# Entropies of tailored random graph ensembles: bipartite graphs, generalized degrees, and node neighbourhoods

E. Roberts, A. Coolen

*Journal of Physics A* 47, 435101 (2014)

#randomgraphs#entropy#machinelearning

Ensembles of tailored random graphs allow us to reason quantitatively about the complexity of system.

We calculate explicit formulae for the Shannon entropies of several families of tailored random graph ensembles for which no such formulae were as yet available, in leading orders in the system size. These include bipartite graph ensembles with imposed (and possibly distinct) degree distributions for the two node sets, graph ensembles constrained by specified node neigh- bourhood distributions, and graph ensembles constrained by specified gen- eralized degree distributions.

#### A phase transition creates the geometry of the continuum from discrete space

R. Farr, T. Fink

Sub. to *Physical Review E*

#### The statistical physics of real-world networks

G. Cimini, T. Squartini, F. Saracco, D. Garlaschelli, A. Gabrielli, G. Caldarelli

*Nature Reviews Physics*

#### On defining the Hamiltonian beyond quantum theory

D. Branford, O. Dahlsten, A. Garner

*Foundations of Physics*

#### Reconstructing grain-shape statistics from electron back-scatter diffraction microscopy

R. Farr, Z. Vukmanovic, M. Holness, E. Griffiths

*Physical Review Materials*

#### Tackling information asymmetry in networks: a new entropy-based ranking index

P. Barucca, G. Caldarelli, T. Squartini

*Journal of Statistical Physics*

#### Eigenvalues of subgraphs of the cube

B. Bollobás, J. Lee, S. Letzter

*European Journal of Combinatorics*

#### Maximum one-shot dissipated work from Rényi divergences

N. Halpern, A. Garner, O. Dahlsten, V. Vedral

*Physical Review E *

123 / 123 papers