Random graph ensembles with many short loops

Short loops (cycles) in real networks are a theoretical challenge for modeling.

ESAIM: Proceedings and surveys 47, 97 (2014)

E. Roberts, T. Coolen

LQ placeholderShort loops (cycles) in real networks are a theoretical challenge for modeling.

Networks observed in the real world often have many short loops. This violates the tree-like assumption that underpins the majority of random graph models and most of the methods used for their analysis. In this paper we sketch possible research routes to be explored in order to make progress on networks with many short loops, involving old and new random graph models and ideas for novel mathematical methods. We do not present conclusive solutions of problems, but aim to encourage and stimulate new activity and in what we believe to be an important but under-exposed area of research. We discuss in more detail the Strauss model, which can be seen as the ‘harmonic oscillator’ of ‘loopy’ random graphs, and a recent exactly solvable immunological model that involves random graphs with extensively many cliques and short loops.

LQ placeholder

Imaginary replica analysis of loopy regular random graphs

F. Lopez, T. Coolen

Sub. to Journal of Physics A

LQ placeholder

Taming complexity

M. Reeves, S. Levin, T. Fink, A. Levina

Harvard Business Review

LQ placeholder

Degree-correlations in a bursting dynamic network model

F. Vanni, P. Barucca

Journal of Economic Interaction and Coordination

LQ placeholder

Scale of non-locality for a system of n particles

S. Talaganis, I. Teimouri

Sub. to Physical Review D

122 / 122 papers