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Abstract
We propose a mathematical description of a dynamic network model in which the
number of links fluctuates over time according to the degree-preferences of nodes.
More specifically, we consider the minimal case of a bipartite directed network where
we have two groups of nodes, each group has nodes with a given capability to bear
links. One group is composed of nodes that create as many links as possible, the gen-
erators. The other group is composed of nodes which delete as many links as possible,
i.e., the destroyers. We provide here a novel analytical formulation of the evolution
of the system through coupled master equations for the two interacting populations,
recovering the steady state degree distributions and a new analytic description of
the transient dynamics to the equilibrium. Further, fluctuations are shown to be con-
nected to a peak in degree correlation at a critical point of the system corresponding
to equal-size populations of generators and destroyers. We investigate the nature of
the neighbor connectivity and the temporal assortativity of the network, noticing that
degree correlation are anomalously large at criticality and that they are not a pointwise
characterization of the system in time but they emerge as an aggregate temporal prop-
erty. Moreover, we examine the bursty dynamics of the network as a temporal property
where the system heterogeneously evolves over time alternating between periods of
low and high connectivity displaying a heavy-tailed distribution in the inter-event
times distributions. Finally, we introduce a generalization of the model in which inter-
mittent states can control the velocity of the network’s evolution. We will also provide
examples of possible economic applications of the present network model.
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Introduction

The conceptual framework of network formation can accurately describe complex
systems which exhibit an intricate structure of evolving connections among the units.

The common models of temporal network formation on random graphs in the
literature Holme and Saramäki (2012, 2013) and Masuda and Lambiotte (2016) have
focused on symmetric formation dynamics, where two random nodes have a certain
chance to be connected through a particular attachment probability. These generative
schemes are essentially based on the idea that a node can connect to another according
to simultaneous bilateral agreement represented through a pairwise linking probability
like in the Erdos–Renyi rationale and generalized random graphs known as hidden-
variable (fitness models) (Caldarelli et al. 2002) or with a unit-wise connection pattern
like in the cases of preferential attachment models (Albert and Barabási 2002).

Among models of temporal networks, as a novelty in the literature of temporal
generative models, the activity driven model (Perra et al. 2012) represents the basis for
a standard model of temporal networks. In this model, link formation is driven by the
activation of single nodes (according to their attributes) and a subsequent asymmetric
linking function.

Other research has stressed the importance of temporal models (Bardoscia et al.
2013; Ubaldi et al. 2016) for better representing dynamical structures which arise from
non-static systems.

A different line of theoretical research addresses models of strategic network for-
mation, which has been receiving contributions in the economic literature. The game
theoretic interaction has been formalized in terms of both bilateral and unilateral mod-
els of link formation, see Jackson (2010), Jackson and Wolinsky (1996) and Goyal
(2012).

In the present work we start from a dynamic network approach with a connection
procedure where the network changes as individuals add and delete links over time
according to a asymmetrically link formation with non-simultaneous procedure where
a proposer node makes the attempt to create a link (according to its own preference)
with another node which responds to the proposal (according to its own preference). In
the simplest formulation, we first analyze a network formation where the proposal is
immediately accepted. The model here studied is inherently dynamic and contributes
to the growing body of research on temporal networks, which have been attracting
considerable attention in recent years (Holme and Saramäki 2013; Masuda and Lam-
biotte 2016) for their ability to reproduce the complex dynamical patterns in real-world
systems such as spontaneous degree correlations and bursty dynamics of the network,
where the system spontaneously passes from states of high connectivity to states of
low connectivity. Bursty patterns are, in fact, very commonly empirically observed in
economics and financial activities (Karsai et al. 2018) and degree correlations are a
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fundamental feature of complex systems as the direct consequence of the interaction
between heterogeneous agents (Kondor et al. 2014).

We start from the model introduced by Liu et al. (2013), where the system dynami-
cally evolves according to the preferences of each agent, the final network is a simple
directed bipartite graph which, despite its simplicity, introduces a deep change in the
network structure and its dynamics with emergent properties that arise for certain
values of simple network parameters. In particular, the extreme introverts and extro-
verts model (XIE) has been shown (Bassler et al. 2015) to be characterized by a critical
behavior beyond the Ehrenfest classification of phase transitions: the discontinuity dis-
plays an extreme Thouless effect. In such a condition we observe both a discontinuity
in the phase transition plot of the order parameter and the appearance of anomalously
large fluctuations in the link dynamics: features of first-order and second-order phase
transitions respectively.

Despite their recent introduction, non-simultaneous asymmetric linking mecha-
nisms are in some cases more realistic than pairwise ones and this particular model is
an attempt to represent unilateral links as alternative to pairwise random graph mod-
els, in the same way as one-sided strategic network formation has come up beside the
two-sided models.

For instance, in social networks like Twitter, the decision of following another user
is strictly unilateral, and the ratio between followers and followed users, i.e., out-
going and in-coming links, strongly characterizes the behavior and attitude of users
(Grandjean 2016).

Another interesting evidence for the presence of different agents’ attitudes which
drive the dynamics of a system can be widely found in financial networks analysis
(Barucca andLillo 2015; Fricke 2012; Iori et al. 2007, 2008), where the various financ-
ial institutions in the interbankmarket canbedivided into different communities related
to their financial management.

In recent years, financial systems have represented an important field of application
for network science, which naturally captures the linkage architecture of the financial
agents and their relations. Interest has increased evenmore as consequence of the recent
financial crisis of the years 2007–2009, and a network approach is particularly crucial
for assessing financial stability, since it is possible to have models and methodological
toolswhich could describe, detect and eventuallymitigate systemic risk (Battiston et al.
2016). There are many possible approaches and perspectives that one can use when
studying financial systems and addressing financial network analysis, but, mainly,
research has focused on the one hand on topological structures and the dynamics of
network formation, and on the other hand on the dynamic processes occurring on the
network.

Here, we model network formation through a new mathematical description based
on amaster equation for the degree of the network. The solutionwe foundprovides both
the transient non-equilibrium dynamics and the steady state of the degree distribution.
At the same time we recover the crucial property of emergence and the behavior of a
phase transition as the proportion between the two interacting groups varies (Bassler
et al. 2015). We define the nature of complexity in the network model as the effect of
temporal heterogeneity which arises from of the introduction of a proposer/responder
rationale for the link formation (Lambert and Vanni 2018).
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Moreover, we investigate the limits of such approaches and shed light on a new
important feature of such networks: the emergence of strong correlations among the
agents when the system is at criticality, connected with the extreme Thouless effect
already shown in theXIEmodel.Wewill discuss the onset of a spontaneous covariance
between the two groups, which is remarkably intense at the phase transition critical
point. We will study the meaning and the nature of such phenomena from the new
perspective of temporal degree-degree correlations which leads us to define a temporal
aggregate measure of assortativity other the common punctual one. As an additional
important property of the model, we show how dynamical network interactions have
the capacity to regulate and buffer unpredictable fluctuations so producing bursty
events in terms of network connectivity. In conclusion, we propose a re-elaboration
of the original XIE model of Bassler et al. (2015) and Liu et al. (2013), where we
use a novel analytical formulation and a more detailed network analysis with a new
interpretation, in particular, in terms of the degree correlations and the bursty behavior.
However, those features are also present in the original model of XIE a similar analysis
would have been performed.

The paper is organized as follows: in Sect. 1 we introduce the network model and
describe in detail its rationale and dynamics. We introduce the model dynamics in
terms of a stochastic process, and analyze it through a master equation for the system
according to an uncorrelated bipartite graph. In Sect. 2, then, using a mean field
approximation,wewrite the rate equation for the network evolution so that it is possible
to obtain a numerical solution of both the degree distribution and the phase transition
plot. So,weoutline the newcoupledmaster equation dynamics (CMED) for the degree-
distribution of generators and destroyers, explaining how it is possible to couple them.
We present numerical results on the non-equilibrium dynamics, showing how CMED
succeeds in predicting the full dynamical evolution of the degree-distributions in the
model outside of criticality. In Sect. 3, we discuss degree correlations at criticality,
estimating the intensity and the nature of such correlations. We detect the presence
of strong degree correlations and we define a notion of aggregated assortativity seen
as cumulative assortativity over a time window. Moreover we show the intrinsically
dynamical nature of the network through the study of burstiness of the events among
different states of the connectivity. In Sect. 4, we introduce a more realistic version of
the agent-driven network based on the XIE model where intermittency is present in
the degree trajectories. Moreover, we discuss financial and economic applications of
the model. In Sect. 5, we discuss potential economic applications of the methodology
developed in the paper both in terms of a financial agent-based model and in terms
of an empirical study on international trade. Finally, in Sect. 6 we summarize results,
stressing the need for a robust methodology to model degree correlations and their
role in mixed phase transitions.

1 Themodel

The network model is based on an intergroup dynamics where individual agents con-
nect according to a degree target, where each agent tends to reach a preferred number
of neighbors. In the simplified and extreme situation modelled here, the nodes in the
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network are divided between a group of link generators (with N1 units) and a group
of link destroyers (with N0 units). The size of the graph is N = N1 + N0 which is
kept fixed over the network evolution.

The network formation dynamics is defined as follows:

– A single agent is randomly chosen
– If the selected node is a generator:

– its degree is always smaller then its target degree (high-target node)
– it randomly selects a non-previously connected node among the group of
destroyers

– it creates a directed link with the selected node.

– If the drawn node is a destroyer:

– its degree is always larger then its target degree (low-target node)
– it selects one of its randomly chosen neighbors which belongs to the group of
generators.

– it cuts the link with the selected node.

Actually, the previous prescription considers only active nodes, in the sense that if
we pick a generator which is connected with every destroyer (full generator-node), the
prescription jumps to a new selection of another node. The same is true if an empty
destroyer is picked. The resulting network is a simple bipartite directed graph where
high-target agents are only able to generate links (when possible) and the low-target
agents which can only destroy links with its neighbors (if any). Neither multi-links
nor intragroup links are considered. If we were to also consider the possibility that
generators could create links among themselves (intra-group links) the cross-group
and bipartite assumptions we used is broken. The only difference between the two
approaches is the fact that by also considering intra-group links the degree distribution
of generators is different from the destroyers’ one by a constant factor. This difference
comes from the fact that generators have a fixed number of links with each other
(after a transient) which do not vary over time so do not contribute to the fluctuation
analysis we discussed in the present paper. However, the bipartite structure we use,
turned out to be useful for a new description and discussion of the model in terms of
common and important concepts in the network literature such as degree correlations
and burstiness, which are relevant also in the economics discipline.

At this level, the drawn node forces the selected neighbor to follow its attitude,
we will see a generalization where there is a chance that the neighbor opposes to the
proposal of the acting node. This network formation perspective is crucial to define an
interesting dynamics in the connectivity fluctuations as well as in the rise of emergent
properties such as correlations among units in the system.

The creation/destruction dynamics can be described as a stochastic process along
the lines of a generic birth-death process for the links dynamics. Let us define ρ1(k, t)
(degree distribution) the probability of finding a generator with degree k at time t , and
p(n)
0 (k, t) the neighbor degree distribution (Dorogovtsev and Mendes 2013; Newman

2010; Pastor-Satorras et al. 2001; Vázquez et al. 2002) that is the probability that
a randomly chosen neighbor (generator) of a randomly chosen destroyer node has
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degree k. The bipartite structure allows us to write the master equation for the degree
distribution as:

ρ1(k, t + 1) = ρ1(k, t)

+ N1

N

1

N1
ρ1(k − 1, t) − N1

N

1

N1
ρ1(k, t)

− N0

N

1

N1
ε0 p

(n)
0 (k, t) + N0

N

1

N1
ε0 p

(n)
0 (k + 1, t) (1)

where N1/N is the frequency with which we pick a node from the generators group,
and N0/N from the destroyers one. The factor 1

N1
takes into account the fact that

we make only one node extraction per timestep and the neighbor degree distribution
is the degree distribution of the generator nodes “seen by” a destroyer through one
of its randomly chosen links. The variable ε0 takes in account the fact that only
active destroyers (non-empty nodes) can contribute to the cutting rate, so we have
that ε0 = 1 − ρ0(0, t), where ρ0(0, t) is the probability to have picked up an empty
destroyer node.

Under the assumption of an uncorrelated network the conditional degree distribu-
tion does not depend on the destroyer node with which the generator of degree k is
connected. In general, one should know the conditional probability P(k|q) that a link
emanating from a q-degree destroyer is connected to a generator of degree k. It is pos-
sible to derive the neighbor degree distribution writing the detailed balance condition
for a bipartite graph (Kitsak and Krioukov 2011):

k

〈k〉ρ1(k)P(q|k) = q

〈q〉ρ0(q)P(k|q) (2)

where q is the destroyer’s degree and ρ0(q) is the degree distribution for destroyers.
Summing both members of Eq. (2) over q the detailed balance condition becomes:

k

〈k〉ρ1(k)
∑

q

P(q|k) = 1

〈q〉
∑

q

q ρ0(q)P(k|q) (3)

where in the case of uncorrelated networks, the conditional probability P(k|q) does
not depend on q and it can be taken out of the sum. Conditional probabilities satisfy
the normalization condition

∑
q P(q|k) = 1 , ∀k, attracting the attention to the fact

that if there are isolated destroyers it is not possible to reach an isolated node from
any other generator in the graph.

Finally, with the hypothesis of no correlation in the network, the conditional prob-
ability coincides with the neighbor degree distribution:

P(k|q) = p(n)
0 (k) = k

〈k〉 ρ1(k) (4)
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At this point it is possible to rewrite the master equation Eq. (1) in the general form
of a birth-death process as

ρ1(k, t + 1) = ρ1(k, t)

+ Γ +[k − 1] ρ1(k − 1, t) − Γ +[k] ρ1(k, t)

− Γ −[k, t] ρ1(k, t) + Γ −[k + 1, t] ρ1(k + 1, t) (5)

that represents the non-homogeneous add-cut link dynamics in the network. The tran-
sition probability can be written as:

Γ +[k] = N1

N

1

N1
(6)

Γ −[k, t] = k · N0

N

1

N1

ε0

〈k〉 (7)

where we can use of the bipartite connectivity relation L = 〈k〉N1 = 〈q〉N0 is the
total number of links in the network.

The master equation for generators is coupled with the master equation for destroy-
ers through the term ε0, which takes into account the isolated destroyers in the graph.

The assumption of an uncorrelated bipartite graph is equivalent to the mean field
approximation (see Vanni and Barucca 2017 for a more detailed discussion and an
alternative derivation of the master equation), which allows one to characterize ana-
lytically the behavior of the state variable of each node with respect to the average
state variable across the network. In this approximation, the individual interacts with
the average individual, even if, under this condition, some network aspects become
unobservable (e.g., the degree-correlations).

Moreover, the master equation satisfies the reflecting boundary conditions:

Γ +[k = N0] = 0 (8)

Γ −[k = 0] = 0 (9)

which take in account the fact that a node cannot have less than zero links, and it has
the natural limitation of a fully connected node.

The master equation of the degree distribution reminds one of a non-homogeneous
birth-death process where the rates are time dependent. Following the authors (Bassler
et al. 2015), the system reaches a state where the transition rates become homogeneous
recovering the detailed balance condition. In any case, we only use the fact that the
master equation is restricted under reflecting boundary conditions to a closed system,
that is enough to guarantee the existence of a stationary distribution regardless of the
number of links at the beginning of the process (Gardiner 2010).

In the steady state, the dynamics of the network is fully described by the bipartite
graph between the two groups of agents. So the bipartite model fully describes the
evolution of the cutting-adding of links as shown in Fig. 1, where a bipartite structure
is clear for off-diagonal blocks in the adjacency matrix.
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Fig. 1 The temporal bipartite target network, at a given time step, has a typical adjacency matrix (a) where
only the off-diagonal blocks are involved in the dynamics. The same bipartite structure can be visualized in
b as a core (high target nodes) represented by black circles and the periphery (low target nodes) represented
by red circles. Arcs are the links between the two groups made up of N1 = 130 and N0 = 70. a Snapshot
at a given time of the adjacency matrix B of the bipartite target network. b Graphical representation of the
bipartite target network at a given time, inner circle nodes are the high target nodes N1. Node sizes in the
graph are proportional to their degrees

2 Numerical solution and results

In order to have the numerical solution of the degree distribution, it is possible to
derive from the master equation (1) the rate equation considering that ρ1(k, tn) =
〈n1(k, tn)〉/N1 where

∑N0
k=0〈n1(k, tn)〉 = N1, under the mean-field approximation.

The average 〈·〉 is the ensemble average over the nodes for given times t . It is possible
to write the symmetric master equation for the destroyers in terms of “shadow links”
which are defined as the total number of possible links minus the actual links. In some
sense they are the “imaginary” links which could be created in the network. In this
perspective destroyer nodes are generators of shadow links and generator nodes are
destroyers of shadow links. In particular, we have that the shadow links are N0N1 − L
where L is the total number of links in the networks. For a short notation let us indicate
k0 := 〈q〉 and k1 := 〈k〉. For each destroyer node, the shadow degree is s = N1 − k
with k = 0 . . . N1, where we have the fundamental relation for the interdependent
average degrees:

s0 = N1 − k1
N1

N0
(10)

At this point we can write the coupled equations for the evolution of the network
in terms of the two interacting populations as:
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〈n1(k, tn + 1)〉 = 〈n1(k, tn)〉
+ N1

N

〈n1(k − 1, tn)〉
N1

− N1

N

〈n1(k, tn)〉
N1

− N0

N

k〈n1(k, tn)〉
N0

ε0

k0

+ N0

N

(k + 1)〈n1(k + 1, tn)〉
N0

ε0

k0

⏐⏐⏐⏐

〈n0(s, tn + 1)〉 = 〈n0(s, tn)〉
+ N0

N

〈n0(s − 1, tn)〉
N0

− N0

N

〈n0(s, tn)〉
N0

− N1

N

s〈n1(s, tn)〉
N1

ε1

s1

+ N1

N

(s + 1)〈n0(s + 1, tn)〉
N1

ε1

s1
(11)

In order to get the full description of the model, the number of empty destroyer and
generator nodes can interchangeably be obtained from the master equations as:

ε0 = N0 − 〈n0(k = 0, tn)〉
N0

⏐⏐⏐ ε1 = N1 − 〈n1(s = 0, tn)〉
N1

(12)

where we can observe that number of fully connected generator nodes is the same
as the number of isolated generators in terms of shadow links, i.e., 〈n1(k = N0)〉 =
〈n1(s = 0)〉.

The process description is valid for k = 1 . . . N0 − 1, and the boundary conditions
at k = 0 and k = N0 are:

〈n1(k = 0, tn + 1)〉 = 〈n1(0, tn)〉
− 〈n1(0, tn)〉

N

+ 〈n1(1, tn)〉
Nk0

ε0

〈n1(k = N0, tn + 1)〉 = 〈n1(N0, tn)〉
+ 〈n1(N0 − 1, tn)〉

N

− N0〈n1(N0, tn)〉
Nk0

ε0

⏐⏐⏐⏐

〈n0(s = 0, tn + 1)〉 = 〈n0(0, tn)〉
− 〈n0(0, tn)〉

N

+ 〈n0(1, tn)〉
Ns1

ε̃

〈n0(s = N1, tn + 1)〉 = 〈n0(N1, tn)〉
+ 〈n0(N1 − 1, tn)〉

N

− N1〈n0(N1, tn)〉
Ns1

ε̃

(13)
In our simulations we took the initial network to be empty, i.e., n1(k, t = 0) =

N1δ0,k .
So the only parameter that has an impact on the statistical structure of the network

is the ratio between the two populations.
As results of our mathematical interpretation of the model we compare the degree

distributions obtained by the Monte Carlo simulation of the model with the distribu-
tions obtained as numerical results of the coupled master equations. As expressed in
“Appendix A”, the distributions obtained by themaster equation approach are bounded
poisson distributions.

According to the values of N0 and N1 the network behaves differently, so we define
as control parameter of the system the quantity

h = N1 − N0

N1 + N0
(14)
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Fig. 2 In a network of N = 100 nodes, using ensemble averages of 1000 samples.Where h = (N1−N0)/N
is the population control parameter. The stem plot represents the degree distribution frommodel simulations
of the target network, the continuous gray lines are degree distributions obtained directly from the coupled
master equations. The two distributions always coincide in shape and are centered exactly at the average
degree values. An exception happens for populations such that N1 = N0 (h = 0), here the approximated
distribution (dashed line) is less fat then the real distribution. This is a direct consequence of the mean-field
approximation made in the master equation representation of the model

that is the proportion variable between the two groups.
In Fig. 2 the degree distribution of the network is plotted for several values of N1 and

N0. It is evident that the model prediction is exact when considering the first moment
of the distribution (the expected value of the degree). This is a consequence of the
first-order approximation made in the master equation representation using a mean
field approach. As regards the entire degree distribution, it is exact for all the values
of h but when we are at the values for which N1 = N0: here the degree distribution
departs from the poisson distribution and is closer to a fatter distribution whose mean
is equal to the estimated average degree μ = 〈k〉1 but the variance is actually of the
order of the support of the distribution σ 2 ∼ N 2.

All these results are in line with the solutions obtained in Bassler et al. (2015) via
numerical convergence of a fixed-point procedure; the resultant degree distributions
have been compared numerically with the master equation solution. We replicated
both approaches and compared them with respect to the true model distributions: We
obtained the same Kullback–Leibler divergence up to a factor of 10−6 as analyzed in
“Appendix A”.

Using the interacting master equations we can also obtain and plot the temporal
evolution of the degree distributions and consequently the average time needed to
reach the associated stationary distributions, as well illustrated by Fig. 3.

The same type of results are obtained in the evaluation of the number of empty
low-target nodes and the full high-target ones, see Fig. 4.

Oncewenumerically obtain the valueof the averagedegree and thenumber of empty
nodes, we can recover the shape of the degree distribution as a bounded poissonian
distribution (see “Appendix A”):

123



Degree-correlations in a bursting dynamic network model

Fig. 3 Time evolution of the degree distribution (a) and the average degree (b) of the bipartite network simu-
lations and theirmathematical counterparts, the coupledmaster equations, for the case of N1 = 51, N0 = 49
where h = −0.02. Notice how good the approximations are maintaining both the distribution shape and
detecting the right average convergence time to the equilibrium distribution. a Stem plot distributions are
from the Monte Carlo simulations of the model, the continuous lines are the distributions from the master
equation. Different time snapshots show the agreement between the two approaches. The dashed curve
represents the stationary distribution. b The three lines are three different realizations of the model, the
black dashed line represents the time-evolution of the average degree in numerical solutions of the master
equation. The dotted curve represents the stationary degree distribution

Fig. 4 In a network with N = 100 nodes, two cases: a the convergence of empty low-target nodes in the
case N0 = 51, and b the convergence of full high-target nodes in the case N0 = 49. Each gray noisy curve
is a Monte Carlo simulation of a single trajectory of the model, the black dashed lines are the estimations
obtained via the master equations. For both cases, an empty network is the initial condition. This explains
the apparent different convergence times in the two cases. a Time evolution for the number of low-target
empty nodes towards the equilibrium value n00 = N0 − N1 = 2 (since N0 = 51 and N1 = 49). b Time
evolution for the full high-target nodes towards the equilibrium valuen11 = N1 − N0 = 2(since N0 = 49
and N1 = 51)

ρ1(k) = 1

eχ Γ (N0+1,χ)
Γ (N0+1) − 1

χk

k! , k = 0 . . . N0 (15)

where χ = N1
N0−n00

k1, and n00 = 〈n0(0, tn)〉 is the average number of empty destroyer
nodes.

Other than the node degree, we can also characterize the network formation in terms
of the effective degree:

ξ = k

N0
, ∈ [0, 1] (16)
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Fig. 5 Phase transition of the mean value of the mean-field variable 〈ξ〉 (the network efficiency) over
the possible values of N1 and N0 in a bipartite network with N = 100 total nodes. The bold black line
is the curve corresponding to the model simulation, the dashed white line is the curve found using the
coupled master equations. The plot suggests the idea that, in a target-network, a node being part of a group
endogenously increases (or decreases) its ability to follow its preference

which is a normalized degree measure; it measures the number of links created by a
high-target node as a fraction of the total number of possible links it can make (i.e.,
N0). The average over all the high-target nodes gives the network degree efficiency
〈ξ 〉: values close to 0 indicate that the high-target nodes create very few links with
respect to the possible links they can make. On the other hand, values of the efficiency
close to 1 indicate a high capability for each high-target node to generate links with
the other group’s nodes. The passage between these two extreme situations exhibits a
phase transition, where we have an abrupt change in efficiency when N1 = N0.

We plot the phase transition in Fig. 5. Exploring the average value of the mean field
variable ξ for all the possible values of the populations of the two groups, we have a
phase transition, where the critical point is the case N1 = N0, in which we have a big
jump from aminimally-efficient network to a maximally-efficient network. The figure
shows that the numerical solution of the coupled master equations approach gives the
exact behavior of the phase transition, which accounts only for the first moment of the
distribution.

Notice that the phase transition is a property of the network efficiency and not of the
average degree by itself. In any case, they share the same emergent properties mostly
due to a second-order effect related to the variance of the average degree and the node
correlation in the network.

3 Criticality: correlations and burstiness

Despite the presence of a phase transition, the emergent properties of the target network
reside in higher moments of the degree distribution, those which are not satisfactorily
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Fig. 6 The average degree and the relative efficiency variable can also be described in terms of their time
series as a function of simulation time as in a. This is equivalent to evaluating several times the average
degree for different trajectories at a given time. The resulting variable is 〈k〉 that is the mean degree, in b
we also plotted the error bars which relate to the standard deviation of the average degree as a function of
time. a Temporal behavior of the average degree or equivalently of the degree efficiency 〈ξ〉 = 〈k〉1/N0
where N = 100: the black central line represents the mean-field parameter ξ in the equal proportion case
of N1 = N0 = 50 in which we have a “quasi”-free diffusion process which explores all the the every
values of the nodes degree. The top gray line is the case N1 > N0 = 45, and the bottom gray line is for
the case N1 < N0 = 55. In these two cases the brownian motion is attenuated by the reflecting boundary
condition, resulting in much smaller fluctuations. b The phase transition of the degree efficiency, this time
the error bars represent twice the standard deviation of the relative time series. The huge amplitude of the
fluctuations at criticality is evident, thus defining the onset of an emergent property of the network when
the systems is at the critical point N1 = N0

addressed when the network is at criticality. The first important emergent property
is the variance of the degree distributions, which exhibits an abrupt large value at
criticality (h = 0). We want to give some heuristic explanation of this phenomenon.

3.1 Degree correlations

The stochastic process associated to the the network dynamics can also be analyzed
through the time series of the average degree as in Fig. 6, which shows a given mean
value and a standard deviation.

Given the ergodicity of the process we can freely interchange the mean value over
time and the average over different trajectories. Finally, we can build the two types of
distributions: the degree distribution and the average-degree distribution built along
its trajectory. We plot these probabilities in Fig. 7.

The two distributions, and their moments as well, are related by convolution of
the distributions of each node, since 〈k〉 = 1

N1

∑N1
i=1 ki , defining a sort of a sampling

distribution for the mean. The expected value is

E[k] = 〈k〉 (17)

where k is the mean degree calculated over a single trajectory, and the variance of the
mean degree is:
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Fig. 7 Comparison between two distributions: stem black lines indicate the ordinary degree distribution
ρ(k) and the gray bars indicate the sampling distribution of the average degree. a Case in which N1 �= N0
and b case N1 = N0 at criticality. a The two distributions on the left are for N1 = 45, N0 = 55 in the
sub-critical case, the two right distributions are for N1 = 55, N0 = 45 in the super-critical regime. b The
special case of criticality (N1 = N0), where the two distributions are both fat with the same mean and
different variances

Var(k) = 1

N 2
1

N1∑

i=1

Var(ki ) + 1

N 2
1

N1∑

i=1

N1∑

j �=i

Cov(ki , k j ) (18)

= σ 2

N1
+ σ 2

N 2
1

N1∑

i=1

N1∑

j �=i

ρki ,k j (19)

= σ 2

N1
+ ρ

N1 − 1

N1
σ 2 (20)

where ρki ,k j is the cross-correlation coefficient between nodes i and j under the
hypothesis the variables have equal σ 2,which is the variance of the degree of each node
(generator), Var(k̄) is the variance of the average degree distribution (the sampling

distribution), and ρ is the average value of the
(N1
2

)
correlation coefficients ρki ,k j . If

the nodes were independent, the average correlation factor ρ would be zero. Actually,
from the empirical studies of the model we can estimate the value of the correlation
factor ρ, by comparing the variances of the two distributions evaluated via simulations

ρ = Var(k)

σ 2

N1

N1 − 1
− 1

N1 − 1
(21)

which for large networks approaches the average ratio between the variance of the sam-
ple mean distribution over the variance of the degree distribution. What is obtained is
well expressed in Fig. 8, where strong correlations arise among the nodes at criticality,
i.e., N1 = N0. This is evidence that it is not possible to ignore the presence of node
degree correlations in the mathematical description of the model. For example, the
model prescription prevents a node from going beyond its capacity, so that if a low-
target node is already full, a high-target node is forced to exclude it from its neighbour
candidates.
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Fig. 8 Average correlation estimation obtained comparing the sampling distributions of the average degree
with the ordinary degree distributions. It is evident that at criticality (h = 0) the correlation is much higher
then in the off-critical cases (h �= 0). This shows how neglecting the correlation among the nodes makes
the master equation approach fail at criticality

On the contrary, the master equation which describes the network dynamics has
been addressed using a first-order mean field approximation. In evaluating the cutting
rates we only consider first-order effects ignoring any possible correlation among the
nodes in selecting the nodes to connect with.

In the case of the critical condition N1 = N0, the mean-field approximation fails
and the conjecture of a degree-uncorrelated network cannot be applied. In particular in
the critical case, the conditional degree probability P(k|q) it is not independent of the
destroyer node picked. From Eq. (2), in the presence of degree correlations we expect
P(k|q) �= p(n)

0 (k), so the degree distribution of generators “seen by” a destroyer is

not the neighbor degree distribution p(n)
0 (k) as in the uncorrelated case.

To better investigate the nature of such macroscopic correlation effects, we make
use of the traditional definition of assortativity intended to quantify the degrees cor-
relations. We make use of the average nearest-neighbor degree (ANND), which is the
average degree of the neighbors of all k-degree nodes (Pastor-Satorras et al. 2001).
When dealing with a bipartite network, it is possible to measure degree correlations
both with respect to generator nodes and with respect to destroyer nodes, defining
(Saracco et al. 2015) the average nearest neighbors’ degree (ANND):

knn,i (B) =
∑N0

j=1 Bi jq j
∑N0

j=1 Bi j
(22)

qnn, j (B) =
∑N1

i=1 Bi j ki∑N1
i=1 Bi j

(23)
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where B is the adjacency matrix of the bipartite graph, ki is the degree of the i th
generator node and q j is the degree of the j th destroyer node. The assortativity of
the bipartite network is quantified by plotting the ANNDs values versus the degree
sequences {ki }N1

i=1 and {q j }N0
j=1 to depict the overall assortativity trend for a network

The average nearest neighbors’ degree functions, in our bipartite network, are
connected to the conditional probability with qnn(k) = ∑

q q P(q|k) and knn(q) =∑
k kP(k|q). In the uncorrelated case we have the constant values (Kitsak and Kri-

oukov 2011):

qnn(k) = 〈k2〉
〈k〉 (24)

knn(q) = 〈q2〉
〈q〉 (25)

so that the average nearest neighbors’ degree is equal to the average degree of the
node to which a link leads. In the critical case we have 〈q〉 = 〈k〉, so the two equations
coincide. This is the case of neutral assortativity where no correlations are present in
the network, since the ANND is independent of the degree k. While in the off-critical
case Eqs. (24) and (25) are always satisfied, in the critical condition the study of the
ANND deserves a more delicate approach. First of all, we runmany simulations on the
model to study the correlation structure according to the dependence of the ANND on
the degree. In particular, we study the average of the ANND over nodes with the same
degree knn = ∑N1

i=1 knn/N1. As shown in Fig. 9, we study the mean-ANND knn over
time and the ANND function knn,i (k) at particular time snapshots. We deduce that
at each time step the network is uncorrelated, the average value of ANND fluctuates
over time following perfectly the average degree 〈k〉. In some sense, according to a
pointwise evaluation of the correlations, the network is uncorrelated but the conditional
probability (and the neighbor probability p(n)

0 (k)) is dependent on time.
As for temporal assortativity, we use a way to represent the aggregate average

nearest neighbor degree function (a-ANND). First of all, for each time snapshot t
we define the event E(k, t) the case where the network has node with degree k for
which we can compute the ANND. At this point we define an aggregate measure of
assortativity: the mean value of the ANND(k) over the times we have observed the
events E(k, t) ∀t = 1 . . . T :

fk = 1

Nk

T∑

t=1

knn(k, t) =: 〈knn(k)〉T (26)

where Nk = ∑T
t=1 E(k, t) is the number of times we have observed at least one

node with degree k in a total number of T scatter plots.1 For example, in Fig. 9b for

1 Note the the normalization factor of the mean is not T , since we do not count the case in which there are
no nodes with a given ANND for a time snapshot t . In the case in which in each timestep we always find
an ANND for the associated degree k then we have Nk = T . However, in general, this is not the case.
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Fig. 9 Neighbor connectivity for the system at the critical point N1 = N0 = 50. In a we show a two
axis plot where the fluctuations of the average degree are compared to the mean-ANND. In b we study the
nearest neighbor average degree function at different times. We notice that for k = 40 we have 3 different
values of the ANND. a Comparison between the fluctuating behavior of the average degree (black line, left
vertical axes) and the mean-ANND (grey line, right vertical axes) over time. The mean-ANND (average
degree of the nearest neighbor of a node) time series has a delay of the unit numerical step in comparison
with the average degree series. We notice that the mean value of the ANND is equal to the value of ANND
in the uncorrelated case. b ANND function for four different times ti . At each timestep the network is
uncorrelated, while the ANND changes value according to time. The dashed horizontal line represents the
case of an uncorrelated network

k = 40, we have 3 values of knn(k = 40), whose average is (knn(40, t3)+knn(40, t4)+
knn(40, t1))/3, that is about 30.67 in that case.

The scatter plot { fk, k}T gives the aggregate ANND function over an observation
time-window of length T , see Fig. 10. If the process is ergodic after a sufficiently large
observational time, the aggregate ANND is independent of T .

In conclusion,we showed that in the case N1 �= N0 the network is uncorrelated since
it has neutral assortativity for every time step. At the critical point of the connectivity
phase transition N1 = N0 the uncorrelation assumption does not work since the degree
correlations, despite their pointwise neutral assortativity, change over time with an
aggregate effect on the macroscopic description of the model.

The result of such overall temporal effects is not captured by a static mean field
approximation, but it could be incorporated by taking into account the aggregate
ANND function over time.

To describe the system at criticality, in principle, one should know the time-
dependent conditional probability Pt (k|q) and so fully characterize the correct
degree-degree correlations. In an aggregate picture, we move from a time dependent
description to a degree-dependent one.

From a global level, we see that the system appears to generate an aggregate cor-
relation effect with non-neutral assortativity as is clearly evident from Fig. 10, where
the aggregate ANND is a linear function 〈knn(k)〉T = β k which underlines the exis-
tence of a positive assortative bipartite network: this means that only nodes with the
same degree are connected with each other. We have seen that when N → ∞, the
proportionality constant β → 1, yielding a perfect positive assortativity in the ther-
modynamic limit.
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Fig. 10 Aggregate assortativity over time. This figure expresses how in our macroscopic description of the
network (master equation) the system appears strongly correlated, since the dependence of the ANND with
respect to the degree k is not constant. The sampling has been addressed for a network with N1 = N0 = 50
over a sampling time of T = 3 · 107. The shaded area represents an error around the mean of two standard
deviation of the average ANND for each k. In the off-criticality case the error is negligible. a N1 = 55.
No aggregate assortativity, the bipartite graph is correlation neutral. b N1 = 45. No aggregate assortativity,
the bipartite graph is correlation neutral. c N1 = N0, criticality. Clear overall degree correlation, since the
aggregate ANND has increasing assortative mixing. The linear dependence is given by 〈knn(k)〉T = β k
with β = 0.5

The fact that the degree correlations are so intense is equivalent to approximate the
neighbor distribution by p̃(n)

0 (k) ∼ ρ1(k), meaning that the probability of picking a
destroyerwhich cuts a linkwith a generator of degree k is the same as randomly picking
a generator of degree k and randomly cutting one of its links. In the limiting case of
a very large network (N → ∞), the assortative mixing is perfect, so the neighbor
probability is exactly the same as the degree distribution. Using this approximation in
the master equation, we can write:

ρst
1 (k) = 2

N + 2
(27)

which reminds one of the stationary distribution of a random walk with reflecting bar-
riers. In a finite networkwe have a strong boundary effect where the strong correlations
vanish (see “Appendix 1” for a more detailed discussion and numerical approxima-
tions).

3.2 Bursty events dynamics

In the following section we investigate on the bursty nature of the network dynamics
showing how the fluctuations and correlations induce a temporal property related to
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Fig. 11 The construction of the event sequence from the fluctuations of the network connectance as in a.
We detect an event when the fluctuations goes from a period of sparse condition to a condition to dense one
and vice-versa, i.e., the periods among two consecutive zero-crossings of the time-series are the inter-event
times τi . a Fluctuations of the network connectance at criticality (h = 0). It is possible to notice how the
system goes through periods of high connectivity (for � > 0) to periods of low connectivity (for � < 0). b
We display the event sequence among the switching states of sparse and dense network

the distribution of inter-event times between two consecutive passages from a sparse
graph to a dense one (and vice-versa).

We define the inter-event time as the time between two consecutive events on the
connectivity property of the network. The property under discussion is the density of
links defined as connectance:2

� = 2
〈k〉1N1

N0N1
− 1 with � ∈ [−1, 1] (28)

which is the actual average number of links over the possible number of links. The
connectance has values close to −1 when the network is sparse and it has values close
to 1 when the network is dense.

As illustrated in Fig. 11, the definition of an event is related to the condition when
the network passes from a sparse (dense) connectivity to a dense (sparse) one. The i th
inter-event time, denoted by τi 1 ≤ i ≤ T −1 where T is the length of the time series,
is defined by:

τi = ti+1 − ti (29)

2 The connectance is defined as the link density of the network, which is the fraction of the number of
actual links over the number of potential links between pairs of nodes. By the term connectivity, we indicate
a generic property which gives a measure of the number of links in the network.
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Fig. 12 Complementary cumulative distribution Ψ (τ) of the inter-event times of the network at criticality.
It is clear a power-law distribution with a coefficient of α = 1.5 in Eq. (31)

The bursty event sequence τi shown in Fig. 11b can be treated computing the
burstiness as used in the network community (Goh and Barabási 2008):

B =
σ(τ)
〈τ 〉 − 1

σ(τ)
〈τ 〉 + 1

(30)

where theσ =
√

1
T−1

∑T−1
i=1 (τi − 〈τ 〉) is the standard deviation of {τi } and the average

inter-event time is 〈τ 〉 = 1
T−1

∑T−1
i=1 τi .

An extremely bursty event sequence yields value of the burstiness B → 1, on the
contrary in the case of Poisson processes the burstiness coefficient is zero; in the case
of periodic event sequence B = −1.

Montecarlo simulations confirm the bursty nature of the network at criticalitywhere,
for example in the case of N = 100, we obtain a burstiness coefficient B = 0.89, and
it tends to 1 when N → ∞.

Another particularly interesting property of such network model is the presence of
heavy-tailed behaviors in the inter-event time distributions. The probability density
function ψ(τ) has been evaluated in terms of its complementary cumulative distribu-
tion Ψ (τ) = ∫ ∞

t dτ ψ(τ). As shown in Fig. 12 where the power-law distribution of
inter-event times is:

ψ(τ) ∝ τ−α (31)

with α = 1.5 showing a clear distribution described by power-law decaying behavior.

4 Amore general model: intermittent system and connection rate

In the present section we show amore general model which takes in account the role of
passive nodes which in principle can have an important role in the network dynamics.
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As an extension of the previous model, we provide a more plausible agent-driven
network based on the XIE model where the unilateral initiatives are smoothed by the
possibility that the unit does not manage to act according to its attitude of preferred
degree.

Specifically, let us take into account the chance that the action of the agent to
generate (or destroy) a link is not accomplished. So that, for various reasons, the
connection (or de-connection) attempt fails, for example because of the opposition
of the counterpart agent. So whenever a unit is drawn, it tries to act according its
preference, adding or cutting a link, but here we consider the chance that this attempt
fails with a rate λ (target-failure probability). It is possible to generalize the CMED
approach just rewriting the master equation as in Eq. (1) but taking into account two
modes of the degree motion, the add-cut process phase and the resting phase that
justifies the presence of “idle” states due to the missed action of the node tendency.
Consequently, we consider the population density at rest ρ

(i)
1 (k, t) in addition to the

population density in motion ρ1(k, t), and we can rewrite the CMED equation as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ1(k, t + 1) − ρ1(k, t) = Γ +[k − 1] ρ1(k − 1, t) − Γ +[k] ρ1(k, t)

− Γ −[k, t] ρ1(k, t) + Γ −[k + 1, t] ρ1(k + 1, t)

− λρ1(k, t) + λρ
(i)
1 (k, t)

ρ
(i)
1 (k, t + 1) − ρ

(i)
1 (k, t) = λρ1(k, t) − λρ

(i)
1 (k, t)

(32)
with the usual transition rates Eqs. (6), (7) and boundary conditions as in Eqs. (8),
(9). This new master equation describes the intermittent add-cut process where idle
states introduce pauses in the process due to the probability of each node to fail in their
intention. Here we considered that the failure rates are the same for all the units in the
network. The existence of a stationary solution is guaranteed by the closed domain
and the intermittent phases do not contribute to the steady state degree distribution.3

Consequently, we have the same truncated poisson stationary distribution as in the
classical case of XIE. In principle we can also consider different failure rates for the
two groups λ1 and λ0, then the degree distributions differ from the standard case of
XIE. Finally, the generalized network model shows the same degree distribution of the
original CMED but the process is slowed down by the connection failures as shown
in our numerical simulations of Fig. 13; in this case, the average degree trajectories
are now time series where “pauses” arise in correspondence to connection failures.
This in practice introduces a delay in reaching the equilibrium state as well as a slower
speed in the linking mechanism.

The introduction of a failure rate has the purpose to stress the importance of the
novelty of the present network mechanism made up of relations between a proposer
and a responder. Changing the values of λ for different nodes it is possible to obtain a

3 The stationary degree distribution can also be recovered just using the ordinary CMED approach as in Eq.
(1) and using an event-based representation of temporal networks (Masuda and Lambiotte 2016). We can
here modify the transition rates defining: Γ̃ +[k−1] = Γ +[k−1](1−λ) and Γ̃ −[k, t] = Γ −[k, t](1−λ).
The problem with this approach is that we ignore the idle states and that the process has pauses in its
trajectories. But, in the end, it reaches, with different transient times, the same degree distribution as using
the intermittent CMED.
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Fig. 13 Trajectories of the average degree for the agent-driven network with target failures and the relative
intermittent CMED description. In a we notice that the two models and their numerical solutions coincide,
reflecting that the introduction of failure probability λ slows down the transient state and the reaching of
the equilibrium state. The speed factor λ does not affect the final degree distribution but, as shown in b,
introduces pauses in the trajectories of the average degree over time thus making the system slower. a
Transition to equilibrium obtained using the model and the CMED in two cases: standard model with no
failure rate, and the intermittent case where the failure target probability is λ = 0.4. The CMED approach
approximates well both cases, and the introduction of a λ makes the system slower to reach the stationary
solution for the average degree. b An example of the trajectories for large times, where we notice the
presence of pauses in the case where a failure rate is present. This slows down the system but at large times
it gives the same degree distribution as the standard model (λ = 0)

more complex network structure with the purpose to make the model more and more
realistic.

5 Applications in economics and finance

The nature of the network discussed in this paper displays particular intrinsic features
which make it potentially suitable for many applications in economics. The temporal
network structure could, indeed, represent an appropriate framework for systemswhere
fluctuations induce a bursty dynamics and emergent degree correlations.

The model of network formation presented here, or similar generalizations, may
contribute to our understanding of sudden freezes in financial markets, when agents
collectively stop trading a specific instrument between each other after a small change
in market conditions. In particular, the mixed transition at criticality may provide an
explanation for the abrupt changes in financial behavior during market crisis. In fact,
during financial crisis, institutions may suddenly change their strategy and trigger
a non-linear response of the whole market—leading to fire-sales, liquidity, inability
to acquire funds—through mechanisms similar to the one outlined above. This phe-
nomenon will be the subject of further works that are beyond the scope of the present
one. A possible research line has been addressed by Vanni et al. (2016) where an
agent based model has been built upon the framework of the network model presented
here. In particular, the system represents a financial interbank market in a marked-to-
market structure where agents are driven by leverage-risk coupled actions, and where
the interactions among the agents are modulated by a temporal complex network with
a non-simultaneous link formation rationale. In the market, banks behavior on lever-
aging actions depends on their perceived risk in terms of a Value at Risk measure as
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risk management to control their exposure to the stock market. In such an agent based
model the population parameter h in Eq. (14) of the network is not constant, instead it
fluctuates according to the leverage-risk coupled nature of each financial institution.
Indeed, each agent can act as generator or destroyer according to its financial risk
position. With such a simple structure, a series of endogenous emergent properties
arise in terms of financial stylized facts such as volatility cluster, excess volatility
and heavy tails of the price returns distributions. Moreover, one can shed light on the
bursty nature of boom-bust cycles in the financial market with consequent new insights
on the onset of financial crisis and a new interpretation of the predictability of those
crashes, since the time intervals between market collapses are power-law distributed
as a consequence of the bursty nature of the system.

Another possible economic application of the model can be assessed in the field of
international trade,where firm-to-firmconnections represent the vastmajority ofworld
trade flows. Thoroughly explained by the authors in Bernard and Moxnes (2018) and
Bernard et al. (2018), the literature on trade and production networks is still at an early
stage, and there are a large number of unanswered empirical and theoretical questions.
In particular, the dynamics of these interactions, e.g., why connections survive and how
they evolve over time, are just beginning to be considered in this emerging literature.
In recent years, thanks to the systematic digitization of customs, we have observed the
emergence of big data on social and economic networks between firms and individuals.
As a consequence, trade research has shifted attention to the role of individual firms,
as an additional way to explore the large variation occurring in aggregate trade flows.
Therefore, it is crucial to investigate the temporal structure of thefirms’ bilateral trading
relationships and their evolution over time, in particular concerning the formation
mechanism and duration of these importer-exporter relationships.

The model presented in this paper fits very well with the sellers/buyers structure of
trade, easily sketched as a bipartite network because a seller might link to a buyer, but
a seller (buyer) cannot link to other sellers (buyers), taking into account that firms are
typically sellers and buyers at the same time.

In terms of temporal network theory, the dynamics of firms’ interactions can be
investigated in terms of link fluctuations, and why connections survive and how they
evolve over time. In looking at the nature of the connections between firms, an impor-
tant issue has to do with assortativity among sellers and buyers.

The ability of firms to create profitable and productive matches across borders is a
key ingredient in aggregate trade flows and their growth. Therefore, it is valuable to
explore the underlying sources of the frictions that prevent import-export matches, or
cause them to be short-lived, which are still unknown.

6 Conclusion

In the present paper, we described the time evolution of the network model of XIE
via a dynamics of coupled master equations. The model here investigated, due to its
minimal dynamical rules, may shed light on a broad range of phenomena in complex
systems with agents displaying opposed behaviors. Our analytic analysis correctly
predicts both the transient and the equilibrium distributions of degree outside the tran-
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sition, and our numerical analysis supports the existence of an extremeThouless effect,
i.e., a discontinuous jump and large dynamic fluctuations at the critical point where
the sizes of extroverts and introverts populations coincide. From a more theoretical
point of view, numerical simulations show that degree fluctuations in time are con-
nected to a peak in degree correlation at the transition, suggesting the need to develop
a theory beyond mean-field that will incorporate degree correlations to gain a better
description at the transition. The Thouless effect predicts an explosive, non-linear, col-
lective behavior at a precise critical point, suggesting that controlling for—exogenous
or endogenous—changes in agent’s behavior could keep the system far from abrupt
transitions.

It is crucial to stress how the non-simultaneous asymmetric link formation criteria in
the model gives birth to an intrinsically dynamic network with stationary states which
change accordingly to the initial parameter of the network h which is a measure of the
heterogeneity among the nodes in the network. The maximal units’ heterogeneity h =
0 is the critical tipping point for which emergent properties arise related to the network
connectivity as the anomalously large volatility and intense degree correlations can
be further investigated for a better understanding the origin of bursts in financial
dynamics.

In a broader perspective, the intermittency in the network, first introduced in this
work, can give a more realistic explanation of the activated dynamics of complex
systems, during which the system jumps from idle states to active ones, and vice-
versa, giving to the entire system a dynamic long-range organization.

Finally, as a practical application in economics, we have shown how a simple
combination of a non-simultaneous network structure with an adaptive agent based
model spontaneously generates realistic financial dynamics which could have crucial
policy implications. The bursty nature of the system, for certain market conditions,
could be considered the seed of financial and economic fragility. Moreover, we have
suggested some possible applications of the model—or similar generalizations—in
the context of systemic risk and financial stability. On the other side, we underline the
necessity to experimentally observe the existence of emergent structures in economic
dynamics as, for example, in world trade economics, which could be assessed in
terms of a temporal system which evolves in a non-simultaneous asymmetric picture
as expressed in the network model presented in this paper.
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Appendix A: Network degree distributions: a discussion

Let us define a bipartite graph as as a triplet G = (�,⊥, E) where � is the set of
high-target nodes (generator units) and ⊥ is the set of low-target nodes (destroyer
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units), and E ⊆ � × ⊥ is the set of links that can vary in the domain [0, |�| × |⊥|]
where | · | is the number of elements of the set.

Then, the time evolution of the this bipartite graph is an ordered sequence of M
graphs {G1,G2, . . . ,GM }definedover N nodes,where each graphGm in the sequence
represents the state of the network, i.e., the configuration of links in the time-window
[tm, tm + Δtm], m = 0, . . . , M − 1.

The time-varying graph G is fully described by means of a time-dependent adja-
cency matrix A(tm),m = 0, . . . , M−1, where ai j (tm) are the entries of the adjacency
matrix of the graph at time tm . Tuning the size of the time window used to build each
snapshot, we obtain different representations of the system at different temporal scales.

In particular, in the limit case when Δt → 0, we obtain an infinite sequence of
graphs, where each graph corresponds to the configuration of connections at time
instant t .

On the contrary if we set Δt = T , the time-varying graph degenerates into the
corresponding aggregated graph, losing all the temporal information and obtaining a
static graph.

In order to write an equation for the degree distributions of the graph we split the
analytical description in terms of the two groups.

In principle we should know at each time step the configuration of the network N
described for example by the adjacency matrix. We actually study the degree distri-
bution defined as:

ρ(k, t) =
∑

{N }

∑

i

δkki P(N , t). (33)

where δ is the Kronecker delta, and P(N , t) is the probability to find our network in
the configuration N at time t , where each node has degree ki .

A.1: Off-criticality: bounded Poisson distribution

Let us take into account that we know the correction factor of the cut rate ε in Eq. (7)
so we can define:

χ = 〈k〉0
ε

(34)

In the stationary regime the master equation Eq. (1) can be written:

[
k + 1

χ
ρst
1 (k + 1) − ρst

1 (k)

]
−

[
k

χ
ρst
1 (k) − ρst

1 (k − 1)

]
= 0 (35)

with the boundary conditions as ρst
1 (k = −1) = 0 and ρst

1 (k = N0 + 1) = 0.
As proved by the authors in Bassler et al. (2015), in such a closed system the sta-

tionary distribution corresponds to the steady state where the detailed balance relation
is valid and fulfills the following recurrence equation:

ρst
1 (k) = χ

k
ρst
1 (k − 1) (36)
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and by applying the recurrence successively we obtain the relation:

ρst
1 (k) = ρst

1 (0)
k∏

m=1

χ

m
. (37)

Taking into account the normalization condition:

ρst
1 (0) +

N0∑

k=1

ρst
1 (k) = 1, (38)

the stationary probability distribution in a finite network becomes:

ρst
1 (k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k∏
m=1

χ
m

1 +
N0∑
j=1

j∏
m=1

χ
m

for k = 1, . . . , N0

1

1 +
N0∑
j=1

j∏
m=1

χ
m

for k = 0.

(39)

Since
∏ j

m=1
a
m = a j

j ! , we get the the truncated poissonian distribution :

ρst
1 (k) = 1

eχ Γ (N0+1,χ)
Γ (N0+1) − 1

χk

k! , k = 0 . . . N0 (40)

whereΓ (N0+1, χ) is the incomplete gamma function.4 We replicated the simulations
obtained by the authors in Bassler et al. (2015) using a fixed-point algorithm and we
compared it to our numerical solutions. We have found that both approaches give
identical numerical solutions as regards the degree distributions at equilibrium as
shown in Fig. 14 and the correspondent Tables 1 and 2 where we also compute a
statistical distance between distributions in terms of the Kullback–Leibler divergence
(KL). This is a measure of how an estimated probability distribution diverges from a
true expected probability distribution estimated, in this case, from the network model.
The results are that the CMED approach and the fixed-point algorithm provide the
same solution in determining the stationary degree distributions. Despite the fact that
the fixed-point approach converges faster to the solution, the CMED approach allows a

4 For N0 → ∞ we can write
∑N0

j=1
a j

j ! ≈ ea − 1, yielding the Zero-truncated Poisson distribution:

ρst1 (k) = χk

(eχ − 1)

1

k! , k = 0 . . . N0.
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Fig. 14 Comparison among the three distributions obtained via Monte Carlo simulation of the model, using
the CMED approach and then substituting the bounded poisson formula as in Eq. (40) and then running
the numerical solution through the fixed point algorithm used in Bassler et al. (2015). We explore the
case of N = 100, the left distributions is for the case N0 = 55, N1 = 45 and the right distribution for
N0 = 45, N1 = 55

Table 1 Considering N1 > N0, the values of average degree and its variance are reported as calculated
through the three approaches of the network model. Moreover Kullback–Leibler divergence has been
reported as last column in the table

N0 = 45, N1 = 55 Average degree Variance KL divergence

Model (true distribution) 41.525 10.224 0

CMED bounded Poisson 41.582 10.001 0.0022275

Fixed point 41.582 10.001 0.0022275

Table 2 Considering N1 < N0, the values of average degree and its variance are reported as calculated
through the three approaches of the network model. Moreover Kullback–Leibler divergence has been
reported as last column in the table

N0 = 55, N1 = 45 Average degree Variance KL divergence

Model (true distribution) 4.0878 4.1881 0

CMED bounded Poisson 4.1772 4.1772 0.0023504

Fixed point 4.1772 4.1772 0.0023504

complete description of the degree motion capturing also the transient states as well as
being easy to modify to obtain more general agent-driven models. We observe that the
information lost when we use the CMED and fixed-point distribution to approximate
the real distribution is not zero even if very small. This is in line with the fact that
we are neglecting the small correlations among the nodes in the network. Actually
at criticality, the KL-divergence is much larger (typically two orders of magnitude),
highlighting the presence of strong correlations that have been ignored in the present
paper.
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Fig. 15 Hellinger distance as measure of divergence between the estimated degree distribution (via CMED)
and the true probability obtained from the model. We notice a peak at the critical value, again revealing a
much stronger discrepancy between the two distributions since in our mathematical description we consider
the network to be uncorrelated

In order to have a full exploration of all the values of h we need a consistent
measure for the distance of the approximated distribution from the true one. We used
the Hellinger distance since it is a metric satisfying the Cauchy-Schwarz inequality.
In Fig. 15, plotting the Hellinger distance versus the population difference, we notice
again that the approximation is pretty good for all the cases except for the critical point
h = 0 where the distance is 10 times larger.

A.2: Degree distribution at criticality

In a radical view, the problem is symmetric in terms of the probability of cutting
or adding a new link, so that approximately one can guess that p(n)

0 (k) ∼ ρ1(k) .
The meaning of this is that the probability of picking a destroyer which cuts a link
with a generator of degree k is the same as randomly picking a generator of degree k
and randomly cutting one of its links. Moreover at the critical point the symmetry is
evident becasueρ1(k) = ρ0(q),〈k〉 = 〈q〉 and there are almost no isolated nodes, so the
detailed balance condition Eq. (2) gives the relation for the conditional probabilities:

q P(k|q) = k P(q|k) (41)

which is the symmetric relation for the conditional degree probabilities.
We can build the connectivity matrixC = {Cqk} as defined by the author in Boguná

and Pastor-Satorras (2002). The components of this matrix can be written as:

Cqk = q P(k|q) (42)
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which in the critical case is symmetric. These matrix elements measure the average
number of links which, from a generator node of degree k, go to a destroyer node
with degree q. For random bipartite networks, in which there are no correlations
among the degrees of the nodes, we have that the connectivity matrix is given by
Cunc
qk = q P(k|q) = q p(n)

0 (k).
In order to give an estimation of the degree distribution at criticality we try to

recover a rough evaluation of the degree correlations, starting from the results of the
monte-carlo simulations of the model.

In this case the neighbor probability can be generalized as p̃(n)
0 (k) = A(k,q) p

(n)
0 (k)

where A depends on both degrees of generators and destroyers. Notice that except in
the uncorrelated case we have that A = 1 for every pair (k, q), so that the neighbor
degree probability coincides with the conditional probability. We can imagine a raw
approach for describing the degree distribution at criticality where the average degree
correlation is of order 1, see Fig. 8 and the assortativity is positively maximal, see Fig.
10. If we define λ := A k

〈k〉 , then at criticality the value λ ≈ 1 except for the degrees
near the boundaries k = 0 and k = N/2, which are the nodes for which the positive
assortativity is lost and where we asymptotically recover the relation λ = k/〈k〉 .

With these conditions we can use the relation p̃(n)
0 (k) = λρ1(k), it is possible to

write the master equation Eq. (1) as :

[
λρst

1 (k + 1) − ρst
1 (k)

] − [
λρst

1 (k) − ρst
1 (k − 1)

] = 0 (43)

with the reflecting boundary conditionsρst
1 (k = −1) = 0 andρst

1 (k = N0+1) = 0.
The recurrence equation λρst

1 (k) − ρst
1 (k − 1) = 0 has as solution:

ρ1(k) = C1

(
1

λ

)k−1

(44)

In the perfect symmetric case for N → ∞ we have λ = 1 so, recovering the
constant C1 from the normalization condition

∑N/2
k=0 ρ1(k) = 1, we have:

ρst
1 (k) = 2

N + 2
(45)

which reminds one of the stationary distribution of a random walk inside reflecting
barriers.

The stationary distribution Eq. (45) is correct as far as the dynamics is not affected
by the two barriers, and it happens only in the thermodynamic limit where N → ∞.
For small networks the barriers’ effects are intense and the distribution appears to be
closer to a platykurtic bell-shape curve rather then a uniform one. At the moment we
are not able to write an analytical expression of the correlations λ for the varius degree
k. In order to give a rough estimation of the platykurtic distribution at criticality,wewill
make strong approximations creating a piecewise function for the correlation factor λ.
We define three regions that take into account the fact that the average correlation is of
order ρ � 1. We consider the degrees k close to the boundaries to be of the same order
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Fig. 16 Study of the strength of the aggregate assortativity 〈knn(k)〉T = a k for which increasing the size of
the network we have a → 1, that is the condition of perfect assortativity. From such study it is also possible
define the kmin and kmax as the minimum and maximum value of the 〈knn(k)〉T . a Linear regression for the
aggregate ANND for N = 100 at criticality and a strength of assortativity of a ≈ 0.5. Here we estimated
kmin = 13 and kmax = 37. b Linear regression for aggregate ANND for N = 50 at criticality and a
strength of assortativity of a ≈ 0.3

as in the uncorrelated case, i.e., k/〈k〉. Then we choose the intermediate values of k
with degree correlation 1. Studying the assortative structure of the aggregate ANND
it is possible to estimate the kmin and kmax for which the degree correlations are of
order 1, see Fig. 16.

In such a way the overall correlation of the system is ρ, and a particular choice of
the λ dependence can be made as;

λ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ1 = kmin

N/4
, k ∈ [0, kmin]

λ2 = 1 , k ∈ (kmin, kmax )

λ3 = kmax

N/4
, k ∈ [kmax , N/2]

(46)

where the width of the interval of maximal corrleation (kmin, kmax ) is evaluated as
ρN/2. At this point we can evaluate the solution Eq. (44) for the three regions and
using the continuity requirement and the normalization condition, we get:
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Fig. 17 Degree distribution
ρ1(k) for the critical case
N1 = N0 = N/2. In the case of
N = 100 the average degree
correlation is ρ ≈ 0.8 and
kmin = 13, kmax = 37, so that
the numerical distribution (bold
black line) has been
reconstructed as a piecewise
distribution. So our distribution
has the correct mean and also
the right variance with respect to
the uncorrelated distribution
(Poisson) and with respect to the
thermodynamic limit(N → ∞)

of a uniform distribution

Fig. 18 Fit of the degree distribution of the network at criticality (N = 100) and fitting curve (black line)
under the assumption of a generalized normal distribution (also called an exponential power distribution).
Parameter estimation via maximum likelihood gives an average of μ = 24.89, a shape parameter of
β = 5.27 and the scale parameter σ = 9.14 (The estimation has been addressed using the statistical tool in
Mineo and Ruggieri 2005). The results are in line with the mean of the distribution and its variance

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C−1
2 = λkmin

1

λkmin
2

kmin∑

k=1

(
1

λ1

)k

+
kmax−1∑

k=kmin+1

(
1

λ2

)k

+ λkmax
3

λkmax
2

N/2∑

k=kmin

(
1

λ3

)k

C1 = C2
λkmin
1

λkmin
2

C3 = C2
λkmax
3

λkmax
2

(47)

Using those conditions we get a degree distribution as shown in Fig. 17 similar to
that of a randomwalk process under “soft” boundary conditions (Liu et al. 2013) rather
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then the reflecting barriers conditionwhich instead brings one to a uniformdistribution.
We also compare the real model distribution with the poisson distribution under the
uncorrelated hypothesis. One can notice howour numerical evaluation replicates better
the behavior of the real distribution.

The exact analytical functional of λ would give the possibility to simulate the
network to get the exact distribution which at this point in the study has not been
possible to find.

It is interesting to notice that our numerical estimation requires three parameters to
find an approximated distribution for the correlated case of criticality. On the contrary
in the uncorrelated case a distribution with only one parameter is enough to have
the system described. As a further check of this view we estimated the montecarlo
distributionwith a three-parameters fit using a generalized normal distribution p∗(k) ∝
exp {− |k−μ|β

βσβ }. We find remarkably good fit results shown in Fig. 18, so supporting the
necessity of three parameters to fully characterize the degree distributionof the network
at criticality where we have strong correlations and the mean field approximation fails.
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