of
sampling of Fib-SNC with a large number of plaquettes using DSNP
raises new potential frontier in the pursuit of quantum advantage. The
success in this newpursuit of quantum advantagewill hinge on solving
two open problems. Firstly, noise in sampling must be countered.
Secondly, the sampling complexity of Fib-SNC needs to be further
investigated to compare it with the complexity of classical approx-
imations. While the sampling space of valid bitstrings still grows
exponentially with system size, an estimation of χðĜ,ϕ+ 2Þ for a spe-
cific dual graph Ĝ requires sampling only one equivalence class among
the valid bitstrings. Hence, it is possible that the estimation of chro-
matic polynomial at ϕ + 2 from quantum sampling can be more effi-
cient than from classical algorithms for intermediate system size (for
O(100) to O(1000) qubits). If so, Fib-SNC sampling will become an
exciting avenue for near-term quantum computers.

Methods
DSNP protocol to create the smallest Fib-SNC
Here, we provide more details on the DSNP protocol for the smallest
Fib-SNC as shown in Fig. 1j. We start with three qubits, each prepared
in ∣0i (white dots), representing three unoccupied strings (dashed
lines). Then, two single-qubit modular S gates on Q1 and Q3 create
two decoupled beads (solid rings). The qubit Q2, which is still in
state ∣0i, represents an unoccupied edge between the two beads.
Finally, a 3-qubit F-move creates the minimal Fib-SNC with two pla-
quettes by entangling the middle qubit Q2 with Q1 and Q3. The
quantum circuit that implements all the steps described above is
shown in Fig. 1k.

Protocol for the anyon creation and certification experiment
In this section, we provide more details about the experimental pro-
tocol of creating and certifying doubled Fibonacci anyons presented in
Fig. 2. We grow the string-net condensate to create τ1 and 1τ anyon
pairs and measure their anyon charges. Applying the DSNP concepts
from Fig. 1f–g on ourminimal example, we add theminimal number of
needed qubits, Q4–Q7 shown in Fig. 2a. Qubit Q4 is incorporated into
the condensate by entangling it with Q2 using a controlled-NOT
operation. Tail qubits Q5 and Q7 are prepared in ∣1i (yellow dots) and
bridge qubit Q6 in ∣0i (white dot). Now Q1–Q4 form a Fib-SNC shared
between two copies of TQFT as depicted in Fig. 2a. To bring in τ1
anyons, we start by introducing open string Q5–Q7 (red line) above
Q2–Q4 (black line). Q6, initially in state ∣0i, is viewed as an ancillary
vacuum-string segment (thin dashed line) connecting the plaquettes
to the open string. A five-qubit F-move (see Fig. 1c) acting on qubits Q2
and Q4–Q7 entangles Q5 and Q7 with the rest, creating a single con-
nected, 3D graph (Fig. 2b). Then, anRmove (see Fig. 1h) completes the
preparation of a pair of τ1s at the end of red open string that pierces
the wormholes in Fig. 2c. Operationally, using instead a conjugate R*

move related to the R move in Fig. 1h by complex conjugation of
phases will amount to creation of 1τ anyon pairs. In this case, the open
string Q5–Q7 should be initially introduced underneath Q2–Q4
instead. At this point, all the qubits except the tail qubits once again
follow the local rules of Fib-SNC, forming a complex superposition
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shared between the two copies of TQFT. This adherence to the local
rules means this state can be error-corrected.

How dowemost robustly certify the creation of anyons associated
with this abstract notion of an open string? While the qubits are parti-
cipating in the superposition of string nets as in Fig. 2c, the only mea-
surement predicted to yield a definitive answer would be the left and
right five-qubit plaquette operators, each comprising many Pauli terms
— but this compounds noise. However, if the qubits are ‘lifted’ to each
copy of TQFT through basis changes such that the open string goes
through the qubits, the open string itself can bemeasured. To this end,
we dynamically reconfigure the graph to place Q6 on a bridge that is
forced to be in a definite ∣1i state (see Fig. 2d–e). Now three qubits are
pinned in the ∣1i state: Q6 and the two tail qubits, Q5 and Q7. However,
at this point of Fig. 2e, Q1–Q4 will be participating in the condensate,
each in a superposition of ∣0i and ∣1i. At the same time, the open string
is away from the qubits except at thewormholes. Remarkably, a change
of basis through two-qubit unitary U (see Fig. 2g and SM Sec. II) would
lift off Q1–Q4 to make the open string go through Q4 and Q2. Topo-
logically, the two states in Fig. 2e, f are equivalent. Nevertheless, the
microscopic qubit placements are such that measurements of Q4 and
Q2 will reveal the open string itself with a definite outcome in Fig. 2f.

We certify τ1 pair creation through the detection of the open
string as shown in Fig. 2j (see SM Sec. VIII). The qubits that should be
‘pinned’ to ∣1i state, Q5–Q7, are measured to be in the correct state
with high probability irrespective of whether the remaining qubits,
Q1–Q4, are placed in 2D or 3D graphs, yielding 0.99 ± 0.05 on average.
However, themeasurement outcome forQ1–Q4are strikinglydifferent
because 3D graph has the open string going through (Q1, Q3)-pair or
(Q4, Q2)-pair. When placed in the 2D graph with the open string away
from the qubits Q1–Q4, the four qubits are indistinguishable, with the
expectation value of the one-state projector j1h i 1jh i of 0.73 ± 0.04
across the 8measurements. This is precisely as they should be as a part
of the Fib-SNC represented by the 2D graph, with the predicted
expectation value of ϕ2

ϕ2 + 1
� 0:72. On the other hand, when the four

qubits are placed in the 3D graph, the open string traverses (Q4, Q2)-
pair in the upper copywhile the unoccupied string “traverses" (Q1,Q3)-
pair in the lower copy. Contrastingly, when 1τ anyons are prepared
with the open string passing through the lower surface, measurement
outcomes between (Q4, Q2)-pair and (Q1, Q3)-pair completely reverse,
as expected from the open string nowpassing through (Q1, Q3)-pair in
the lower layer. Our certification of τ1 and 1τ anyon creation through
28 measurements of the open string show the average experimental
discrepancy is −0.01 ± 0.06.

Data availability
The data supporting the findings of this study are available in the
following link: https://zenodo.org/records/15565975.

Code availability
The codes supporting the findings of this study can be found in the
following link: https://zenodo.org/records/15565975.
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