Hierarchical mutual information for the comparison of hierarchical community structures in complex networks.

J. Perotti, C. Tessone, G. Caldarelli

Physical Review E 92, 62825 (2015)

#networktheory#informationtheory#communitydetection

Download the PDF

LQ placeholder Illustration of how a hierarchy of communities

Illustration of how a hierarchy of communities

The quest for a quantitative characterization of community and modular structure of complex networks produced a variety of methods and algorithms to classify different networks. However, it is not clear if such methods provide consistent, robust, and meaningful results when considering hierarchies as a whole. Part of the problem is the lack of a similarity measure for the comparison of hierarchical community structures. In this work we give a contribution by introducing the hierarchical mutual information, which is a generalization of the traditional mutual information and makes it possible to compare hierarchical partitions and hierarchical community structures. The normalized version of the hierarchical mutual information should behave analogously to the traditional normalized mutual information. Here the correct behavior of the hierarchical mutual information is corroborated on an extensive battery of numerical experiments. The experiments are performed on artificial hierarchies and on the hierarchical community structure of artificial and empirical networks. Furthermore, the experiments illustrate some of the practical applications of the hierarchical mutual information, namely the comparison of different community detection methods and the study of the consistency, robustness, and temporal evolution of the hierarchical modular structure of networks.

LQ placeholder

Scale of non-locality for a system of n particles

S. Talaganis, I. Teimouri

Sub. to Physical Review D

LQ placeholder

How much can we influence the rate of innovation?

T. Fink, M. Reeves

Science Advances

LQ placeholder

The statistical physics of real-world networks

G. Cimini, T. Squartini, F. Saracco, D. Garlaschelli, A. Gabrielli, G. Caldarelli

Nature Reviews Physics

LQ placeholder

On defining the Hamiltonian beyond quantum theory

D. Branford, O. Dahlsten, A. Garner

Foundations of Physics

LQ placeholder

Reconstructing grain-shape statistics from electron back-scatter diffraction microscopy

R. Farr, Z. Vukmanovic, M. Holness, E. Griffiths

Physical Review Materials

LQ placeholder

Tackling information asymmetry in networks: a new entropy-based ranking index

P. Barucca, G. Caldarelli, T. Squartini

Journal of Statistical Physics

LQ placeholder

Eigenvalues of subgraphs of the cube

B. Bollobás, J. Lee, S. Letzter

European Journal of Combinatorics

LQ placeholder

Maximum one-shot dissipated work from Rényi divergences

N. Halpern, A. Garner, O. Dahlsten, V. Vedral

Physical Review E

123 / 123 papers