Tunnelling necessitates negative Wigner function

Y. Lin, O. Dahlsten

Submitted to Physical Review Letters (2016)


Download the PDF

LQ placeholderIn quantum tunnelling, a particle tunnels through a barrier that it classically could not surmount.

In quantum tunnelling, a particle tunnels through a barrier that it classically could not surmount.

We consider in what sense quantum tunnelling is associated with non-classical probabilistic behaviour. We use the Wigner function quasi-probability description of quantum states. We give a definition of tunnelling that allows us to say whether in a given scenario there is tunnelling or not. We prove that this can only happen if either the Wigner function is negative and/or a certain measurement operator which we call the tunnelling rate operator has a negative Wigner function.

LQ placeholder

Scale of non-locality for a system of n particles

S. Talaganis, I. Teimouri

Sub. to Physical Review D

LQ placeholder

How much can we influence the rate of innovation?

T. Fink, M. Reeves

Science Advances

LQ placeholder

The statistical physics of real-world networks

G. Cimini, T. Squartini, F. Saracco, D. Garlaschelli, A. Gabrielli, G. Caldarelli

Nature Reviews Physics

LQ placeholder

On defining the Hamiltonian beyond quantum theory

D. Branford, O. Dahlsten, A. Garner

Foundations of Physics

LQ placeholder

Reconstructing grain-shape statistics from electron back-scatter diffraction microscopy

R. Farr, Z. Vukmanovic, M. Holness, E. Griffiths

Physical Review Materials

LQ placeholder

Tackling information asymmetry in networks: a new entropy-based ranking index

P. Barucca, G. Caldarelli, T. Squartini

Journal of Statistical Physics

LQ placeholder

Eigenvalues of subgraphs of the cube

B. Bollobás, J. Lee, S. Letzter

European Journal of Combinatorics

LQ placeholder

Maximum one-shot dissipated work from Rényi divergences

N. Halpern, A. Garner, O. Dahlsten, V. Vedral

Physical Review E

123 / 123 papers