Our papers are the official record of our discoveries. They allow others to build on and apply our work. Each one is the result of many months of research, so we make a special effort to make our papers clear, inspiring and beautiful, and publish them in leading journals.

  • Date
  • Subject
  • Theme
  • Journal
  • Citations
  • Altmetric
  • SNIP
  • Author
x5
  • T. FinkT. Fink
  • O. GamayunO. Gamayun
  • A. EsterovA. Esterov
  • Y. HeY. He
  • F. SheldonF. Sheldon
  • A. V. KosyakA. V. Kosyak
  • A. OchirovA. Ochirov
  • E. SobkoE. Sobko
  • M. BurtsevM. Burtsev
  • M. ReevesM. Reeves
  • I. ShkredovI. Shkredov
  • G. CaldarelliG. Caldarelli
  • R. HannamR. Hannam
  • F. CaravelliF. Caravelli
  • A. CoolenA. Coolen
  • O. DahlstenO. Dahlsten
  • A. MozeikaA. Mozeika
  • M. BardosciaM. Bardoscia
  • P. BaruccaP. Barucca
  • M. RowleyM. Rowley
  • I. TeimouriI. Teimouri
  • F. AntenucciF. Antenucci
  • A. ScalaA. Scala
  • R. FarrR. Farr
  • A. ZegaracA. Zegarac
  • S. SebastioS. Sebastio
  • B. BollobásB. Bollobás
  • F. LafondF. Lafond
  • D. FarmerD. Farmer
  • C. PickardC. Pickard
  • T. ReevesT. Reeves
  • J. BlundellJ. Blundell
  • A. GallagherA. Gallagher
  • M. PrzykuckiM. Przykucki
  • P. SmithP. Smith
  • L. PietroneroL. Pietronero
  • Schön complete intersections

    Algebraic geometry

    AEA. Esterov Arxiv

    Schön complete intersections

    A uniform approach to a class of varieties is described that includes important types of objects from geometry, optimisation and physics.

  • Engineered complete intersections: slightly degenerate Bernstein-Kouchnirenko-Khovanskii

    Algebraic geometry

    AEA. Esterov Arxiv

    Slight degenerations

    The tools used to study polynomial equations with indeterminate coefficients are extended to some important cases with interrelated ones.

  • Sparse curve singularities, singular loci of resultants, and Vandermonde matrices

    Algebraic geometry

    AEA. EsterovESAV Submitted

    Sparse singularities

    Geometric properties, including delta invariants, are computed for singular points defined by polynomials with indeterminate coefficients.

  • Permuting the roots of univariate polynomials whose coefficients depend on parameters

    Algebraic geometry

    AEA. EsterovLL Submitted

    Permuting the roots

    The Galois group of a typical rational function is described and similar problems solved using the topology of braids and tropical geometry.

  • Algebraic geometry

    Arxiv

    Symmetric spatial curves

    We study the geometry of generic spatial curves with a symmetry in order to understand the Galois group of a family of sparse polynomials.