# Bayesian networks analysis of malocclusion data

M. Scutari, P. Auconi, G. Caldarelli, L. Franchi

*Scientific Reports* 7, 1 (2017)

#biologicalnetworks#medicine#machinelearning

A simplifed DAG

In this paper we use Bayesian networks to determine and visualise the interactions among various Class III malocclusion maxillofacial features during growth and treatment. We start from a sample of 143 patients characterised through a series of a maximum of 21 different craniofacial features. We estimate a network model from these data and we test its consistency by verifying some commonly accepted hypotheses on the evolution of these disharmonies by means of Bayesian statistics. We show that untreated subjects develop different Class III craniofacial growth patterns as compared to patients submitted to orthodontic treatment with rapid maxillary expansion and facemask therapy. Among treated patients the CoA segment (the maxillary length) and the ANB angle (the antero-posterior relation of the maxilla to the mandible) seem to be the skeletal subspaces that receive the main effect of the treatment.

#### Phase transition creates the geometry of the continuum from discrete space

R. Farr, T. Fink

*Physical Review E*

#### The statistical physics of real-world networks

G. Cimini, T. Squartini, F. Saracco, D. Garlaschelli, A. Gabrielli, G. Caldarelli

*Nature Reviews Physics*

#### On defining the Hamiltonian beyond quantum theory

D. Branford, O. Dahlsten, A. Garner

*Foundations of Physics*

#### Reconstructing grain-shape statistics from electron back-scatter diffraction microscopy

R. Farr, Z. Vukmanovic, M. Holness, E. Griffiths

*Physical Review Materials*

#### Tackling information asymmetry in networks: a new entropy-based ranking index

P. Barucca, G. Caldarelli, T. Squartini

*Journal of Statistical Physics*

#### Eigenvalues of subgraphs of the cube

B. Bollobás, J. Lee, S. Letzter

*European Journal of Combinatorics*

#### Maximum one-shot dissipated work from Rényi divergences

N. Halpern, A. Garner, O. Dahlsten, V. Vedral

*Physical Review E *

123 / 123 papers