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ABSTRACT

Assessing the stability of economic systems is a fundamental research focus in eco-
nomics that has become increasingly interdisciplinary in the currently troubled eco-
nomic climate. In particular, much attention has been devoted to the interbank lending
market as an important diffusion channel for financial distress during the recent crisis.
In this paper, we study the stability of the interbank market to exogenous shocks using
an agent-based network framework. Our model encompasses several ingredients that
have been recognized in the literature as procyclical triggers of financial distress in
the banking system: credit and liquidity shocks through bilateral exposures, liquidity
hoarding due to counterparty creditworthiness deterioration, target leveraging poli-
cies and fire-sale spillovers. However, we exclude the possibility of central authorities
intervention. We implement this framework on a data set of 183 European banks that
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were publicly traded between 2004 and 2013. We document the extreme fragility
of the interbank lending market up to 2008, when a systemic crisis leads to total
depletion of market equity with an increasing speed of market collapse. After 2008,
the system is more resilient to systemic events in terms of residual market equity.
However, the speed at which a crisis breaks out reaches a new maximum in 2011, and
it never returns to the values observed before 2007. Our analysis points to the key
role that crisis outbreak speed plays: it sets the maximum delay for central authorities
intervention to be effective.

Keywords: financial contagion; systemic risk; financial networks; interbank lending market; agent-
based models.

1 INTRODUCTION

The financial instability that characterized the last decade has made one thing clear to
academics and regulators: the economy and the financial system are now so inherently
complex that a multidisciplinary effort will be needed to disentangle the intertwined
set of connections between the actors and institutions within them (Acemoglu et al
2015; Beale et al 2011; Gai et al 2011; Haubrich and Lo 2013; Musmeci et al 2015;
Sorkin 2009). Indeed, the network structure of the financial system is now acknow-
ledged as a potential trigger of instability (Bardoscia et al 2016; Chan-Lau et al 2009),
hence the many recent studies on the origin of the crisis that investigate the interplay
between network topology and contagion processes (an approach originally devel-
oped in statistical physics (see Nature Physics 2013)). Among the various subjects,
researchers have particularly focused on the interbank lending market, namely the
network of financial interlinkages between banks resulting from unsecured overnight
loans. This system has been identified as one of the principal diffusion channels for
financial distress during the 2007–8 crisis (Birch and Aste 2014; Bluhm and Krah-
nen 2011; Cont et al 2013; Gabrieli and Co-Pierre 2014; Georg 2013; Krause and
Giansante 2012). After the collapse of Lehman Brothers, the interbank market froze,
causing a severe liquidity drought throughout the financial system (Acharya and Mer-
rouche 2013; Adrian and Shin 2008; Berrospide 2013; Brunnermeier 2009). Such a
black swan was due to the collapse of different liquidity channels, eg, asset-backed
commercial papers and repurchase agreements (repos), and to a burst in the spread
between long-term and overnight interest rates (or the London Interbank Offered
Rate–overnight indexed swap (Libor–OIS) spread; Brunnermeier (2009)). As this
problem became systemic, central banking authorities intervened with extraordinary
monetary policies to restore the solvency of the financial system.

Liquidity issues threaten the stability of the financial system by generating impor-
tant spillover effects. Different subcategories of problems have been identified in
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the literature: funding liquidity, market liquidity, flight to liquidity quality, liquid-
ity spirals, liquidity hoarding, market freeze and assets fire sales. Authors such as
Acharya and Skeie (2011) and Brunnermeier and Pedersen (2009) have modeled liq-
uidity dynamics using a theoretical approach. Others, such as Berrospide (2013) and
Acharya and Merrouche (2013), have used empirical econometric analyses to study
the causes of interest rate spreads. Eisenberg and Noe (2001) were the first to tame
the complexity of the problem, using a theoretical approach that explicitly consid-
ered the set of interconnections within the financial system. Their work originated a
flourishing line of research aimed at assessing the systemic importance of financial
institutions under a network perspective (see, for example, Barucca et al 2016; Bluhm
and Krahnen 2011; Gabrieli and Co-Pierre 2014; Greenwood et al 2015; Hausenblas
et al 2015).

A second approach to dealing with the complexity of the financial system has been
using agent-based models (ABMs). An ABM is a simulated framework in which
several agents interact following optimal selfish strategies, creating spin-off effects
such as the emergence of an endogenous trading market (Caporale et al 2009; Lucas
et al 2014). The use of ABMs in economics and finance started in parallel with the
development of calculators and computer science. The Santa Fe Institute Artificial
Stock Market model was one of the first ABMs developed in the early 1990s, and
it was later complemented with market orders (Lux and Marchesi 1999). Recent
advances inABM for financial stability studies include the work of Fischer and Riedler
(2014), who showed the fundamental role of leverage in assessing systemic risk, and
of Georg (2013) and Hałaj and Kok (2014), who modeled an emerging interbank
market via a stylized trading mechanism. All these studies agree on the relevance
of the topology of interactions for contagion mechanisms. Other studies, such as
Cont et al (2013), Bookstaber et al (2014) and Klinger and Teplý (2014), consider
an exogenous interbank network (data-driven or simulated) affected by shocks that
induce an idiosyncratic response, such as the emergence of bank runs and fire sales.
The aim is to evaluate systemic risk as well as find effective regulatory capital buffers
and requirements to prevent cascade failures.

In this paper, we bring together these two approaches by introducing an ABM that
describes the network dynamics of the interbank market. We build on the framework
introduced by Chan-Lau et al (2009) and Krause and Giansante (2012), and later
developed by Cimini and Serri (2016). We consider a data-driven network of bilateral
exposures between banks (the agents of our model); these use micro-optimal rules
to interact with each other and the rest of the financial system. We explicitly model
various categories of spillover effects arising during financial crises, such as fire sales
and interest rate jumps due to leverage targeting and the liquidity-hoarding behavior
of banks. The modeled dynamics of procyclical policies then spread financial losses
via credit and liquidity interconnections, and they may result in cascades of defaults.
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In our approach, we just assume the existence of events in order to focus on the
description of the dynamical evolution of the financial system. Our ABM can thus be
used to stress test the robustness of the financial system to an external shock, which
can either be absorbed or cause an avalanche of failures that eventually lead to the
market freezing.

Note that the use of an ABM allows us to have a complete description of the system
dynamics during a crisis (ie, out of the economic equilibrium), which would be very
difficult to obtain by analytical modeling. The ABM presented here also allows us to
consider a flow of events that is different from what actually happened during, for
example, the 2007–8 financial crisis. In particular, we are interested in the scenario
characterized by the absence of a lender of last resort, such as a central bank, whose
monetary policies can completely redesign the market. Indeed, our aim is not to
reproduce the real dynamics of the crisis, but to define the worst possible scenario
without any quantitative easing or bailout programs from regulatory institutions. The
rest of the paper is organized as follows. Section 2 reports our basic assumptions,
while Section 3 offers a detailed description of the ABM framework. The results of
our extensive simulation program are discussed in Section 4, and Section 5 concludes.

2 MODEL ASSUMPTIONS

The main ingredients of our model are the set of connections and the strategies of the
agents. In order to define them, we make the choices listed below.

2.1 Network definition

� The interbank network is assumed to consist of loans with overnight (ON)
duration. Thus, Aij is the overall amount that bank i lends to bank j (ie, the
interbank asset of i toward j ), which corresponds to the liquidity Lj i � Aij

that j borrowed from i (ie, the interbank liability of j toward i ). As contracts
are of short duration (ON), we assume that links are continuously placed and
immediately resolved and rolled over, so that the same (current) interest rate
r > 1 applies to both assets and liabilities. In other words, the market dynamics
we consider here is on a time scale that is longer than that of contracts duration.

� The network is derived from aggregate interbank exposures and obligations:

Ai D
X

j

Aij and Li D
X

j

Lij �
X

j

Aj i :

We use the Bureau van Dijk Bankscope database, which contains the yearly
aggregated balance-sheet information of N D 183 large European banks from
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2004 to 2013.1 We then employ the procedure described in Cimini et al (2015),
which uses the fitness model of Caldarelli et al (2002) to build an ensemble of
interbank networks from such aggregate data.

� For each bank i , the balance-sheet equation reads

Ei WD AE
i � LE

i C r
X

j

Aij � r
X

j

Lij ; (2.1)

where AE
i and LE

i are, respectively, the external assets and liabilities of i .
Ai D AE

i C r
P

j Aij and Li D LE
i C r

P
j Lij are, respectively, the total

amount of assets and liabilities (external plus interbank) held by i . For each
bank i to be solvent, it must be Ei > 0.

2.2 Strategies definition

In order to build agent strategies and model dynamics, we take inspiration from the
most important facts characterizing the crises.

� If hit by a shock, a bank sells assets following a leverage-targeting policy in
order to reinforce its reputation and the expectations of stakeholders.

� After the shock and during the realignment, worries about creditworthiness may
cause a “flight to quality”, for which banks withdraw liquidity from the market.

� Liquidity hoarding coupled with a constant liquidity demand triggers an
increase of interbank interest rates and the consequent revaluation of interbank
assets and liabilities.

� If a bank defaults, credit and funding shocks propagate through its bilateral
exposures like a bank-run contagion on financial interbank contracts.

� Interbank network connections and fire-sale spillovers may lead to default
cascades, with a consequent increase of liquidity hoarding and interest rates.

� In extreme conditions, the market freezes, triggering exacerbated fire sales.

3 MODEL DYNAMICS

Building on the above definitions and assumptions, we now specify the model
dynamics of the interbank market (see Figure 1 for the flow chart of the model).

1 Raw Bankscope data is available from Bureau van Dijk (http://bankscope.bvdinfo.com). We refer
the reader to Battiston et al (2015) for all the details about the handling of missing data.
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FIGURE 1 Flow chart of the ABM.

Exogenous shock
on external assets

Exogenous shock
on interbank assets

Bank tries to realign
to target leverage by
hoarding liquidity
from asset sales

Interbank interest
rate grows as market
shrinks, and balance
sheets revaluate

Has a bank
defaulted?

No

Yes Wave of credit and liq-
uidity network losses
from defaulted banks,
until no more defaults

Market freeze
condition

Total liquidation of
interbank assets
triggering fire sales

The dashed lines represent process inputs, while the dotted lines represent check functions.

3.1 Exogenous shock

� At a given time step t D t0, bank s is hit by an exogenous shock, so that its
external assets AE

s decrease by a quantity ˚ (Chan-Lau et al 2009; Krause and
Giansante 2012):

AE
s .t0 C 1/ D AE

s .t0/ � ˚ ) Es.t0 C 1/ D Es.t0/ � ˚: (3.1)

� At first, bank s tries to realign to its target leverage Bs.t0/ D As.t0/=Es.t0/ by
selling assets. To this end, the amount of assets to be sold is given by (Adrian
and Shin 2008; Brunnermeier 2009)

As.t0 C 1/ � Es.t0 C 1/Bs.t0/ D As.t0/ � ˚ � ŒEs.t0/ � ˚� Bs.t0/

D ˚ŒBs.t0/ � 1�: (3.2)

As bank s becomes increasingly worried about its financial situation, it adopts
a microprudential policy (Acharya and Merrouche 2013; Berrospide 2013) by
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hoarding the liquidity granted by such sales. This means that its interbank loans
are not rolled over for their entire amount. We thus assume that external and
interbank assets are sold proportionally to their balance-sheet shares

f E
s .t0/ D AE

s .t0/=As.t0/ and f I
s .t0/ D

X
k

Ask.t0/=As.t0/:

We further assume that interbank assets rescale proportionally to the contract’s
size; each loan Ask.t0/ decreases by an amount equal to ˚ŒBs.t0/ � 1�f I

s .t0/

times the ratio of Ask.t0/ itself to the total exposure
P

k Ask.t0/ of s. The net
result is that part of the total value of the interbank market is lost. The consequent
increase of counterparty and roll-over risk perceived in the market causes the
interbank interest rate to go up (Acharya and Skeie 2011). In particular, we
assume

dr

dt
D r ln.1 C ˛/ H) r.t0 C 1/ D .1 C ˛/r.t0/ C "; (3.3)

where the factor ˛ > 0 is a small quantity that leaves the system stable, and "

is a random variable drawn from N Œ0; ��. Thus, interbank assets and liabilities
increase as

Ajk.t0 C1/ D
�

r.t0 C 1/

r.t0/

�
Ajk.t0/ and Ljk.t0 C1/ D

�
r.t0 C 1/

r.t0/

�
Ljk.t0/;

respectively, for all j; k. Note that while the external assets sold by s have
no impact on the balance sheet (models usually assume that the values of
external assets do not change, as the most unbiased assumption is that the overall
contribution of market fluctuations averages to zero), the liquidated interbank
assets cause the bank’s equity to shrink, as they do not get revalued by the new
interest rate. Therefore, the target leverage of s is substantially respected, except
for the non-appreciation of a part of its interbank assets (which is, however,
minimal). Overall, the balance sheet of bank s becomes

Es.t0 C 1/ D fAE
s .t0/ � ˚ � ˚ŒBs.t0/ � 1�f E

s .t0/g
� fLE

s .t0/ � ˚ŒBs.t0/ � 1�f E
s .t0/ � ˚ŒBs.t0/ � 1�f I

s .t0/g

C
�

r.t0 C 1/

r.t0/

� X
k

Ask.t0/

�
1 � ˚ŒBs.t0/ � 1�f I

s .t0/P
k Ask.t0/

�

�
�

r.t0 C 1/

r.t0/

� X
k

Lsk.t0/

D E.t0/ � ˚ C Œ˛ C "=r.t0/�

�
� X

k

ŒAsk.t0/ � Lsk.t0/� � ˚ŒBs.t0/ � 1�f I
s .t0/

�
; (3.4)
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indicating that the equity of s has changed due to the external shock and the
revaluation of its interbank contracts, except for the part that is not rolled over.

� Banks fig that borrow from s receive a funding shock, which is given by the
interbank assets that s dries up for liquidity hoarding, and replace it with an
external liability. Thus, their balance sheets become

Ei .t0 C 1/ D Ei .t0/ C Œ˛ C "=r.t0/�

�
� X

k

ŒAik.t0/ � Lik.t0/� C ˚ŒBs.t0/ � 1�
Lis.t0/

As.t0/

�
:

(3.5)

� For all other banks fj g,

Ej .t0 C 1/ D Ej .t0/ C Œ˛ C "=r.t0/�

� X
k

ŒAjk.t0/ � Ljk.t0/�

�
: (3.6)

These steps are repeated until a first default is triggered.

3.2 Cascade failures

� After some rounds of exogenous shocks, at iteration step t� a given bank u

becomes insolvent and defaults, meaning Eu.t�/ 6 0. Bank u is removed from
the system, but this event triggers a cascade of credit and liquidity losses in the
interbank market (Chan-Lau et al 2009; Krause and Giansante 2012). We use
a one-step debt-solvency rank dynamics (Cimini and Serri 2016) to model this
process, ie, we have the following.

(a) Credit shocks: bank u cannot meet its obligations, so every other bank
j suffers a loss equal to �Aju.t�/. Here, � indicates the amount of loss
given default. We set � D 1 to consider only uncollateralized markets.

(b) Funding shocks: banks are unable to replace all the liquidity previously
granted by the defaulted institutions and thus need to sell their assets,
triggering fire sales (Brunnermeier and Pedersen 2009). In particular,
each bank j is able to replace only a fraction .1 � �/ of the lost funding
from u, and its assets trade at a discount: j must sell assets worth Œ1 C
�.t�/��Auj .t�/ in book value terms, corresponding to an overall loss of
�.t�/�Auj .t�/.2 Here, we set � D 1, meaning that banks actually cannot
replace the lost funding from u and are thus forced to entirely replace the
corresponding liquidity by asset sales.

2 Following a common approach (Ellul et al 2011; Feldhütter 2012; Greenwood et al 2015), we
assume that fire sales generate a linear impact on prices. Given that Q.t�/ D �

P
j ¤u Auj .t�/

Journal of Network Theory in Finance www.risk.net/journal
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Overall, the balance sheet of a bank j connected to u becomes

Ej .t� C 1/ D Ej .t�/ � �Aju.t�/ � �.t�/�Auj .t�/: (3.7)

If any other bank u0 fails because of the suffered loss, the procedure above is
repeated until no other bank fails.

� After the default cascade has ended, the net change of equity drives each sur-
vived bank to realign to its leverage before the cascade, and to liquidate some
of its assets. Thus, the dynamics restart from the exogenous shock phase, even
if the shock is endogenous this time. However, now the interbank market has
shrunk significantly by a loss �E.t�/ D P

i Ei .t
� C 1/ � Ei .t

�/ 6 0. This
triggers a sudden interest rate increase, which we model by adding to (3.3), a
source term that depends on the ratio of �E.t�/ to the exogenous shock ˚ :

dr

dt
D r ln.1 C ˛/ C ı ln

� j�E.t�/j
˚

�

H) r.t� C 1/ D .1 C ˛/ r.t�/ C ˛ ı logŒ˛C1�

� j�E.t�/j
˚

�
C ": (3.8)

Thus, if j�E.t�/j ' ˚ , the interest rate grows by the same factor ˛ as before;
however, if j�E.t�/j � ˚ , the interest rate blows up. Overall, the equities
of each bank s change according to (3.4) with t0 D t�, where, however, ˚ is
replaced by Es.t�/ � Es.t� C 1/, and the interest rate has changed according
to (3.8).3 This process may again trigger a default cascade. Otherwise, the
exogenous shock dynamics continues afterwards.

3.3 Market freeze

The market freezes at iteration t D tc when the total relative equity of the marketP
i Ei .tc/=

P
i Ei .0/ becomes smaller than a critical ratio �c. At this point, interbank

assets get totally liquidated. Whenever, for a given bank j , this liquidation is not
enough to repay debts (that is, if 	j .tc/ D P

kŒLjk.tc/ � Ajk.tc/� > 0), such a bank
is forced to dispose of its external assets through a fire sale. However, unlike normal
sales due to funding shocks, the market is now frozen, and the value of external assets
is therefore enormously decreased. Thus, bank j must sell a fraction of assets worth

is the total amount of assets to be liquidated, we have no price change when Q.t�/ D 0, and we
assume that an asset’s value vanishes when Q.t�/ D C � P

ij Aij (ie, when the whole market
has to be sold). Thus, we have a relative asset price change �p=pjt� D �Q.t�/=C . To obtain the
corresponding �.t�/, we equate the loss �.t�/�Auj .t�/ to the amount sold 1 C �.t�/�Auj .t�/

times �p=pjt� , obtaining �.t�/ D ŒC=Q.t�/ � 1��1.
3 We consider a random sequence of survived banks to perform target leveraging sequentially.
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10 M. Serri et al

TABLE 1 List of parameter values used in simulations.

Symbol Value Description

d 0.1 Density of the reconstructed interbank network
� 1.0 Loss given default
� 1.0 Lost funding fraction to be replaced
˚ 108 Entity of the exogenous shock
r0 1.0 Initial interest rate
˛ 10�3 Interest rate increase factor
� 10�3 Variation of the random variable in the interest rate dynamics
ı 10�2 Pre-factor of the source term for interest rate dynamics
�c 0.37 Critical ratio of residual equity for market freeze

.1C
c/	j .tc/, with 
c � �.tc/. To evaluate the depricing factor 
c, we rescale �.tc/

by the relative wealth of potential buyers of fire-sold assets (Duarte and Eisenbach
2013), ie, their current wealth compared with the initial value


c D �.tc/

P
i Ei .0/P

ifEi .tc/ � 	i .tc/�Œ	i .tc/�g I (3.9)

this means that, if the interbank market shrinks, it is more difficult to sell assets,
and 
c grows. Note that to compute 
c, we subtract from the current total equity the
total assets that must be fire sold (because these assets cannot be used to acquire other
assets). The market freeze condition ends the ABM dynamics of the interbank market.

4 RESULTS

We now present results of our ABM simulations (Table 1 reports the list of parameter
values we use). First, we look at the dynamics of a single realization of the system.
Figures 2, 3 and 4 report results of the model run on balance-sheet data from some
representative years: 2004, 2008 and 2013. These are the first and last years of the
data set at our disposal, plus the year of the global financial crisis.4 These figures show
various important quantities characterizing the market at different iteration steps t :
(a) interest rate, (b) percentage of total residual equity, (c) percentage of defaulted
banks and (d) depricing factor � . The different trajectories refer to different model
configurations, in which we systematically hit a given bank s with the exogenous
shock ˚ . Thus, the line A-max (A-min) refers to s being the biggest (smallest) bank
in terms of total assets; the line B-max (B-min) refers to s being the bank with the

4 Results for other years are reported in the supplementary materials (Figures S1–S7), which are
available online.
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FIGURE 2 Dynamics of a single realization of the ABM built on balance-sheet data (2004).
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highest (lowest) leverage; and the line K-max (K-min) refers to s being the bank with
the most (least) bilateral contracts in the interbank market.

Looking at Figures 2–4, the first striking observation is that the ABM dynamics
converge to the market freeze condition much faster in 2008 than in the other years.
Indeed, the maximum interest rate that can be sustained by the market is also much
lower in 2008.Actually, the final values of r reached in both 2004 and 2013 appear to be
unreasonably high, meaning that the interbank market is rather stable to the proposed
dynamics. The total residual equity in the market and the number of defaults have, as
expected, a symmetrical trend, and the sudden drop of residual equity usually marks
the transition to the market freeze state, where the assets’ fire-sale depreciation � is
maximal. Note, however, that there is a significant difference between the “stable”
years 2004 and 2013. In the first instance, the equity drop ends with the total depletion
of the market, just as in 2008. In 2013, the system can absorb the first systemic crash,
and falls into a state with nonzero residual equity. Market freeze is not triggered
immediately, and even when it occurs it does not zero the value of the market. This
points to the effectiveness of the new regulatory requirements on banks’ balance
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12 M. Serri et al

FIGURE 3 Dynamics of a single realization of the ABM built on balance-sheet data (2008).
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sheets, put in place after the crisis. Concerning the difference of system dynamics
between the various shock configurations, we see in general that the convergence
of the system to the market freeze is faster when the systematically shocked bank
is “small” (ie, owns a few total assets and a few contracts, and typically has high
leverage). “Big” and less leveraged banks are, indeed, more robust to an extensive
exogenous shock, but they eventually fail, causing the same kind of market transition.
The difference in behavior is less evident in 2013, suggesting that balance sheets
became more homogeneous because of the new regulation.

We now discuss more robust results, which are obtained as averages over 1000
realizations of the ABM dynamics and for distributed exogenous shocks (the bank
to be shocked is randomly drawn at each iteration). Figure 5 supports the findings
outlined above: up to 2008–9, the final equity in the system

P
i Ei .tc C1/ is basically

zero, whereas after 2010 we observe a higher resilience of the system, with a residual
equity around 30% even after the freezing of the interbank market. Figure 6 shows
instead the length of the ABM dynamics, namely the number of iterations tc for
the system to converge to the market freeze. This indicator basically quantifies the
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FIGURE 4 Dynamics of a single realization of the ABM built on balance-sheet data (2013).
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IIR denotes “interbank interest rate”.

maximum delay allowed for a regulatory intervention aimed at taming the crisis spiral.
Notably, the minimum value of tc is six times smaller in 2008 than in 2012. We see that
the system monotonically loses its resilience before the global crisis and increases it
afterwards. Yet, according to our previous analysis, the system converges to its final
state in different ways for the early and late years of our data set. In particular, the
first drop of total equity can well represent the outbreak of the crisis event. We thus
introduce the half-life of the system, t1=2, as the iteration step at which the total equity
in the system is halved, ie,

X
i

E.t1=2/ D 1

2

X
i

E.0/:

In the whole range of years considered, this iteration corresponds to the earliest
substantial equity drop. As Figure 7 shows, t1=2 behaves differently from tc: there
is an additional minimum in 2011 (the year of the European sovereign bond crisis),
and the more resilient markets are now those long before the global financial crisis.
Overall, according to our results, 2008 marked the transition between a regime in
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FIGURE 5 Final relative equity in the system after the market freeze,
P

i Ei .tc C
1/=

P
i Ei .0/, averaged over 1000 ABM run-on balance sheet data for different years.
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FIGURE 6 Final iteration tc of the dynamics (market freeze condition), averaged over
1000 ABM run-on balance sheet data for different years.
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which a crisis was hard to trigger but would lead to a total market crash, and a regime
in which a crisis was easier to trigger but during which part of the system would be
likely to survive.

5 DISCUSSION

In this paper, we have designed an ABM to mimic the dynamics of the interbank
lending market during financial crises. The model relies on banks’ balance sheets as
its only data source, and it is built on simple assumptions regarding banks’ strategic
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FIGURE 7 Half-life t1/2 of the total equity in the market, averaged over 1000 ABM run-on
balance sheet data for different years.
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behavior during periods of financial distress. We find that as we get close to the global
financial crisis of 2008, the system becomes less stable in terms of time to collapse.
This feature persists after the crisis, and another peak of instability is observed in 2011.
However, the consequences of a crisis are much more severe (in terms of overall losses)
before 2009, as afterwards new regulations made banks’balance positions more solid.

Here, we focused on the dynamics interbank market because of its crucial role
as liquidity provider to the financial system (Allen et al 2014) and the economy in
general (Gabbi et al 2015). As this system results from the usually uncollateralized
(over-the-counter) bilateral contracts between banks, it is rather sensitive to market
movements (Smaga et al 2016); it can dry up under exceptional circumstances (Brun-
nermeier 2009), becoming one of the main vehicles of distress spreading in the finan-
cial system. The dynamics of the interbank market is driven by the leverage-targeting
and liquidity-hoarding behaviors of banks. These selfish strategies may consolidate
individual banks’ positions, but they also spread financial distress through spin-off
effects such as interest rate increases and fire-sale spillovers; these, in turn, induce
other banks to adopt similar procyclic behavior. Exceptional monetary policies by
central banks are usually implemented to sustain the interbank market during periods
of deteriorated creditworthiness and distributed distress. However, in order to assess
the stability of the system, in our model we did not include the possibility of a reg-
ulatory intervention or bailouts. Indeed, by measuring the speed at which the crisis
breaks out, we provide a temporal window for implemented anti-cyclical policies to
be effective in mitigating the crisis.
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Hausenblas, V., Kubicová, I., and Leăanovská, J. (2015). Contagion risk in the Czech
financial system: a network analysis and simulation approach. Economic Systems 39(1),
156–180 (http://doi.org/bz2n).

Klinger, T., and Teplý, P. (2014).Systemic risk of the global banking system: an agent-based
network model approach. Prague Economic Papers 23(1), 24–41 (http://doi.org/bz2p).

Krause, A., and Giansante, S. (2012). Interbank lending and the spread of bank failures: a
network model of systemic risk. Journal of Economic Behavior and Organization 83(3),
583–608 (http://doi.org/br98).

Lucas, I., Schomberg, N., and Turpyn, V. (2014). Agent-based approach for interbank liq-
uidity issue. International Journal of Trade, Economics and Finance 5(5), 401–404 (http://
doi.org/bz2q).

Lux, T., and Marchesi, M. (1999). Scaling and criticality in a stochastic multi-agent model
of a financial market. Nature 397, 498–500 (http://doi.org/drcp22).

Musmeci, N., Aste, T., and Matteo, T. D. (2015). Risk diversification: a study of persistence
with a filtered correlation-network approach. The Journal of Network Theory in Finance
1(1), 77–98 (http://doi.org/bz2r).

Nature Physics (2013). Editorial: net gains. Nature Physics 9, p. 119 (http://doi.org/bz2s).
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