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Abstract. Networks observed in the real world often have many short loops. This violates the tree-
like assumption that underpins the majority of random graph models and most of the methods used for
their analysis. In this paper we sketch possible research routes to be explored in order to make progress
on networks with many short loops, involving old and new random graph models and ideas for novel
mathematical methods. We do not present conclusive solutions of problems, but aim to encourage and
stimulate new activity and in what we believe to be an important but under-exposed area of research.
We discuss in more detail the Strauss model, which can be seen as the ‘harmonic oscillator’ of ‘loopy’
random graphs, and a recent exactly solvable immunological model that involves random graphs with
extensively many cliques and short loops.

Résumé. Les réseaux observés dans la Nature ont souvent des cycles courts. Ceci contredit le postulat
de hiérarchie sur lequel se base la majorité des modèles de réseaux aléatoires et la plupart des méthodes
utilisées pour leur analyse. Dans cet article, nous esquissons des directions de recherches possibles, afin
de progresser sur les réseaux contenant beaucoup de cycles courts, faisant appel à des modèles de réseaux
aléatoires éprouvés ou nouveaux, et des idées pour de nouvelles méthodes mathématiques. Nous ne
présentons pas de solutions définitives, mais notre but est d’encourager et de stimuler de nouveaux
travaux dans ce que nous croyons être une direction de recherche importante, bien que insuffisamment
explorée. Nous discutons en détail le modèle de Strauss, qui peut être considéré comme ‘l’oscillateur
harmonique’ des réseaux aléatoires ‘à boucles’, ainsi qu’un modèle immunologique soluble exactement
qui comporte des réseaux aléatoires avec de nombreux cliques et cycles courts.

1. Motivation and background

Tailored random graph ensembles, whose statistical features are sculpted to mimic those observed in a given
application domain, provide a rational framework within which we can understand and quantify topological
patterns observed in real life networks. Most analytical approaches for studying such networks, or for studying
processes for which they provide the interaction infrastructure, assume explicitly or implicitly that they are
locally tree-like. It permits, usually after further mathematical manipulations and in leading orders in the
system size, factorisation across nodes and/or links. This in turn allows for the crucial combinatorial sums
over all possible graphs with given constraints to be done analytically in the relevant calculations. However,
real-world networks - for example protein-protein interaction networks (PPIN), immune networks, synthetic
communication networks, or social networks - tend to have a significant number of short loops. It is widely
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accepted that the abundance of short loops in, for example, PPINs is intrinsic to the function of these networks.
The authors of [1] suggested that the stability of a biological network is highly correlated with the relative
abundance of motifs (e.g. triangles). The authors of [2] and [3] observed an apparent relationship between short
cycles in gene-regulation networks and the system’s response to stress and heat-shock. A highly cited paper [4]
went as far as to propose that motifs (e.g. triangles) are the basic building blocks of most networks. Similarly, in
many-particle physics we know that lattice models are difficult to solve, mainly because of the many short loops
that exist between the interacting variables on the lattice vertices [5]; calculating the free energy of statistical
mechanical models on tree-like lattices, in contrast, is relatively straightforward. It is evident that incorporating
constraints relating to the statistics of short loops into the specifications of random graph ensembles is important
for this branch of research to be able to more closely align with the needs of practitioners in the bioinformatics
and network science communities.

In this paper we review the analytical techniques that are presently available to model and analyse ensembles
of random graphs with extensive numbers of short loops, and we discuss possible future research routes and
ideas. We will use the terms ‘network’ and ‘graph’ without distinction. We start with a description of tailored
random graph ensembles, and argue why graphs with short loops should become the focus of research, to increase
their applicability to real-world problems and for mathematical and methodological reasons. We then discuss
the simplest network model with short loops that even after some forty years we still cannot solve satisfactorily:
the Strauss model [6], which is the archetypical ensemble of finitely connected random graphs with controlled
number of triangles. We describe some new results on the entropy of this ensemble, continuing the work of
e.g. [7], as well as an as yet unexplored approach based on combining graph spectral analysis with the replica
method. The next section discusses some recent results on the statistical mechanics of an immune network
model [8]; in spite of its many short loops, this model could quite unexpectedly be solved analytically with the
finite connectivity replica method [11–13], suggesting a possible and welcome new mechanism for analysing more
general families of ‘loopy’ graphs. We then show how the model of [8] can indeed be used in other scenarios
where short loops in networks play a functional role, and we work out in more detail its application in the
context of factor graph representations of protein-protein interaction networks.

2. Modelling with random graphs – the importance of short loops

Networks are powerful conceptual tools in the modelling of real-world phenomena. In large systems of inter-
acting variables they specify which pairs can interact, which leads to convenient visualisations and reduces the
complexity of the problem. Random graphs serve as proxies for interaction networks that are (fully or partially)
observed or built in biology, physics, economics, or engineering. Random graphs allow us to analytically solve
statistical mechanical models of the processes for which the networks represent the infrastructure, by appropri-
ate averaging of generating functions of observables over all ‘typical’ interaction networks. Or they can be used
as ‘null models’ to quantify the statistical relevance of topological measurements which are taken from observed
networks. In all cases it is vital that the random graphs actually resemble the true real-world networks in a
quantitatively controllable way.

In this paper we limit ourselves, for simplicity, to nondirected graphs without self-links. Generalisation
of the various models and arguments to directed and/or self-interacting graphs is usually straightforward. A
nondirected simple N -node graph is characterised by its nodes i ∈ {1, . . . , N} and by the values of 1

2N(N − 1)
link variables cij ∈ {0, 1}. Here cij = 1 if the nodes (i, j) are connected by a link, and cij = 0 otherwise.
We always have cij = cji (since our graphs are nondirected) and cii = 0 (since our graphs are simple), for all
i, j ∈ {1, . . . , N}. We will denote the set of all such graphs as G. A random graph ensemble is defined by a
probability measure p(c) on G.

2.1. Tailored random graph ensembles

If we wish to use random graph ensembles to study real-world phenomena, it is vital that our measure p(c)
favours graphs that mimic those in our application domain. For instance, it makes no sense to use Erdös-Rényi
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Figure 1. Tailoring of random graph ensembles such that the generated graphs will mimic the
features of an observed graph c?, via successive imposition of the values of L chosen observables
{ω1(c), . . . , ωL}. Subject to these imposed values, which can be built in as hard constraints (to
be reproduced by all c with p(c) > 0), or as soft constraints (to be reproduced on average), the
measure p(c) is defined by maximising the Shannon entropy S[p] = −

∑
c∈G p(c) log p(c). The

smaller the set of graphs that satisfy ω`(c) = ω`(c
?) for all ` ≤ L, the more our random graphs

are expected to resemble c?.

graphs [14] as null models against which to test occurrence frequencies of motifs in biological networks: almost
any measurement will come out as significant, simply because our yardstick is not realistic. Tailored random
graph ensembles [15–18] involve measures p(c) that are constructed such that specified topological features of
the generated graphs c will systematically resemble those of a given real-world graph c? ∈ G. To construct
such measures one first defines the set of L observables {ω1(c), . . . , ωL(c)} whose values the random graphs
c is supposed to inherit from c?. One then defines p(c) as the maximum entropy ensemble on G, subject to
the imposition of the values of {ω1(c), . . . , ωL(c)}, with the Shannon entropy [19] S[p] = −

∑
c∈G p(c) log p(c).

This can be done via hard constraints, where each c ∈ G with p(c) > 0 must have the specified values, or
via soft constraints, where our random graphs will be described by an exponential ensemble and exhibit the
specified values of the L observables only on average (see also [42]). Based on a constrained maximum entropy
calculation, we know that:

hard constrained ensembles : ph(c) = Z−1
h

∏
`≤L

δω`(c),ω`(c?) (1)

soft constrained ensembles : ps(c) = Z−1
s e

∑L
`=1 ω̂`ω`(c),

∑
c∈G

ps(c)ω`(c) = ω`(c
?) ∀` ≤ L (2)

The maximum entropy formulation is essential to make sure one does not introduce any unwanted bias into our
tailored graphs; we want to build in the features of c? and nothing else.

This leads to the question of which would be sensible choices for the observables {ω1(c), . . . , ωL} to carry
over from c? to our ensemble? Sensible choices are those for which we can do the relevant calculations, and for
which the Shannon entropy of p(c) would be smallest1. The calculations we might wish to do usually relate
to stochastic processes for variables placed on the nodes of the graph, and the crucial question is whether the
relevant combinatorial sums over all graphs generated from p(c) can be carried out analytically. In equilibrium
systems we would want to calculate the typical free energy per degree of freedom, averaged over the random
graph ensemble, for Hamiltonians of the form H(σ) = −

∑
i<j cijJijσiσj . The replica method [9–13] then leads

1Since the effective number of graphs in an ensemble p(c) is given by N [p] = exp(S[p]), the Shannon entropy can be interpreted as
a measure of the size of the smallest box in Figure 1. The smaller this box, the more information on c? has been carried over to
our graph ensemble.
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us for hard-constrained ensembles of finitely connected graphs to a combinatorial problem of the following form:

e−β
∑n
α=1 H(σα) =

∑
c∈G e

∑
i<j cijAij

∏
`≤L δω`(c),ω`(c?)∑

c∈G
∏
`≤L δω`(c),ω`(c?)

, Aij = βJij

n∑
α=1

σαi σ
α
j (3)

where the overbar . . . indicates averaging over the measure p(c) of our random graph ensemble. Similarly, in
dynamical studies based on generating functional analysis [20–22] we would be required to evaluate

e−i
∑
it ĥi(t)

∑
j cijJijσj(t) =

∑
c∈G e

∑
i<j cijAij

∏
`≤L δω`(c),ω`(c?)∑

c∈G
∏
`≤L δω`(c),ω`(c?)

, Aij = −iJij
∑
t

[ĥi(t)σj(t)+ĥj(t)σi(t)](4)

In both cases we see that our observables ω`(c) should be chosen such that sums of the form
∑
c∈G δω,ω(c)e

∑
i<j cijAij

are analytically tractable. Setting Aij = 0 for all (i, j) gives us en passant the value of the Shannon entropy,
which for hard-constrained ensembles (1) becomes S[p] = log

∑
c∈G

∏
`≤L δω`(c),ω`(c?). It turned out that these

summations over all graphs are analytically feasible [15–18], in leading orders in N , for observables such as

k̄(c) =
1

N

∑
ij

cij , p(k|c) =
1

N

∑
i

δk,
∑
j cij

, W (k, k′|c) =
1

k̄N

∑
ij

cij δk,
∑
r cir

δk′,
∑
r cjr

(5)

2.2. The problem of short loops

To quantify the extent to which real-world networks c? can be approximated by random graphs that share
with c? the values of the average degree k̄(c?), or the degree distribution p(k|c?), or the joint distribution
W (k, k′|c?) of the degrees of connected node pairs, it is helpful to study systems for which alternative exact
solutions or reliable simulation data are available. Using the methodology of [15–18], we can, for instance,
calculate with the replica method the critical temperatures of Ising systems on random graphs with Hamiltonian
H(σ) = −

∑
i<j cijσiσj . We choose our random graph ensembles to be increasingly constrained in the sense of

Figure 1:

pA(c) : maximum entropy ensemble with imposed k̄(c?) =
∑
k

k p(k|c?) (6)

pB(c) : maximum entropy ensemble with imposed p(k|c?) ∀k ≥ 0 (7)

pC(c) : maximum entropy ensemble with imposed p(k|c?) and W (k, k′|c?) ∀k, k′ ≥ 0 (8)

In Figure 2 we compare the critical temperatures for Ising systems on random graphs tailored according to (6,7,8)
to the true critical temperature values of the approximated finitely connected graphs c?, for cubic lattices and
for so-called ‘small world’ lattices. While constraining only the average degree (A) is clearly insufficient, we
see that constraining the degree distribution (B) brings us already closer to the true values of the transition
temperatures. Adding the joint degree statistics of connected nodes (C) gets the critical temperatures nearly
right for the small-world graphs, but fails to improve Tc(d) for the regular lattices. Since in regular cubic lattices
one simply has W (k, k′|c?) = kk′2−2dp(k|c?)p(k′|c?), prescribing the values of W (k, k′|c?) here indeed gives no
information that is not already contained in the degree distribution.

We conclude from Figure 2 that random graphs tailored on the basis of the observables (5) do capture valuable
information, and give reasonable approximations of quantitative characteristics of stochastic processes that run
on such graphs, but there is room for improvement. A hint at which would be an informative observable to
add to p(k|c) and W (k, k′|c) in order to make our tailored random graphs more realistic approximations of c?
is provided by comparison of the two case studies in Figure 2. A prominent difference between the topologies
of cubic latices and small world graphs is the multiplicity of short loops. Cubic lattices have a finite number
per node of loops of any even length, even in the limit N →∞, whereas in small world lattices the number of
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Figure 2. Critical temperatures of Ising systems on finitely connected lattices, calculated
for random graph ensembles (6,7,8) which are tailored to either resemble d-dimensional cubic
lattices c? (top, with d = 1, 2, 3, 4) or ‘small world’ lattices c? (bottom, Erdös-Rényi graph with
average degree q superimposed upon a one-dimensional ring, with q = 0, 1, 2, 3). Connected
markers: critical temperatures Tc(d) and Tc(q) calculated analytically for Ising models on the
tailored random graphs. Dashed horizontal lines and corresponding values on the right: the true
critical temperatures for Ising models on the lattices c?. Transition temperatures are calculated
analytically for the small world lattices [23] and for the cubic lattices with d = 1, 2 [5], and via
numerical simulations [24] for cubic lattices with d = 3, 4.

short loops per node vanishes for N →∞. Explicit calculation shows that also the ensembles (6,7,8) typically
generate locally tree-like graphs, and this explains why the critical temperatures Tc(q) of the small world graphs
are approximated very well, while those of the cubic lattices are not. By the same token, one can easily confirm
that biological signalling networks, such as protein-protein interaction networks (PPIN) or gene regulation
networks (GRN) have significantly more short loops than the typical graphs generated within the ensembles
(6,7,8). See for example the data in Figure 3. The same is probably true for many social, economical and
technological networks.

It appears that the next natural observables to be constrained in order to make our tailored random graphs
more realistic must involve the number of short loops per node. Moreover, the realistic scaling regime is for
this number to be finite, even for N → ∞. However, all available methods for analysing stochastic processes
on graphs (replica methods, cavity methods, belief and survey propagation, generating functional analysis), or
for calculating ensemble entropies, all require implicitly or explicitly that the underlying topologies are locally
tree-like. Apart from correction methods to handle small deviations from the tree-like assumption [27–29], there
appears to be as yet no systematic method for doing the relevant combinatorial sums over all graphs c ∈ G in
expressions such as (3,4) analytically when short loops are prevalent.
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Figure 3. The effect on the number of triangles per node of randomising the human protein-
protein interaction network (PPIN, taken from the HPRD database [25], with N = 9463
nodes) within the space of all graphs c ∈ G that have identical degrees and identical joint
degree statistics W (k, k|c) of connected nodes, generated using the method of [26]. Note that
N−1Tr(c3) = N−1

∑
ijk cijcjkcki. Clearly, the human PPIN (the initial state, at steps=0) is

atypical in this space, in that it has significantly more triangles per node than expected.

3. Strauss model – the ‘harmonic oscillator’ of loopy graphs

3.1. Definitions

We now turn to the simplest ensemble of finitely connected graphs with extensively many short loops. Since
we have seen earlier that calculating graph ensemble entropies is usually a precursor to analysing processes on
such graphs, we focus for now on how to determine Shannon entropies. Some tangential extensions have been
explored in [41, 43, 44] and related papers. The Strauss model [6] is the maximum entropy soft-constrained
random graph ensemble, with specified values of the average degree and the average number of triangles. It is
defined via

p(c) = Z−1(u, g) eu
∑
ij cij+g

∑
ijk cijcjkcki , Z(u, g) =

∑
c∈G

eu
∑
ij cij+g

∑
ijk cijcjkcki (9)

The ensemble parameters u and g are used to control the relevant ensemble averages, via the identities

〈k〉 =
∑
c∈G

p(c)
1

N

∑
ij

cij =
∂

∂u
φ(u, g) (10)

〈m〉 =
∑
c∈G

p(c)
1

N

∑
ij

cijcjkcki =
∂

∂g
φ(u, g) (11)

with the following generating function whose evaluation requires that we do analytically the sum over all graphs
c ∈ G:

φ(u, g) = 1
N logZ(u, g) = 1

N log
[∑

c∈G eu
∑
ij cij+g

∑
ijk cijcjkcki

]
(12)
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For this ensemble, we wish to calculate the Shannon entropy S = −
∑
c∈G p(c) log p(c) in leading order in N .

This follows directly from φ(u, g) since

S = −
[

logZ(u, g)− 1

Z(u, g)

∑
c
p(c) log p(c)

]
=

[
1− u ∂

∂u
− g ∂

∂g

]
logZ(u, g) = N [φ(u, g)− u〈k〉 − g〈m〉] (13)

Upon setting g to be equal to zero, the ensemble (9) reduces to the Erdös-Rényi (ER) ensemble [14]

pER(c) = Z−1
ER(u) eu

∑
ij cij , logZER(u) =

N(N − 1)

2
log(e2u + 1) (14)

Differentiating and substituting in u = − 1
2 ln

(
1−p
p

)
then immediately leads us to

k̄ = 〈k〉
∣∣
g=0

=
1

N

d

du
logZER(u) =

N − 1

1 + e−2u
= (N−1)p (15)

The parameter p can therefore be interpreted as the likelihood of having a link between any two nodes in the
ER ensemble, so for finitely connected graphs p = O(N−1) and u = − 1

2 logN +O(1). This connection with the
ER ensemble suggests rewriting equation (12) as

φ(u, g) =
1

N
log
∑
c∈G

pER(c) eg
∑
ijk cijcjkcki +

1

N
logZER(u)

=
1

2
(N−1) log(e2u + 1) +

1

N
log
∑
r≥0

p(r|u)egr (16)

with

p(r|u) =
∑
c∈G

pER(c) δr,
∑
ijk cijcjkcki

(17)

Hence the substance of the entropy calculation problem for the Strauss ensemble is mathematically equivalent
to determining the moments of the distribution p(r|u) of triangle counts in the Erdös-Rényi ensemble.

3.2. Simple approximation of the Shannon entropy of the Strauss model

We note that the average r̄(u) of the distribution (17) can be calculated easily and expressed in terms of the
average degree k̄ of the ER ensemble, giving

r̄(u) =
∑
r≥0

rp(r|u) =
∑
c∈G

∑
ijk

cijcjkcki = N(N−1)(N−2)(1+e−2u)−3 = k̄3 +O(N−1) (18)

Here k̄, which will differ from the average degree 〈k〉 of (9) as soon as g > 0, is related to the parameter u via
the identity

u = −1

2
log[(N−1)/k̄ − 1] =

1

2
log(k̄/N) +O(1/N) (19)

As a first approximation, we can make the simple ansatz that (17) is a Poissonian distribution, which must then
be given by p(r|u) = e−r̄(u)[r̄(u)]r/r!. One does not expect this assumption to be valid exactly, but according
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Figure 4. Red dotted line: distribution of triangle counts based on sampling 20,000 networks
from an Erdös-Rényi (ER) ensemble with N = 1000 nodes and k̄ = 10. Dark blue solid
line: a Poissonian distribution p(r) = e−r̄ r̄r/r! with average number of triangles r̄ identical to
that measured in the simulated ER graphs. Although similar in shape, the observed triangle
distribution p(r) appears to decay to zero more slowly than the Poissonnian one, as r moves
away from its average value.

to simulation data (see e.g. Figure 4), it is a reasonable initial step. It allows us to do the sum over r ≥ 0 in
(16 ), and find

φ(u, g) =
1

N
r̄(u)(eg − 1) +

1

2
(N−1) log(e2u + 1)

= (N−1)(N−2)(eg − 1)(1+e−2u)−3 +
1

2
(N−1) log(e2u + 1) (20)

We can now immediately work out (11) and (13):

〈k〉 =
N − 1

1 + e−2u
+ 6(N−1)(N−2)e−2u(eg−1)(1+e−2u)−4 (21)

〈m〉 = eg(N−1)(N−2)(1+e−2u)−3 (22)

S/N = (N−1)(N−2)(eg−1)(1+e−2u)−3 + (N−1)u+
1

2
(N−1) log(1+e−2u)− u〈k〉 − g〈m〉 (23)

At g = 0 we simply recover the equations of the ER model, with 〈k〉 = (N−1)/(1+e−2u) and

g = 0 : 〈m〉 = 〈k〉3/N +O(N−2), S/N =
1

2
〈k〉[log(N/〈k〉) + 1] +O(N−1) (24)

For g > 0 we need to inspect the solutions of our equations with finite positive values 〈k〉 and 〈m〉, by working
out the different possible scalings of the parameter u with N . In view of what we know about the scaling with
N of the correct solution for u at g = 0, the natural ansatz to consider is u → −∞ as N → ∞. We now find
that

〈k〉 =
[
e2uN + 6〈m〉 − 6(Ne2u)2e2u

]
[1+O(e2u, N−1)], e−g =

N2e6u

〈m〉
[1+O(e2u, N−1)] (25)

Solutions with finite 〈k〉 and 〈m〉 for N →∞ seem to require that e2uN = O(1), giving

u =
1

2
log[〈k〉−6〈m〉]− 1

2
logN +O(N−1), g = −3 log[〈k〉−6〈m〉] + log(N〈m〉) +O(N−1) (26)
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This solution clearly exists only if 〈m〉 < 1
6 〈k〉. The corresponding entropy expression is found to be the

following, which indeed reduces correctly to the ER entropy for 〈m〉 → 0:

S/N =
1

2
[〈k〉−6〈m〉]

(
1− log[〈k〉−6〈m〉]

)
+ [

1

2
〈k〉−〈m〉] logN + 〈m〉[1− log〈m〉] +O(N−1) (27)

At the point where 〈m〉 ↑ 1
6 〈k〉, we see that u would have to become even more negative. There is no entropy

crisis since

lim
〈m〉↑〈k〉/6

S/N =
1

3
〈k〉 logN +

1

6
〈k〉
[
1− log

(
1

6
〈k〉
)]

+O(N−1) (28)

Hence there is no evidence for bifurcation to an alternative solution at 〈m〉 = 1
6 〈k〉. The failure of this simple

route to lead to solutions in the regime 〈m〉 ≥ 1
6 〈k〉 must therefore be due to the invalidity of the Poissonian

assumption for p(r|u).

3.3. The diagrammatic approach of Burda et al.

A drawback of the Strauss model [6], is that it has a condensed phase, where the typical networks have
a tendency to form complete cliques, which does not reflect the topology of real networks. Burda et al [7]
refined our understanding of this phenomenon, using a diagrammatic approach to study the series expansion of
the factor eg

∑
cijcjkcki in (9), with g taken to be the small parameter. They showed that the clustered phase

occurred above certain critical values of the parameters, and evaluated the free energy and the expectation
value of 〈m〉, in their notation, as

logZ(G, γ) = γ(eG − 1) + logZER, 〈m〉 = N−1k̄3eG (29)

where the identification of the different parameter conventions follows from γ = k̄3/6 and G = 6g. We know
also from [7] that if we make the substitution G? logN + α = G, in which G? and α are functions of k̄ but
without N dependency, then the perturbation series will break down for a value of G? that is strictly less than 1
(the actual breakdown value was found numerically to be about 0.7). Hence, we can see that within this range
NG?−1 → 0 as N → ∞. This means that the number of triangles per node tends to zero in the large N
limit, throughout the regime where the perturbation series of [7] converges. One can also show that, in leading
order in N , the average degree remains unchanged in the regime where the perturbation series converges, i.e.
〈k〉 = k̄ +O(N−1).

If we write p = k̄/N , we can write the ensemble entropy according to the expansion of [7] as

S − SER =

[
1 + p(1− p) ln

(
1

p
− 1

)
∂

∂p
−G ∂

∂G

]
k̄3

6
(eG − 1)

=
k̄3

6
(eG − 1) +

1

2
ln

(
1

p
− 1

)
k̄3(1− p)(eG − 1)− G

6
k̄3eG (30)

Upon expanding the logarithm, and eliminating the parameter G with equation (29), it then follows that

S =
k̄ (N − 1)

2

[
1 + ln

(
N

k̄

)]
+
〈T 〉
6

[
1 + ln

(
N3

〈T 〉

)]
− k̄3

6

[
1 + ln

(
N3

k̄3

)]
− 3k̄2

4
+O(εN ) (31)

in which 〈T 〉 = 〈m〉N is the average number of triangles in typical graphs from the Strauss ensemble, and
limN→∞ εN = 0. This form has similarities with previously derived results, e.g. [15, 17]. If 〈T 〉 = k̄3 then the
entropy reduces to the Erdös-Rényi entropy, as expected. Direct comparisons with expressions obtained via the
Poissonnian ansatz are not valid, because the expressions refer to different scalings with N of 〈m〉. The next
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Figure 5. Relative complexity (i.e. relative entropy reduction) versus the expected number
of triangles in the Strauss model with N = 10, 000, calculated from the perturbation theory
of [7] for values of the coupling constant G below the transition point to the clustered phase.
Here SER is calculated with the actual average degree 〈k〉 of the Strauss model, rather than the
implied k̄, in order to remove the trivial effect that even a more dense uncorrelated network
will automatically have more triangles.
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Figure 6. Dark bars: number of triangles in an ER ensemble divided by the number of
triangles in protein-protein interaction networks (PPIN) of different species, where both have
the same average degree. Light bars: maximum number of triangles in the Strauss ensemble
(before the clumping transition) divided by the number of triangles in the observed protein-
protein interaction networks, where both have the same average degree. The species are ordered
from left to right in terms of increasing network sizes (which are on average around 2,000 nodes).
References for the datasets are found in [16].

step would be to eliminate k̄ in favour of the observable 〈k〉. This is not simple, as it effectively requires the
solution of a fourth order equation.
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The authors of [7] numerically deduced the critical values for the coupling parameter G for networks with
average degrees of 2, 4 and 8. This gives a region within which we know that it is valid to apply formula
(31), and reasonable to use a model with such parameters to model real networks. We evaluated (31) and
related quantities for values of the parameter G up to roughly the critical point. The implied parameter k̄ is
found numerically. The results are shown in Figure 5. For the (realistic) values of average degree and network
size considered, we observe that by the time the coupling constant G reaches the critical value, the number
of triangles in the network is predicted to increase more than tenfold compared to an ER ensemble with the
same average degree. However, the complexity is low when viewed as a proportion of the overall entropy of the
ensemble. Constraining only the average number of loops, and remaining within a phase with relatively low
clustering, apparently still leaves significant topological freedom for the networks in the ensemble.

Figure 6 compares the number of triangles observed in several biological networks, with average degree around
〈k〉 = 4, with the maximum number of triangles that a Strauss ensemble graph could be expected to generate,
before it goes into its degenerate clustered phase. This shows that, while the Strauss model is a substantial
improvement on the Erdös-Rényi model from the point of view of the number of loops, it usually collapses
into its clustered phase before it reaches biologically realistic values for its parameters. If we wish to extend
the perturbation analysis beyond the critical point, we need to look at different scalings of the parameter g.
However, since the un-physical behaviour of the Strauss model above this point has already been shown, such
a result would be of limited application. The authors of [7] have extended their analysis in [30] to general
uncorrelated degree distributions - but the agreement with simulations was less precise.

3.4. Spectrally parametrised loopy ensembles

Since the Strauss model ‘clumps’ above a certain critical point before realistic numbers of short loops are
achieved, with the imposed triangle numbers being realised in dense cliques, one would like to define more
versatile graph ensembles by including additional observables to tailor the graphs further in terms of short loops
and penalise the formation of large cliques. Since the two constrained observables in the Strauss model are both
seen to be specific traces of the matrix c, i.e.

∑
ij

cij =
∑
ij

cijcji = Tr(c2),
∑
ijk

cijcjkcki = Tr(c3) (32)

one in effect constrains in this ensemble the second and third moment of the eigenvalue spectrum %(µ|c). A
natural generalisation of the Strauss ensemble would therefore be obtained by prescribing more general spectral
features, or even the full eigenvalue spectrum itself. For a soft-constrained maximum entropy ensemble this
would involve, rather than the scalar pair (u, g), a functional Lagrange parameter %̂(u). Thus we obtain

p(c) = Z−1[%̂] eN
∫

dµ %̂(µ)%(µ|c), %(µ|c) =
1

N

∑
i

δ [µ− µi(c)] (33)

where µi(c) denotes the i-th eigenvalue of c. For the choice %̂(µ) = uµ2 +vµ3 one recovers from (33) the Strauss
ensemble. Including higher order terms, e.g. via %̂(µ) =

∑L
`=2 v`µ

` for some L ≥ 4, would give better control
over the clumping of the original Strauss model. If we define our ensemble by a full imposed spectrum %(µ),
which is equivalent to sending L→∞, we would have to solve the function %̂(µ) from

∀µ ∈ IR :
∑
c∈G

p(c)%(µ|c) = %(µ) (34)
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Although the early steps of the argument in [7] would still apply, it is not clear how to analytically re-sum the
contributing terms in the expansion for these more general ensembles. Here we need new analytical tools.

Below we discuss a potential new route to tackle the relevant combinatorial sums. Determining the entropy
of the generalised spectrally constrained graph ensemble (33) would require the evaluation of the functional

φ[%̂] =
1

N
log
∑
c∈G

eN
∫

dµ %̂(µ)%(µ|c) (35)

Calculating the sum over all graphs c ∈ G in (35) directly is not feasible. However, we can rewrite φ[%̂] using
the standard spectrum formula of [31]:

%(µ|c) =
2

Nπ
lim
ε↓0

Im
∂

∂µ
logZ(µ+iε|c), Z(µ|c) =

∫
IRN

dψ e−
1
2 iψ·[c−µ1I]ψ (36)

This gives us, after integration by parts in the exponent,

φ[%̂] = lim
ε↓0

1

N
log
∑
c∈G

e−
2
π Im

∫
dµ logZ(µ+iε|c) ∂%̂(µ)/∂µ (37)

We can now discretize the integral via
∫

dµ→ ∆
∑
µ, and use the identity e−2Im log z = zi/zi to write

φ[%̂] = lim
ε,∆↓0

1

N
log
∑
c∈G

∏
µ

e−
2∆
π (∂%̂(µ)/∂µ) Im logZ(µ+iε|c)

= lim
ε,∆↓0

1

N
log
∑
c

∏
µ

[
Z(µ+iε|c)i Z(µ+iε|c)

−i
]∆
π ∂%̂(µ)/∂µ

= lim
ε,∆↓0

lim
nµ→∆i

π ∂%̂(µ)/∂µ
lim

mµ→−nµ
Φ[{nµ,mµ}] (38)

in which

Φ[{nµ,mµ}] =
1

N
log
∑
c∈G

∏
µ

[
Z(µ+iε|c)nµ Z(µ+iε|c)

mµ
]

(39)

Expression (39) is reminiscent of formulae encountered in replica analyses of heterogeneous many-variable
systems, which suggests a strategy for proceeding with the calculation. We can carry out the sum over all
graphs c ∈ G, which is the core obstacle in the problem, by evaluating equation (39) for positive integer values
of {nµ,mµ} (where the powers of Z(µ+iε|c) and Z(µ+iε|c) simply become multiple replicated Gaussian integrals
in which the entries {cij} appear in factorised form). The full expression could then be determined by taking
the limits in (38) via analytical continuation.

The sum over graphs has thereby been tamed, and the previous combinatorial difficulties converted into
the intricacies of an unusual replica limit. In the original papers that launched and used the replica method,
the (real-valued) replica dimension n had to be taken to zero, reflecting ‘frozen’ heterogeneity in the micro-
parameters of stochastic processes [9–13]. Later statistical mechanical studies have found how real-valued but
nonzero replica dimensions emerge in a natural way to describing nested processes that equilibrate at distinct
temperatures and timescales, e.g. slowly evolving heterogeneity in the micro-parameters of ‘fast’ stochastic
physical or biological processes [32–35]. To our knowledge there have not yet been calculations in which purely
imaginary replica dimensions emerge, as in the calculation above.
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Figure 7. Snapshots of the finitely connected immune network of [8], describing effective
interactions between T-clones, that are obtained by integrating out the B-clone variables, for
different choices of the model’s global control parameters. It is immediately clear from these
images that the graphs of [8] have a finite number of short loops per node, and are certainly
not locally tree-like.

4. Solvable immune models on loopy networks

In a recently published statistical mechanical study of the interaction between T and B-clones in the adaptive
immune system [8] the authors succeeded in obtaining a full analytical solution, leading to phase diagrams and
testable predictions for observables which agreed perfectly with numerical simulations. Following a preceding
paper [36] they mapped the problem to a new but equivalent spin system describing only T-T interactions, by
integrating out the degrees of freedom that represented the B-clones. The new effective model for interacting
T-clones could then be solved using replica methods. What is intriguing in the context of this paper is that in
this new model for T-clones the spins are positioned on the nodes of a finitely connected interaction graph with
an extensive number of short loops, see e.g. Figure 7. Given the arguments in the previous sections, one would
not have expected analytical solution to be possible.

4.1. The model of Agliari et al.

In the models of [8, 36] one studies the interactions between B-clones bµ ∈ IR (µ = 1 . . . NB), T-clones
σi ∈ {−1, 1} (i = 1 . . . NT ), and external triggers of the immune system (the so-called ‘antigens’). Each B-clone
can recognise and attack one specific antigen species, and the T-clones are responsible for coordinating the
B-clones via chemical signals (cytokines), but do so in a somewhat promiscuous manner. The collective system
is described as a statistical mechanical process in equilibrium, characterised by the following Hamiltonian

H =
1

2
√
β

NB∑
µ=1

b2µ −
NB∑
µ=1

bµhµ, hµ =

NT∑
i=1

ξµi σi + λµaµ (40)

Here aµ represents the log-concentration of antigen type µ, λµ is the sensitivity of the µ-th B-clone to its
allocated antigen, and ξµi ∈ {−1, 0, 1} represents the cytokine interaction between T-clone σi and B-clone bµ.
The ‘field’ hµ acts as the combined input to B-clone µ. If hµ is positive clone µ will expand, if it is negative
clone µ will contract. The ξµi can be excitatory (ξµi = 1), inhibitory (ξµi = −1), or absent (ξµi = 0), and are
drawn randomly and independently from

p(ξµi ) =
c

2NT

[
δξµi ,1 + δξµi ,−1

]
+ (1− c

NT
)δξµi ,0 (41)
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Figure 8. Transition lines in the (αc2, T ) plane for different values of c, with T = β−1.
The distribution W (h) gives the statistics of clonal interference fields, caused by increased
connectivity in the graph. Circles: values calculated via numerical solution of (45) for c = 1
(diagram reproduced from [8]).

Thus the original system is described by a weighted bi-partite interaction graph. The parameter c ≥ 0 controls
the degree of promiscuity of the B-T interactions. Realistic clone numbers would be NB∼108 and NT ∼ 108, so
statistical mechanical approaches are valid. The authors of [8] study this system in the regime where NT = N
and NB = αN , with finite α > 0 and N → ∞. They ‘integrate out’ the B-clones in the system’s partition
function (which requires only a simple Gaussian integral), and are left with a system of interacting Ising spins,
described by the effective Hamiltonian

Heff(σ) = −1

2

N∑
i,j=1

σiσjJij −
N∑
i=1

σi

αN∑
µ=1

ψµξ
µ
i , Jij =

αN∑
µ=1

ξµi ξ
µ
j , ψµ = λµaµ (42)

This Hamiltonian is reminiscent of the one found in attractor neural network models [37, 38], with a so-called
Hebbian interaction matrix Jij coupling the spins. However, due to the scaling with N of the probabilities in
(41), the present (weighted) interaction matrix is finitely connected. Moreover, unlike finitely connected neural
network models [13], where one stores and recalls a finite number of binary patterns with extensive information
content each, here one seeks to store and recall an extensive number of patterns with a finite number of bits each.
This distinction is not only vital in the immunological context, since an organism has to defend itself against
extensive simultaneous invasions to survive, but it also generates fundamental mathematical differences. Finitely
connected attractor models like [13] operate on graphs that are locally tree-like, by construction, whereas the
model (42) typically involves ‘loopy’ interaction graphs; see Figure 7.

4.2. Statistical mechanical analysis

The details of the statistical mechanical analysis of (42) can be found in [8], here we only discuss their results.
In view of the extensive number of ‘stored patterns’ in this model, compared to finitely connected attractor
neural networks, the conventional analysis route (involving sub-lattice magnetisations as order parameters) can
no longer be used. Instead the appropriate order parameter is

P(M,ψ) =
1

αN

αN∑
µ=1

δM,Mµ(σ)δ(ψ − ψµ) Mµ(σ) =

N∑
i=1

ξµi σi (43)
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Each of the (extensively many) state overlapsMµ(σ) =
∑N
i=1 ξ

µ
i σi represent the combined activation/repression

signal coming from the T-cells and acting upon B-clone µ, so the conditional distribution P(M |ψ) quantifies the
strength and specificity of the response of the adaptive immune system to a typical antigen attack. Given this
order parameter, the calculation of the disorder-averaged free energy involves path integral techniques combined
with replica methods. The end result, within the replica-symmetric (RS) ansatz, is the following self-consistent
equation for a field distribution W (h):

W (h) = e−c
∑
k≥0

ck

k!
e−αck

∑
r≥0

(αc)r

r!

∫ ∞
−∞

[∏
s≤r

dhsW (hs)
] ∑
`1...`r≤k

∫
dψ P (ψ) (44)

×
∑
τ=±1

δ

[
h−τψ− 1

2β
log

(∑
σ1...σk=±1 eβ(

∑
`≤kσ`)

2/2c+β(
∑
`≤kσ`)(ψ+τ/c)+β

∑
s≤r hsσ`s∑

σ1...σk=±1 eβ(
∑
`≤kσ`)

2/2c+β(
∑
`≤kσ`)(ψ−τ/c)+β

∑
s≤r hsσ`s

)]
(45)

in which β is the inverse temperature (i.e. inverse noise level) of the system. The distribution W (h) turns out
to describe the distribution of clonal interference fields, i.e. the unwanted signalling cross-talk between clones.
Equation (45) always has the trivial solution W (h) = δ(h), which represents interference-free operation, but
exhibits bifurcations away from this state at parameter combinations (α, c, β) such that

1 = αc2
∑
k≥0

e−c
ck

k!

{∫
dz e−

1
2 z

2

tanh(z
√
β/c+β/c) coshk+1(z

√
β/c+β/c)∫

dz e−
1
2 z

2
coshk+1(z

√
β/c+β/c)

}2

(46)

This equation therefore defines a phase transition that separates a regime of interference-free operation of the
adaptive immune system from one that exhibits deteriorating performance due to interference between clones.
Cross-sections of this transition surface are shown in Figure 8.

4.3. Stepping back - why is the ‘loopy’ Agliari et al model solvable?

In retrospect it is clear why the interacting spin model (42) is solvable, in spite of the extensively many short
loops in its interaction graph J = {Jij}. The reason is that the N×N interaction matrix has the form J = ξ†ξ,
with a p × N matrix ξ with entries {ξµi } that itself represents a locally tree-like graph. Mathematically this
allows one to introduce a Hubbard-Stratonovich-type [5] transformation in the partition function, to a new but
equivalent model that has a locally tree-like structure, at the cost of introducing p new Gaussian degrees of
freedom:

Jij =

p∑
µ=1

ξµi ξ
µ
j :

∑
σ∈{−1,1}N

eβ
∑
i<j Jijσiσj =

∫
IRp

dz

(2π)p/2

∑
σ∈{−1,1}N

e
√
β
∑
µi zµξ

µ
i σi−

1
2

∑
µ z

2
µ (47)

This construction indeed reflects exactly the origin of the model in [8], with the B-cells acting as auxiliary
Gaussian variables. The more general question would now be for which other interaction networks with exten-
sively many short loops one could write (or approximate sensibly) the interaction matrix in a form J = ξ†ξ for
some p and some p×N bi-partite but locally tree-like graph ξ. Models on such networks could then be mapped
similarly onto an equivalent model where the short loops have been traded in for extra degree of freedom. This
would obviously only be possible for graphs with non-negative spectra.

Another curious aspect of the Agliari et al model is that it defies another expectation. Normally the entropy
calculation for a random graph ensemble is easier than solving an interacting spin model on the ensemble’s
graphs. Here the situation is reversed. The entropy calculation is harder. For the present nondirected weighted
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complexes proteins
PPIN

Figure 9. In the bipartite graph on the left proteins and complexes are both represented as
nodes, and a link indicates that a given protein is a constituent of the complex. In the graph on
the right (the standard representation of PPIN databases) there is a link between two proteins
if they are jointly part of one or more protein complexes. The latter graph is weighted if the
value of the link cij is defined as the number of complexes in which proteins Pi and Pj participate
simultaneously.

graph ensemble we have

c ∈ IN
1
2N(N−1) = G′, p(c) =

〈∏
i<j

δcij ,
∑p
µ=1 ξ

µ
i ξ
µ
j

〉
ξ

(48)

in which 〈. . .〉ξ denotes averaging over (41). This ensemble is not a maximum entropy ensemble with constraints
in the sense of (1) or (2), and the methods used for the latter ensembles are no longer applicable. Using the
replica identity 〈logZ〉 = limn→0 n

−1 log〈Zn〉 we can, however, write the Shannon entropy per node of the
ensemble (48) as

S =
∑
c∈G′

p(c) log p(c) = lim
n→0

1

n
log

∑
c∈G′

pn+1(c)

= lim
n→0

1

n
log

∑
c∈G′

〈
. . .
〈∏
i<j

[ n+1∏
α=1

δcij ,
∑p
µ=1 ξ

µ
i,αξ

µ
j,α

]〉
ξ1

. . .
〉
ξn+1

= lim
n→0

1

n
log
〈
. . .
〈∏
i<j

{∑
`≥0

[ n+1∏
α=1

δ`,
∑p
µ=1 ξ

µ
i,αξ

µ
j,α

]}〉
ξ1

. . .
〉
ξn+1

(49)

Working out the leading orders in N of this remaining combinatorial problem looks feasible but has not yet
been fully solved, and is the subject of ongoing work.

4.4. The connection with models of proteins and their complexes

Many systems can be modelled with an interaction graph similar to the one of [8, 36]. The author of [39]
showed how a similar model could be used to describe a social network, where the probability of two nodes
being connected is driven by whether or not they are both members of the same social group. A less explored
application is that although most protein-protein interaction network (PPIN) data repositories (such as [25])
report only binary interactions between pairs of protein species, the more natural description is in fact that
of a bipartite graph, with one set of αN nodes representing protein complexes and another set representing
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Figure 10. Projection onto the protein space, in the sense of Figure 9, of the protein com-
plexes and their core constituents identified in Sac. cerevisiae [40] via mass-spectroscopy. The
resulting network shows distinct cliques, but only the beginning of the dense core that is gener-
ally seen in protein-protein interaction networks. One would expect the dense core to emerge if
the data included also non-core proteins, as well as protein reactions which may not necessarily
correspond to named complexes.

the N individual proteins. A link from a given protein to a given complex then indicates that the protein
participates in the complex; see Figure 9. If from such data we construct a new weighted graph, with nodes
that represent the proteins only, and links between the nodes that give the number of complexes in which they
jointly participate, we obtain once more graphs c ∈ G′ from the graph ensemble (48). The only difference with
the immune models is that now the variables ξµi take their values randomly and independently from the set
{0, 1}:

p(c) =
〈∏
i<j

δcij ,
∑p
µ=1 ξ

µ
i ξ
µ
j

〉
ξ
, p(ξµi ) =

q

N
δξµi ,1 +

(
1− q

N

)
δξµi ,0 (50)

This graph ensemble was studied in [39], in terms of its topological properties (percolation transition, path
lengths, and so on), but not in the context of protein interactions. Several observables of the projected network
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c ∈ G′ can be immediately deduced from the parameters of the bipartite graph. For instance:

〈cij〉 = αN 〈ξiξj〉 = αq2/N (51)

p(cij) =

∫ π

−π

dω

2π
eiωcij

〈
eiωξiξj

〉αN
{ξ} =

(
αN

cij

)[
q2

N2

]cij [
1− q2

N2

]αN−cij
(52)

from which it also follows that k̄ = N−1
∑
ij [1 − p(cij = 0)] = αq2. As with the immune model, one obtains

loops in the PPIN graph c again from an underlying model which is tree-like; here this underlying model is
the description of the system in terms of the proteins and their complexes. In Figure 10 we show the result of
using the data from [40] on protein complexes found in yeast in order to construct a protein-protein interaction
network according to the definition in (50), i.e. via cij =

∑
µ ξ

µ
i ξ

µ
j , with ξ

µ
i indicating whether (ξµi = 1) or not

(ξµi = 0) protein i participates in complex µ. It will be clear that, using the technology of [8], one should now be
able to solve analytically models of protein reaction processes on ‘loopy’ protein-protein interaction networks,
provided they are built on these along the lines of (50).

5. Conclusion

In this paper we have discussed some conceptual and mathematical issues that emerge as soon as one studies
(processes on) graphs and networks that are not locally tree-like, but exhibit extensive numbers of short loops.
Stochastic processes on graphs with many short loops have quantitative characteristics that are very different
from those that run on tree-like structures. This is why Ising models on tree-like lattices are trivially solved, but
Ising models on finite-dimensional lattices are not. Yet our currently available arsenal of mathematical tools for
analysing ‘loopy’ graphs is rather limited, because the tree-like assumption is at the very core of most of our
techniques, whether we are analysing processes on graphs or calculating entropies of graph ensembles. Even
asymptotic results for infinitely large ‘loopy’ graphs are largely absent. However, we believe that this area will
become increasingly important in the coming years, since the fact is that many (if not most) of the networks
that we can observe in the real-world do have significant numbers of loops.

We have tried to propose and explain some new ideas and possible routes forward, aimed at making progress
in the analytical study of ‘loopy’ random graph ensembles. Some built on our own ideas (including e.g. simple
approximations and replica techniques) and some built on work of others (such as the papers by Burda et
al, that are based on diagrammatic expansions). Most of the material relates to ongoing work, and is still
only beginning to be explored. We discussed in more detail two specific random graph ensembles: the Strauss
model, because it is the simplest possible random graph ensemble in which one can induce arbitrary numbers
of short loops (in this case triangles), and an ensemble that emerged in a recent immunological model, because
this model could be solved analytically in spite of its ‘loopy’ nature. In this paper we have focussed on static
random graph models. Dynamical or growing models are a distinct area of study - readers may be interested
to refer to [45–47] and related papers.
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