# Memristive networks: from graph theory to statistical physics

*EPL* 125, 1 (2019)

#graphtheory#statistics#memristors

A triple torus.

We provide an introduction to a very specific toy model of memristive networks, for which an exact differential equation for the internal memory which contains the Kirchhoff laws is known. In particular, we highlight how the circuit topology enters the dynamics via an analysis of directed graph. We try to highlight in particular the connection between the asymptotic states of memristors and the Ising model, and the relation to the dynamics and statics of disordered systems.

#### A phase transition creates the geometry of the continuum from discrete space

R. Farr, T. Fink

Sub. to *Physical Review E*

#### The statistical physics of real-world networks

G. Cimini, T. Squartini, F. Saracco, D. Garlaschelli, A. Gabrielli, G. Caldarelli

*Nature Reviews Physics*

#### On defining the Hamiltonian beyond quantum theory

D. Branford, O. Dahlsten, A. Garner

*Foundations of Physics*

#### Reconstructing grain-shape statistics from electron back-scatter diffraction microscopy

R. Farr, Z. Vukmanovic, M. Holness, E. Griffiths

*Physical Review Materials*

#### Tackling information asymmetry in networks: a new entropy-based ranking index

P. Barucca, G. Caldarelli, T. Squartini

*Journal of Statistical Physics*

#### Eigenvalues of subgraphs of the cube

B. Bollobás, J. Lee, S. Letzter

*European Journal of Combinatorics*

#### Maximum one-shot dissipated work from Rényi divergences

N. Halpern, A. Garner, O. Dahlsten, V. Vedral

*Physical Review E *

123 / 123 papers