
Contents lists available at ScienceDirect

Energy Policy

journal homepage: www.elsevier.com/locate/enpol

Portfolio analysis and geographical allocation of renewable sources: A
stochastic approach

Antonio Scalaa,b,c, Angelo Facchinia,b,⁎, Umberto Pernad, Riccardo Basosia,e

a CNR - Istituto Sistemi Complessi, Italy
b IMT-Alti Studi, Lucca, Italy
c LIMS - The London Institute for Mathematical Sciences, UK
d SPE - Society of Petroleum Engineers, Milan, Italy
e Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy

A R T I C L E I N F O

Keywords:
Renewable energy sources
Modern Portfolio Theory

A B S T R A C T

We take inspiration from the Modern Portfolio Theory introduced by Markowitz to propose a simplified strategy
for the portfolio management of renewable energy sources based on Gaussian fluctuations with tunable corre-
lations. By analyzing the impact of production fluctuations, we show how – depending on the sources' temporal
correlation patterns – a careful geographical allocation of different types of renewal energy sources can reduce
both the energy needs for balancing the power system and its uncertainty. The proposed strategy can be easily
integrated in a decision support system for the planning of renewable energy sources. Therefore, providing
policy/decision makers with an additional tool. We test our strategy on a set of case studies including a real-case
based on literature data for solar and wind sources, and discuss how to extend the computation to non-Gaussian
sources. The paper shows that in the Markowitz framework an efficient trade-off between production and
fluctuations can be easily achieved, and that such framework also leads to important considerations on energy
security. In perspective, analysis of time series together with such enriched frameworks would allow for the
analysis of multiple realistic renewable generation scenarios helping decisions on the optimal size and spatial
allocation of future energy storage facilities.

1. Introduction

Taking into account the recent environmental disasters, the increase
in pollutant emissions (especially in large urban areas like megacities
Kennedy et al., 2015) and the increasing risk of climate change in
coastal areas suggests that the exploitation of planetary resources as
infinite source disregarding of the environmental impact of human
activities should no longer be considered as a driving force of world
economies. Considering this scenario, Green and Sustainable Economy
is gaining importance not only as simple branch of ecological eco-
nomics, but represent a concrete economic development model. For
example, in the last thirty years an energy policy based on sustainable
development has been implemented by the European Union as a
foundational act, in accordance with the post-Kyoto protocol and the
formalization of the package “Climate-Energy 20-20-20” (in force since
June 2009 and valid from January 2013) which has three main ob-
jectives to be achieved by 2020: (1) 20% emissions reduction compared
to 1990 levels; (2) reaching the renewable share of 20% compared to

the gross final consumption; (3) improving energy end-use efficiency of
20% (Cucchiella et al., 2017) The implementation of such incentive
policies favoured in the last years the spread of renewable energy
sources (mainly wind and photo voltaic), considered almost in-
exhaustible while ensuring a drastically reduced environmental impact
when compared to traditional sources such as fossil fuels.

With regards to the impact of renewable energy sources on the
power grid, production from intermittent renewable sources brings
with it challenges in terms of matching demand and supply on a real
time basis (Brouwer et al., 2014). The limited programmability of solar
and wind generation capacity has increased the amount of less efficient
and more polluting spinning reserve generation needed to be called
upon at any moment by the balancing market (Ortega-Vazquez and
Kirschen, 2009), partly offsetting the environmental and economic
advantage of such renewable sources (Facchini, 2017). Although bat-
tery storage is often cited as a definite solution to this problem, it is still
expensive and hardly scalable in a short time frame (Weitemeyer et al.,
2015), and not always is a suitable and viable solution under the
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economic point of view (Korjani et al., 2017). Although innovative
solutions like using a carefully planned electric car mobility for buf-
fering energy production fluctuations have been proposed and analysed
(Mureddu et al., 2018), we are still far away from an agreement of a
common storage strategy. Therefore, an albeit more limited but sensible
approach would be to investigate whether an optimal spatio-temporal
allocation of renewable energy production sites could reduce fluctua-
tions and thus the volume of electricity produced and sold on the bal-
ancing market (Mureddu et al., 2015). Limiting the fluctuations would
not only reduce the size of balancing markets and of greenhouse gas
emissions, but would also be beneficial in reducing the impact on the
grid and on the storage systems, especially in terms of aging cycles and
optimal charge management of storage systems (Xu et al., 2016; Korjani
et al., 2017).

With regards to the optimal management of renewable sources, in
recent years Portfolio Theories have found a set of interesting appli-
cations. Portfolio Theory is nowadays a widely accepted method for the
selection of efficient energy generation portfolios (Bhattacharya and
Kojima, 2012; Kruyt et al., 2009) with the aim to maximize social as-
pects (Awerbuch and Berger, 2003) or financial returns (Roques et al.,
2008). The method generally makes use of numerical methods to de-
termine the most efficient mix of generation sources, also applying an
empirical/analytical approach (Sunderkötter and Weber, 2012). Some
authors also use the Sharpe Index (Janczura, 2010) to measure the
performance of different energy portfolios composed of oil, coal, nat-
ural gas, nuclear energy and renewable sources. Awerbuch and Berger
(2003) provided one of the first evaluations of the application of
portfolio theory for development of efficient portfolios with diversifi-
cation of sources applied to the original 15 EU nations. With regards to
EU countries, Garcia et Al. developed a model for the management of
different sources at company level (Garcia et al., 2017), while Cuc-
chiella and colleagues applied the portfolio concept to the Italian
electricity market (Cucchiella et al., 2017), showing that Portfolio
theory can help in planning better and greener renewable sources
production schemes. For a review on applications of Portfolio theory to
energy systems the reader is referred to DeLlano-Paz et al. (2017).

Following the above mentioned works, in this paper we investigate
a new aspect related to the geographical allocation of renewable
sources based on their temporal correlation characteristics; such a
model allows to consider the interplay among expected energy pro-
duction and RES production fluctuations, since the variability in energy
production must be balanced by traditional power sources, hence not
only increasing the production of pollutants but also customers’ bills,
since electric power on the balancing market has much higher costs. To
this aim we introduce a simplified model to investigate the power
output of renewable energy sources by means of Gaussian fluctuations
with tunable correlations, analyzing the impact of production fluctua-
tions via Modern Portfolio Theory (MPT) analysis introduced by
Markowitz (1959). Our aim is to provide an additional criterion to be
integrated into planning/optimization tools for renewable energy
sources placement that can be used also for greener energy policies. In
this paper we show how a careful geographical allocation, based on the
temporal correlation patterns of the renewal energy sources, can reduce
both the amount of energy needed for balancing the power system and
its uncertainty. We then discuss an extended framework that allows for
the optimization of real non-Gaussian portfolio of renewable energy
sources (both wind and solar) showing that and efficient configuration
of renewable power plants is easily achievable through MPT. In per-
spective, analysis of time series (Facchini et al., in press) together with
such enriched frameworks would allow for the analysis of multiple
realistic renewable generation scenarios helping decisions on the op-
timal size and spatial allocation of future energy storage facilities.

This paper is organized as follows: In Section 2 we introduce the
stochastic model and discuss its impact on the assessment of energy
security and congestions; moreover, we consider its extension to the
case of non-Gaussian time series. In Section 3 we present a case study

based on synthetic energy sources showing that the beneficial effects of
negative correlations on portfolio allocation; we then present a case
study based on real data from Italian renewable sources, showing how
even a simple balancing of wind and solar power could reduce the size
of the fluctuations. Finally, we state our conclusions and future direc-
tions in Section 4.

2. Model description

In this section, we follow the ideas of financial portfolio for optimal
investments developed by Markowitz (1959). Portfolio theory is based
on the financial principle of asset diversification. According to this
approach the diversification of financial assets can lower the overall
risk compared to the risk of the individual assets. Finance theory di-
vides total risk into two different components: (1) unsystematic risk,
principally affecting the prices of an asset (this risk can be reduced by
means of diversification) and (2) systematic risk, affecting the prices of
all assets. Systematic risk cannot be diversified and is connected to a
common risk related to all securities (market). A portfolio is efficient
when the unsystematic risk is removed through the diversification and,
accordingly, the market portfolio risk (standard deviation) equals the
systematic risk. Furthermore, each financial asset is composed by three
elements: (1) the expected return of the asset, (2) the risk of the asset
(i.e. the standard deviation of the expected returns due to market
fluctuations, also called volatility of the asset) and (3) the correlation
between the assets composing the portfolio. The correlation between
assets measures how two assets behave in relation to each other. For
example, a perfect positive correlation (+ 1) implies that the two assets
move in the same direction. Perfect negative correlation (− 1) means
that the two assets move in the opposite direction. If the correlation is 0
the two assets fluctuate randomly. The risk is minimized according to a
specific return as objective and an optimal portfolio is formed by assets
negatively correlated. Investors do not necessarily aim to maximize
return, but also take into account the risk associated with investments
and the realization of portfolios that decrease the risk by maintaining
the value of return.

We introduce an optimal portfolio for renewable energy sources by
considering the need to allocate a set of N renewable electric power
plants on = …i N1 sites, and we call Wi the maximum possible power
generation size on the i-th site. To describe the sites’ energy production,
we will assume that their unit production is described by a random
variable pi, with expected value =p eE( )i i and fluctuations character-
ized by their standard deviation σi, where = −σ p eE[( ) ]i i i

2 2 ; notice that
in the language of Portfolio Theories σi is also called the risk associated
with the i-th source. Notice that a single source can refer also to a set of
geographically nearby micro-generators, like the ones that can be
planned in cities to enhance self-production and try to match locally
demand and generation in the form of microgrids (Halu et al., 2016), a
strategy that is considered promising to achieve the goal of net negative
electric cities (Kennedy et al., 2018, 2017; Stewart et al., 2018).

In our case, since we are considering electric generation, the pro-
duced power must exactly match the demand and that any fluctuation
needs to be balanced by the grid and by the balancing market. Hence,
also within this framework, variance is strictly related to the risk of
diminished revenues or even economic losses because of fees paid in the
balancing market.

We will indicate the energy output of a plant as p wi i, where wi is the
size of the i-th plant, while the set � of all the possible allocations (i.e.
the set of all the generation possibilities of the N power plants) is
constrained by the N inequalities:

� = ≤ ≤w w W{ : 0 }i i i (1)

and hence is a convex set. We will also refer to the vector �
→ ∈w

subject to the constrains reported in Eq. (1) as a energy generating
portfolio or, more simply, a portfolio.

Since we are considering renewable plants, their energy outputs will
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be correlated because of the fact that, usually, the sites where they are
deployed are close under the geographical point of view, therefore
subject to similar weather conditions influencing their production and
their fluctuations. As a first approximation, we will describe such cor-
relations by their covariance matrix σ whose elements are

= − −σ p e p eE[( )( )]ij i i j j , and ei is the expected production from site i.
By definition, the correlation coefficient between variables i and j is
defined by =ρ σ σ σij i j ij. We can thus compute the corresponding cov-
ariance matrix C as:

=C σ ρ σij i ij j (2)

Under such hypothesis, the total production from renewable sources
PR will be a random variable = ∑P w pR i i with expected value ER and
variance σR

∑

∑ ∑ ∑ ∑

=

= =

E w e

σ w w σ w w ρ σ σ

R
i

i i

R
i j

i j ij
i j

i j ij i j
2

(3)

Hence, → = → →E w w e( ) ·R is a linear functional of the allocation vector →w ,
while → = → →σ w w Cw( ) ·R

2 is a quadratic form of the allocations →w in the
covariance matrix C. Following MPT, this is equivalent to consider a
Markowitz portfolio with expected return ER and volatility σR.
Accordingly, we consider the expected return ER as the production that
one can obtain from the N generators, and the volatility as the power
fluctuations that the generators produce. Therefore, a portfolio can be
considered optimal either when for a given level of generation it
achieves the minimum value of the fluctuations, or when for a given
level of risk (i.e. given the size of the fluctuations) it achieves the
maximum level of generation.

The set �R of the feasible renewable energy productions E σ( , )R R is
the image of a compact convex set � via linear and quadratic func-
tions; hence, also �R is a compact convex set. Optimal portfolios cor-
respond to those →w whose image → →E w σ w( ( ), ( ))R R lies on the upper
boundary of �R. In Fig. 1 we report a general example of feasible
portfolios. In particular, the set �R of feasible portfolios is located in the
internal area, while the efficient frontier, i.e. the boundary of �R corre-
sponding to optimal portfolios, corresponds to the upper branch of the
curve.

It is worth noticing that at each point in the E σ( , )R R plane can
correspond more than a portfolio, and that not only the best, but also
the worst portfolios are found on the boundaries of �R. The choice of an

optimal portfolio depends on the desired balance between the in-
creasing revenues of higher expected energy production and the in-
creasing costs associated with balancing fluctuations in the energy
production; since such constrains will fix only a value of E σ( , )R R on the
efficient frontier, there will be in general freedom to decide which of the
portfolios corresponding to such values to choose.

2.1. Convexity and investment costs

We now consider the effects of the costs on the allocations. We have
already assumed that physical, geographical, and political constrains
limit the size of the plants (i.e. of the portfolio) in the convex set �

defined as the Cartesian product of finite intervals ≤ ≤w W0 i i of fea-
sible sizes. On the other hand, the plants allocation will be naturally
limited by a finite budget B, constraining the total investment cost to be

≤ ∑ ≤f w B0 ( )i i , where fi is the cost function associated to the i-th
plant. If – as reasonable – the production cost of each plant is a
monotonic non-decreasing function, then also the set
� = ≤ ∑ ≤w f w B{ : 0 ( ) }i i i of possible investments is convex. This also
implies that the set of feasible points � � �= ∪ (i.e. the feasible
portfolios) is also a convex set. Finally, the attainable productions
� �= → → → ∈E w σ w w{( ( ), ( )): } is also a convex set, since it is obtained as
the image of a convex set via a positive definite quadratic form;
moreover, the images of optimal portfolios will allocated on the
boundaries of � . For simplicity, in this paper all the examples will be
worked out in the case where the investment cost does not depend
neither on the technology applied nor on the geographical location, but
will reflect only realistic fluctuations of RESs productions on the Italian
ground as modelled in the data-set of Mureddu et al. (2015).

2.2. Considerations about energy security

Energy security, i.e. the uninterrupted availability of access to en-
ergy sources, is potentially hampered by fluctuations in energy pro-
duction; in this regard, it is well recognized that the introduction of
RESs must be carefully planned (Hammons, 2008; Kunz, 2013), espe-
cially since RESs have priority dispatch . In general, fluctuating sources
can change the flows in a power grid in a way that was not planned
when the infrastructure was deployed, hence leading to unexpected
energy congestions; as an example, theoretical investigations indicate
that enhancing the presence of fluctuating energy sources could even
lead to an increased probability in blackouts (Pahwa et al., 2014).

To quantify the risk of energy congestions, we now consider the case
where a constant energy demand D needs to be satisfied both by non-
intermittent (i.e. “traditional”) energy plants – capable of a constant
energy production E0 – and by renewable sources with a fluctuating
production P. Since consumption and production must be always ba-
lanced, the stochastic variable = + −Δ E P D0 represents the size of
the balancing market. We remark that the balancing of Δ is im-
plemented through traditional energy sources with a stronger carbon
footprint.1

As an example, supposing that:

(1) The average renewable production is able to balance the demand,
i.e. + =E E DR0 ;

(2) The balancing market is able to absorb all the fluctuations up to a
size δ;

then the probability = − ≤ ≤α Prob δ Δ δ[ ] that the balancing market is
able to absorb fluctuations is a decreasing function of the renewables’
production variance σR.

In this special case, if renewable plants' productions can be

Fig. 1. General example of efficient portfolio boundaries. The frontier of the
feasible portfolios corresponds to the case of high production with small un-
certainties, and corresponds to the upper part of the parabola.

1 A carbon footprint is defined as the total emissions caused by an individual,
event, organisation, or product, expressed as carbon dioxide equivalent.
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described with stochastic Gaussian variables, and α can be calculated in
closed form as = −α δ σ1 2 erf( / )R . However, this would also provide a
reliable estimate in the case of large number of non-Gaussian produc-
tion pi with finite average and variance (as is usually in the case of high
penetration of distributed RES).

Hence, the portfolios →w that maximize security, i.e. the presence of
manageable fluctuations, are:

�

→
→∈

δ σ wmin erf( / ( ))
w

R (4)

and correspond exactly to the ones that minimize →σ w( )R . This result will
be helpful in the next section, where we will consider the case of non-
Gaussian sources both from wind and solar data.

2.3. Time dependent fluctuations

Since renewable sources are linked to the weather, the average
values of the production can be strongly time dependent. This is par-
ticularly true for solar plants, where production is absent during the
night and shows a peak around noon; moreover production will be
stronger in the summer and lower in the winter. Also in the case of
winds there will be seasonal components and possibly daily compo-
nents if breeze regimes are present. On the same footing, also the size of
the fluctuations could be time dependent. For example, we could divide
the time in discrete intervals labelled by the variable t; then we can
indicate as ei

t the average production and σi
t its standard deviation at

time t. Thus, also optimal portfolios would depend on the time t. Since
we are looking for a static allocation of our energy sources, we must
reduce to the case of a single portfolio. A possible approach would be to
transform energy production in money; as an example, if r (ϵ)t is the
revenue for producing ϵ units of energy at time t and l (ϵ)t as fee to pay if
the actual production differs by ϵ from the expected value, one can go
back to the original MPT formulation with = ∑e r e( )i t

t
i
t and

= ∑σ l σ( )i t
t

i
t as long as l (ϵ)t is a linear function. If this is not the case, it

is necessary to resort to numerical intensive techniques like Monte
Carlo methods or genetic algorithms. We notice that, if complete time
series are at hand – either from stochastic models or from real data-sets
based on the past – all the quantities can be estimated through either
Monte Carlo sampling or by numerical simulations. As an example,
using time series of the weather can help assess the impact of cyclic
components, while using predictive climate models could help in-
vestigate possible forthcoming scenarios.

3. Results

In this section we show how to compute the optimal portfolio in
different case studies. We start by considering the simple case of
Gaussian sources providing a closed-form solution in the case of =N 2,
and numerically extending it to the case of more Gaussian sources. As a
final application example, we use real time series from wind and solar
generation to show how the efficient frontier can be computed in the
case of non-Gaussian sources.

3.1. Gaussian renewable power plants

To have an intuition of the interplay among expected energy pro-
duced and the risk of fluctuations, we first consider the simple case of
two renewable power plants; in this case, correlations are described by
a single number − ≤ ≤ρ1 1, and we assume a limited amount of re-
sources to be distributed among the two plants subject to linear con-
strains + =w w W1 2 , i.e. =w w1 , = −w W w2 . Therefore, Eq. (3) be-
comes:

= +
= + +

E w e w e
σ w σ w σ w w σ σ ρ2

R

R

1 1 2 2
2

1
2

1
2

2
2

2
2

1 2 1 2 (5)

Since ∂ ∂ =E ρ/ 0R , the expected value of the produced power is not

influenced by the fluctuations, while since ∂ ∂ ≥σ ρ/ 0R
2 , for a given re-

source allocation, the variance decreases with the correlations and the
minimum possible value is attained when the two sources are maxi-
mally anti-correlated (i.e. = −ρ 1).

We show in Fig. 2 a theoretical example of feasible portfolios in the
case of two variables for different values of ρ. For simplicity, we have
chosen to vary the allocation w1 in the interval [0, 1] with = −w w12 1.
According to this choice, there is a one-to one correspondence between
E σ( , )R R and the two variables w1 and ρ; with such choice, ER assumes
the two values e1, e2 for the extreme allocations = =w w1, 01 2 and

= =w w0, 11 2 . Moreover, we consider the case in which the second
plant has a lower expected production ( <e e2 1) but both plants are
characterized by the same variance. In this case, since =σ σ1 2, it is
possible to minimize the risk ( =σ 0R ) when the productions of the two
plants are totally anti-correlated ( = −ρ 1).

We remark that the optimal portfolio to be chosen strongly depends
on political and economic factors. In fact, if there is no penalty for
producing fluctuations, the best option for an investor is to take the
portfolio with the maximum average production. On the other hand,
the best portfolio for the environment is the one with the lowest fluc-
tuations, unfortunately corresponding to a lower power production. In
the first case, the owner transfers the extra cost of energy balancing
(both in terms of pollution and tariffs) to the community; in the second
case the owner is forced to a lower return in his investments. All the
other points on the efficient boundary represent possible compromise
among the investor and the community that can be reached according
to the policy implemented.

3.2. Several Gaussian renewable power plants

Extending the model to >N 2 Gaussian sources, we first notice that,
while for two variables a maximal anti-correlation = −ρ 1 can be at-
tained, this is not generally possible in the case of more variables at the
same time, i.e. it is not possible to attain ∀ = −i j ρ, 1ij ; mathematically,
one has to check that the spectrum of the covariance matrix C is non
negative.2 We will now consider a synthetic case of Ns solar plants with
average production ei

s and risk σi
s and Nw wind-power stations with

average production ei
w and risk σi

w. The total output of a portfolio →w is

thus = → →E w e·R where→ = ⎛
⎝

⎞
⎠

→

→e e
e

s
w . By indicating with ρij

ss, ρij
ww the mutual

Fig. 2. Values of ER and σR in the case of two-resources allocation for different
correlation values. In the ideal hypothesis of totally anticorrelated sources
When sources are totally anti-correlated ( = −ρ 1), it is possible to attain the
minimum value for the risk; in general, decreasing the correlation at fixed
output ER decreases the risk σR.

2 The spectrum of a matrix is defined as the set of its eigenvalues …λ λ λ, , , n1 2 .
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correlation among solar plants and wind stations and with ρij
sw the cross

correlations among solar and wind production, we can define the re-
duced covariance matrices =C σ ρ σij

ww
i
w

ij
ww

j
w, =C σ ρ σij

ss
i
s

ij
ss

j
s and

=C σ ρ σij
ws

i
w

ij
ws

j
s. Thus, for a portfolio → = ⎛

⎝
⎞
⎠

→

→w w
w

s
w its risk is = → →σ w Cw·( )R

with covariance matrix

= ⎡
⎣⎢

⎤
⎦⎥

C C C
C C

ss sw

ws ww
(6)

For the sake of simplicity, we will consider the simplified case
where only (anti)correlation among wind and solar are considered:

=ρ 0ww , =ρ 0ss and =ρ ρij
ws ∀ i j, ; hence, cross correlations among

wind and solar outputs become a parameter and = − → ⊗ →C ρ σ σws w s.
Moreover, we will consider average productions (both for wind and
solar) to be equally distributed among 0.5 and 1. Following (Mureddu
et al., 2015), we will use as values for the fluctuations → = →σ e0.10s s and
→ = →σ e0.15w w.

In Fig. 3 we show the results for = =N N 5s w plants at varying ρ. We
notice that it is possible to reach a low risk value ≈σ 0R even for

> −ρ 1; in particular, for our choice of correlations C is a still corre-
lation matrix (i.e. it has a positive spectrum) at = − = −ρ N N1/ 1/s w.
Notice that since ∂ ∂ =E ρ/ 0R and ∂ ∂ = − → → ⊗ → → <σ ρ w σ σ w/ 2 ·( ) 0R

w w s s2 ,
decreasing correlation always decreases the risk of any portfolio. Thus,
the efficient frontier moves towards the left as correlations decrease,
indicating that for an accurate choice of the correlation patterns the
same amount of energy ER can be produced with less fluctuations.

3.3. Realistic renewable power plants

Finally, we consider a case study based on real solar and wind time
data from renewable plants located in Italy (for further information
about data the reader can refer to: Mureddu et al., 2015). We consider
the 8 sites where both solar plants and wind farms are present. We
assume that the standard deviation for wind farms is 15% while for solar
plants is 10%; such figures have been suggested by Enel (one of the main
electric utility operating in Italy) as realistic values to assess the daily
production of renewables (private communication); such values have
lead to the agreement of the model of Mureddu et al. (2015) with real
data.

We also notice that the total production of wind farms is smaller by
a factor ∼ 7 respect to the total production of solar plants; hence,
portfolio with higher level of energy production will allocate most
weights on solar plants.

In Fig. 4 we show the efficient portfolio frontier for the case of

totally uncorrelated energy productions (black curve). It is possible to
check that portfolios corresponding to very low productions are wind
based, while portfolios with higher energy output are solar based. In the
intermediate range, the fluctuations associated to the optimal frontier
grow almost linearly with the power output, indicating that inter-
mediate portfolios are mostly a linear combination of low production
and high production portfolios.

We then investigate what would balance wind and solar energy
production by increasing the size of wind farms, i.e. scaling up their
productions and standard deviation by a factor ∑ ∑e e/i

s
i
w. As seen in

Fig. 4, the efficient portfolio frontier for scaled energy sources (red
curve) shows that such reallocation allows for a strong reduction of the
risk σR even in absence of negative correlations. In fact, we are still
considering the case of totally uncorrelated energy sources. As can be
noticed in Fig. 4, at ∼E MW2900R (corresponding to ∼ 97% of the
maximum possible ER), it is possible to reduce the risk by ∼ 55% (from

∼σ MW300R to ∼σ MW170R ).
In general, we can expect that solar and wind power have negative

correlations; however, we have checked that if we introduce synthetic
negative correlations like in Section 3.2, the efficient frontier remains
almost unchanged. This is due to the fact that without reallocation,
wind farms are too small and do not produce fluctuations large enough
to compensate solar energy's ones. On the other hand, introducing
synthetic (anti) correlations in the balanced portfolio has macroscopic
effects on the efficient boundary; as an example, for = −ρ 1/8 the risk at
fixed production ∼E MW2900R of would further reduce by ∼ 15% (from

∼σ MW170R to ∼σ MW145R ).

4. Discussion and conclusions

In this paper we show that the role of fluctuations when considering
the spatial planning of renewable energy sources is not trivial and needs
to be properly accounted. By using a basic model based on Optimal
Portfolio Theory we show that both with artificially generated data and
case studies based on real data, the anti-correlation (often present
among the fluctuations of different renewables) can be a suitable cri-
terion for the optimal spacial and temporal allocation of renewable
energy production in order to reduce the impact of fluctuations on the
size of the electric power balancing market. In fact, thinking in terms of
portfolios would allow to optimize also the size and the spatial allo-
cation of future energy accumulation facilities and to allow utilities to
develop business models tailored according to the local distribution of
renewable sources and storage systems.

Fig. 3. Efficient portfolio boundaries in the case of =N 5 Gaussian sources for
different values of the correlation coefficients. Notice that for more that two
sources it is possible to reach a negligible value of the risk even if > −ρ 1.

Fig. 4. Efficient portfolio boundaries in the case of real solar and wind data
from plants located in Italy (Mureddu et al., 2015). The lower curve (black)
represents optimal portfolio under the assumption of zero correlation among
the risks; the upper curve represent the improvement that can be reached under
the same assumption by balancing wind and solar production.
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Although, in the paper, to highlight the effects of correlations we
concentrate on the size of the energy produced as a proxy for the re-
turns – a case where we can rely on the data-set of Mureddu et al.
(2015) – it is straightforward to consider the case where power plants
have a cost related both to the technology and to the geographical lo-
cation and where policies attribute a cost to the fluctuations in energy
production. In such an approach, portfolios will allow both the policy
maker to evaluate the impact on the energy prices and carbon footprint,
and investors to correctly estimate their return on the investment.

Furthermore, considering a careful portfolio-driven spatial alloca-
tion has several advantages. In particular, an optimal spatial and tem-
poral allocation of renewable energy production could reduce the size
of the electric power balancing market with the consequences of low-
ering average energy prices on balancing markets themselves, since the
uncertainties in renewable production would be reduced. Moreover, it
would reduce the indirect carbon footprint of renewable sources caused
by the use of non-green generators to balance fluctuations in energy
production.

Via portfolio analysis it would also possible to focus on policy issues,
like the allocation of non-programmable renewable resources in the
most effective locations, helping to optimize the size and spatial allo-
cation of future energy accumulation facilities. With such a framework,
it would be possible to minimize the amount of subsidies to renewable
generative capacity necessary to reach a given emission reduction goal.
Avoiding overcapacity and extending per-unit generation hours would
also improve the attractiveness of investment in subsidized renewable
generation and provide incentives for the retirement of older and less
efficient traditional power generation held for reserve.

A possible extension of the model would be to consider spatial al-
locations taking into account the energy security of the system also in
the case of islanding; in fact, it has been show that the electric trans-
mission system could take advantage of separating in regional areas in
order to mitigate energy congestions and – eventually – black-outs
(Mureddu et al., 2016).

In summary, the reduction of fluctuations would lead to several
beneficial consequences, like reducing the stress and the congestion on
the power grids, maximizing their output by avoiding curtailment,
lowering average energy prices on balancing markets, reducing the
indirect carbon footprint of renewable sources and optimizing the hours
of operations of renewable and conventional energy sources.

Finally, with the inclusion of investment and operative costs of re-
newable generation and related infrastructures (together with a 5–10
years forecast of trends in electricity demand), the above-mentioned
framework could also be adopted as a tool to guide regulators, decision-
makers, and utilities in order to attain several goals, like focusing the
development of non-programmable renewable resources towards the
most effective locations and minimizing the amount of subsidies to
renewable generative capacity necessary to reach a given emission re-
duction goal. Such a portfolio planning, by avoiding overcapacity and
extending per-unit generation hours, would also improve the attrac-
tiveness of investment in subsidized renewable generation while pro-
viding incentives for the decommissioning of older and less efficient
traditional power generation held for reserve.

Future directions will be devoted to extending and refining the
model for an accurate computation of the correlations testing different
distributions for modelling the non Gaussian sources, and extend the
computation to the case of a large (>104) number of micro-generators,
exploring a scenario of full deployment of green solar and wind micro-
grids in urban environments.
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