Tackling information asymmetry in networks: a new entropy-based ranking index

P. Barucca, G. Caldarelli, T. Squartini

Journal of Statistical Physics 1, 1 (2018)


Download the PDF

LQ placeholderToy network, whose nodes have been ranked according to InfoRank.

Toy network, whose nodes have been ranked according to InfoRank.

Information is a valuable asset in socio-economic systems, a significant part of which is entailed into the network of connections between agents. The different interlinkages patterns that agents establish may, in fact, lead to asymmetries in the knowledge of the network structure; since this entails a different ability of quantifying relevant, systemic properties (e.g. the risk of contagion in a network of liabilities), agents capable of providing a better estimation of (otherwise) inaccessible network properties, ultimately have a competitive advantage. In this paper, we address the issue of quantifying the information asymmetry of nodes: to this aim, we define a novel index—InfoRank—intended to rank nodes according to their information content. In order to do so, each node ego-network is enforced as a constraint of an entropy-maximization problem and the subsequent uncertainty reduction is used to quantify the node-specific accessible information. We, then, test the performance of our ranking procedure in terms of reconstruction accuracy and show that it outperforms other centrality measures in identifying the “most informative” nodes. Finally, we discuss the socio-economic implications of network information asymmetry.

LQ placeholder

Degree-correlations in a bursting dynamic network model

F. Vanni, P. Barucca

Journal of Economic Interaction and Coordination

LQ placeholder

Scale of non-locality for a system of n particles

S. Talaganis, I. Teimouri

Sub. to Physical Review D

LQ placeholder

Changes to Gate Closure and its impact on wholesale electricity prices: The case of the UK

A. Facchini, A. Rubino, G. Caldarelli, G. Liddo

Energy Policy

LQ placeholder

How much can we influence the rate of innovation?

T. Fink, M. Reeves

Science Advances

LQ placeholder

The statistical physics of real-world networks

G. Cimini, T. Squartini, F. Saracco, D. Garlaschelli, A. Gabrielli, G. Caldarelli

Nature Reviews Physics

LQ placeholder

PopRank: Ranking pages’ impact and users’ engagement on Facebook

A. Zaccaria, M. Vicario, W. Quattrociocchi, A. Scala, L. Pietronero


128 / 128 papers