Ultralight fractal structures from hollow tubes

A material’s architecture can be controlled over an ever increasing set of length scales.

Physical Review Letters 109, 204301 (2012)

D. Rayneau-Kirkhope, Y. Mao, R. Farr

LQ placeholderA material’s architecture can be controlled over an ever
increasing set of length scales.

A fractal design is shown to be highly efficient both as a load bearing structure and as a general metamaterial. Through changing the hierarchical order of the structure, the scaling of material required for stability against loading can be manipulated. We show that the transition from solid to hollow beams changes the scaling in a manner analogous to increasing the hierarchical order by one. An example second order solid beam frame is constructed using rapid prototyping techniques. The optimal hierarchical order of the structure is found for different values of loading. Possible fabrication methods and applications are then discussed.

LQ placeholder

Imaginary replica analysis of loopy regular random graphs

F. Lopez, T. Coolen

Sub. to Journal of Physics A

LQ placeholder

Taming complexity

M. Reeves, S. Levin, T. Fink, A. Levina

Harvard Business Review

LQ placeholder

Degree-correlations in a bursting dynamic network model

F. Vanni, P. Barucca

Journal of Economic Interaction and Coordination

LQ placeholder

Scale of non-locality for a system of n particles

S. Talaganis, I. Teimouri

Sub. to Physical Review D

122 / 122 papers