When are cellular automata random?

We find that 10 elementary cellular automata show random behavior, not including reflections and state-inversions. This is Wolfram rule 86.

EPL 84, 50005 (2011)

J. Coe, S. Ahnert, T. Fink

LQ placeholderWe find that 10 elementary cellular automata show random behavior, not including reflections and state-inversions. This is Wolfram rule 86.

A random cellular automaton is one in which a cell's behaviour is independent of its previous states. We derive analytical conditions which must be satisfied by random cellular automata and find deterministic and probabilistic cellular automata that satisfy these conditions. Many random cellular automata are seen to have a flow as they are updated through time. We define a correlation current that describes this flow and develop an analytical expression for its size. We compare results from this analytical expression with those from simulation. The randomness in a cell comes from randomness in adjacent cells or from the stochastic nature of update rules. We give an expression for how much randomness comes from each of these two sources.

LQ placeholder

Imaginary replica analysis of loopy regular random graphs

F. Lopez, T. Coolen

Sub. to Journal of Physics A

LQ placeholder

Taming complexity

M. Reeves, S. Levin, T. Fink, A. Levina

Harvard Business Review

LQ placeholder

Degree-correlations in a bursting dynamic network model

F. Vanni, P. Barucca

Journal of Economic Interaction and Coordination

LQ placeholder

Scale of non-locality for a system of n particles

S. Talaganis, I. Teimouri

Sub. to Physical Review D

122 / 122 papers