Self-healing networks: redundancy and structure

Infrastructure networks are very well engineered systems characterized by fluxes of commodities, from electric power to drinking water.

PLOS ONE 9, 87986 (2014)

W. Quattrociocchi, G. Caldarelli, A. Scala

LQ placeholderInfrastructure networks are very well engineered systems characterized by fluxes of commodities, from electric power to drinking water.

We introduce the concept of self-healing in the field of complex networks. Obvious applications range from infrastructural to technological networks. By exploiting the presence of redundant links in recovering the connectivity of the system, we introduce self-healing capabilities through the application of distributed communication protocols granting the "smartness" of the system. We analyze the interplay between redundancies and smart reconfiguration protocols in improving the resilience of networked infrastructures to multiple failures; in particular, we measure the fraction of nodes still served for increasing levels of network damages. We study the effects of different connectivity patterns (planar square-grids, small-world, scale-free networks) on the healing performances. The study of small-world topologies shows us that the introduction of some long-range connections in the planar grids greatly enhances the resilience to multiple failures giving results comparable to the most resilient (but less realistic) scale-free structures.

LQ placeholderNetwork valuation in financial systems

Network valuation in financial systems

P. Barucca, M. Bardoscia, F. Caccioli, M. D’Errico, G. Visentin, G. Caldarelli, S. Battiston

Mathematical Finance

LQ placeholderThe space of functions computed by deep layered machines

The space of functions computed by deep layered machines

A. Mozeika, B. Li, D. Saad

Sub. to Physical Review Letters

LQ placeholderReplica analysis of overfitting in generalized linear models

Replica analysis of overfitting in generalized linear models

T. Coolen, M. Sheikh, A. Mozeika, F. Aguirre-Lopez, F. Antenucci

Sub. to Journal of Physics A

LQ placeholderTaming complexity

Taming complexity

M. Reeves, S. Levin, T. Fink, A. Levina

Harvard Business Review

LQ placeholderReplica analysis of Bayesian data clustering

Replica analysis of Bayesian data clustering

A. Mozeika, T. Coolen

Journal of Physics A

LQ placeholderDegree-correlations in a bursting dynamic network model

Degree-correlations in a bursting dynamic network model

F. Vanni, P. Barucca

Journal of Economic Interaction and Coordination

123 / 123 papers