The effects of Twitter sentiment on stock price returns

G. Ranco, D. Aleksovski, G. Caldarelli, M. Grčar, I. Mozetič

PLoS ONE 1, 1 (2015)

#markettrading#forecasting#humanbehavior

Download the PDF

LQ placeholderDistribution of sentiment polarity for the 260 detected Twitter peaks

Distribution of sentiment polarity for the 260 detected Twitter peaks

Social media are increasingly reflecting and influencing behavior of other complex systems. In this paper we investigate the relations between a well-known micro-blogging platform Twitter and financial markets. In particular, we consider, in a period of 15 months, the Twitter volume and sentiment about the 30 stock companies that form the Dow Jones Industrial Average (DJIA) index. We find a relatively low Pearson correlation and Granger causality between the corresponding time series over the entire time period. However, we find a significant dependence between the Twitter sentiment and abnormal returns during the peaks of Twitter volume. This is valid not only for the expected Twitter volume peaks (e.g., quarterly announcements), but also for peaks corresponding to less obvious events. We formalize the procedure by adapting the well-known "event study" from economics and finance to the analysis of Twitter data. The procedure allows to automatically identify events as Twitter volume peaks, to compute the prevailing sentiment (positive or negative) expressed in tweets at these peaks, and finally to apply the "event study" methodology to relate them to stock returns. We show that sentiment polarity of Twitter peaks implies the direction of cumulative abnormal returns. The amount of cumulative abnormal returns is relatively low (about 1-2%), but the dependence is statistically significant for several days after the events.

LQ placeholder

Imaginary replica analysis of loopy regular random graphs

F. Lopez, T. Coolen

Sub. to Journal of Physics A

LQ placeholder

Taming complexity

M. Reeves, S. Levin, T. Fink, A. Levina

Harvard Business Review

LQ placeholder

Degree-correlations in a bursting dynamic network model

F. Vanni, P. Barucca

Journal of Economic Interaction and Coordination

LQ placeholder

Scale of non-locality for a system of n particles

S. Talaganis, I. Teimouri

Sub. to Physical Review D

LQ placeholder

How much can we influence the rate of innovation?

T. Fink, M. Reeves

Science Advances

123 / 123 papers