Replica analysis of Bayesian data clustering

A. Mozeika,, A. Coolen

 (2019)

#statisticalmechanics#clustering#disorderedsystems

Download the PDF

LQ placeholderWe optimize Bayesian data clustering by mapping the problem to the statistical physics of a gas and calculating the lowest entropy state.

We optimize Bayesian data clustering by mapping the problem to the statistical physics of a gas and calculating the lowest entropy state.

We use statistical mechanics to study model-based Bayesian data clustering. In this approach, each partition of the data into clusters is regarded as a microscopic system state, the negative data log-likelihood gives the energy of each state, and the data set realisation acts as disorder. Optimal clustering corresponds to the ground state of the system, and is hence obtained from the free energy via a low `temperature' limit. We assume that for large sample sizes the free energy density is self-averaging, and we use the replica method to compute the asymptotic free energy density. The main order parameter in the resulting (replica symmetric) theory, the distribution of the data over the clusters, satisfies a self-consistent equation which can be solved by a population dynamics algorithm. From this order parameter one computes the average free energy, and all relevant macroscopic characteristics of the problem. The theory describes numerical experiments perfectly, and gives a significant improvement over the mean-field theory that was used to study this model in past.

LQ placeholder

Imaginary replica analysis of loopy regular random graphs

F. Lopez, T. Coolen

Sub. to Journal of Physics A

LQ placeholder

Taming complexity

M. Reeves, S. Levin, T. Fink, A. Levina

Harvard Business Review

LQ placeholder

Degree-correlations in a bursting dynamic network model

F. Vanni, P. Barucca

Journal of Economic Interaction and Coordination

LQ placeholder

Scale of non-locality for a system of n particles

S. Talaganis, I. Teimouri

Sub. to Physical Review D

LQ placeholder

How much can we influence the rate of innovation?

T. Fink, M. Reeves

Science Advances

123 / 123 papers