Transfer operator analysis of the parallel dynamics of disordered Ising chains
A transfer operator formalism solves the macroscopic dynamics of disordered Ising chain systems which are relevant for ageing phenomena.
Philosophical Magazine 92, 64 (2011)
A. Coolen, K. Takeda
















We study the synchronous stochastic dynamics of the random field and random bond Ising chain. For this model the generating functional analysis method of De Dominicis leads to a formalism with transfer operators, similar to transfer matrices in equilibrium studies, but with dynamical paths of spins and (conjugate) fields as arguments, as opposed to replicated spins. In the thermodynamic limit the macroscopic dynamics is captured by the dominant eigenspace of the transfer operator, leading to a relatively simple and transparent set of equations that are easy to solve numerically. Our results are supported excellently by numerical simulations.
More in The fate of real systems
Self-organising adaptive networks
An adaptive network of oscillators in fragmented and incoherent states can re-organise itself into connected and synchronized states.
Instability in complex ecosystems
The community matrix of a complex ecosystem captures the population dynamics of interacting species and transitions to unstable abundances.
Optimal growth rates
An extension of the Kelly criterion maximises the growth rate of multiplicative stochastic processes when limited resources are available.