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Abstract. We use a simple model of distress propagation (the sand-
pile model) to show how financial systems are naturally subject to the
risk of systemic failures. Taking into account possible network struc-
tures among financial institutions, we investigate if simple policies can
limit financial distress propagation to avoid system-wide crises, i.e. to
dampen systemic risk. We therefore compare different immunization
policies (i.e. targeted helps to financial institutions) and find that the
information coming from the network topology allows to mitigate sys-
temic cascades by targeting just few institutions.

1 Introduction

Cascade and contagion processes on networks are of central importance in a globalized
financial world [1]. The main focus is on systemic risk, i.e. on the risk that a large
portion of the financial system fails. Understanding the importance of nodes respect
to systemic risk has been a productive topic in the recent years [2,3] since it is crucial
in order to implement immunization policies that avoid or at least mitigate large
financial crisis. To measure systemic risk with an accuracy sufficient for studying
and implementing such policies, requires an accurate characterization not only of
the financial network structure, but also a detailed knowledge of the balance sheet of
financial institution; on the other hand, even partial information allows to reconstruct
the topology a financial network [4].

While most detailed models look at extreme events like bailouts, in the spirit of
statistical mechanics model we will look at the Bak, Tang and Wiesenfeld (BTW)
model [5] as a simplified description of the propagation of the financial distress
level [6]. The BTW model has a long history [7] to understand self-organized critical
states of sandpile automaton models. The mean field theory [8] yelds the same criti-
cal exponents of the Bethe lattice [9]; in general, mean field theories for such models
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are akin to the theory of branching processes [10]. The first studies of the dynamics
of BTW cascades on a random graph preceeds the blossoming of complex networks’
studies and the consequent understanding of the dynamics on scale-free networks [11].
The BTW model has been proposed to explain self-organized criticality in a network
of economic agents with finite consumption [12], to describe aggregate gluctuations
from independent sectoral shocks [13], to underly economic fluctuations [14] and also
the dynamics of market economies [15] or to explain the power law distribution of
price drops of real stocks [16].

While the influence of the graph topology on the distress dynamics has already
been studied in [6], in this paper we look at the possibility of mitigating distress
cascades via financial immunization policies. In Sect. 2 we explain the model studied;
in Sect. 3 we study our model via numerical simulation and finally in Sect. 4 we
discuss the results and the possible extensions of our work.

2 Model

We model financial institutions as nodes of a network of liabilities, i.e. a network in
which there is a link among two nodes a and b whenever institution a owns contractual
obligations to deliver cash or similar to institution b. If a financial institution a fails,
all the institutions to whom a owns suffer losses; such losses can eventually cause other
failures and propagate, sometimes even causing system wide cascades. Such situation
is referred to as financial contagion [17] and algorithms to assess the systemic risk
of a financial network have been developed [2]. Such metrics of systemic risk are
very important to perform stress-tests that allow to understand what happens in a
financial system as a consequence of a shock. On the other hand, we want to capture
the dynamics in absence of major stress; we will show that even with a simplified
view of the financial institution behaviour, the system is driven toward self-organized
criticality.

While in case of major failures there are algorithms to ensure a single clearing
mechanism [18], financial institution normally release distress BEFORE defaulting.
In fact, distress comes from taking risk and is hence endogenous in financial systems.
Obviously, each institution has its own level of acceptable distress; when the distress
exceeds such threshold, it can be released on neighbour (linked) institutions via their
liabilities. Hence, in a zero'™ order model we can imagine that the distress threshold
is proportional to the institution size that we will also assume to be proportional to
the number of links. Furthermore, we will assume that when an institution distress
rises above its threshold, it gets uniformly distributed among all its neighbours. We
will mimic such process on a network via a BTW model.

2.1 BTW Model

We consider a network G = (V, E) where the nodes ¢ € V represent financial in-
stitutions and the edges (i,j) € E =V x V are present among linked institutions.
We suppose G to be connected and indicate with k; the degree of node i, i.e. the
number of neighbours (adjacent nodes) of 7. In the BTW model, to each node cor-
responds a threshold that we will assume to be equal to its degree k;. Also, to each
node it is associated a dynamical variable s; (the distress field) that takes integer
values. The sites where s; > k; are called critical sites, and the dynamics assumes
that two strictly separated time-scales exists: on the slow time-scale, distress is added
at random to the system until some sites are critical; on the fast time-scale, distress
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Fig. 1. Cascades will have an approximate power law distribution in a finite system. As an
example, we plot the pdf pa of the cascade area A (i.e. the number of nodes involved in
a cascade) as a function of the dissipation p (i.e. the probability that distress is dissipated
during a cascade) for a network of |V| = 1000 nodes. When dissipation is very high (see
p = 0.30), the number of nodes involved in a cascade is much lower than the system size.
Lowering the dissipation, the maximum cascade size grows up to the system size and the
pdf is approximately power law (see p = 0.05). For too small dissipation, a large portion
of the cascades becomes system wide generating a peak in the pdf at A = |V| (curve with
p = 0.01). This is due to the fact that to each value of the dissipation p corresponds a
cascade cutoff size &; obviously, when considering a system of size |V| > £(p), the peak in
the cascade’s pdf at A = |V| disappears.
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is released by distributing one unit of distress to each of the critical sites’ neigh-
bour. In the classical BTW model on a lattice, distress is absorbed when it reaches
the lattice borders; since on a network there is no natural boundary, we will con-
sider two separate cases: in the quenched case, a fraction p of nodes are assigned
to the boundary (i.e. they absorb distress); in the annealed case, at each step each
unit of distress that gets redistributed from critical sites has a probability p of being
absorbed.

Hence, the BTW model is an out of equilibrium model at stationarity: the slow
injection of distress is interspersed with fast relaxation events that starts when some
sites become critical, consist of cascades redistributing distress and end when there
are no more critical sites. By measuring either the size S of such cascades (i.e. the
number of distress units redistributed during an avalanche) or the area A of a cascade
(i.e. the number of nodes involved in a cascade), one finds that for vanishing dissipa-
tion p the probability distribution function (pdf) of either A or S become power law
like in a system at the critical state (Fig. 1); historically, this is the reason why such
systems have been said to show “self organised criticality”. Notice that, according to
the value of the dissipation p, the pdf of the avalanches for a finite system can be
very different from the critical one.

Since we are dealing with finite size system, it is very important to understand
how the pdf of the cascades scales with the dissipation p. The first observation is
that dissipation introduces a natural cut-off to the cascades; in the following, we will
concentrate on the cascade size S (i.e. the number of sites that have become critical
during a cascade) and define £ to be the limiting cut-off size of the cascades. In other
word, cascades of size S > £ have a vanishing probability to be observed. Simulation
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studies show that cascades’ pdf has a characteristic scaling form

ps = ST f(5/¢) (1)

where f(z) ~ 1 for z << 1 and f(x) — 0 sharply for > 1. In mean field approxima-
tion, the power law exponent can be calculated to be 7 = 3/2 and the cut-off function
f to be the exponential function. In the case of the BTW model on a random graph,
it is possible to perform analytical calculations under the approximation that the
system is locally tree-like [19]; in such a case, mean-field results are recovered. For a
random graph, also the cut-off size can be calculated to be [19]

Eocp? (2)

in the case of annealed dissipation.

3 Results

We simulate the cascading processes on Erdos-Renyi random graphs of size |V| =
10000 nodes; to check that fluctuations in the network structure do not influence our
results, we have performed such simulations on 10 statistically independent network
realization. The algorithm describing the BTW model on a graph is described in
alg. 1.

Algorithm 1 Pseudo-code description of the BTW algorithm.

loop
{slow part of the dynamics:}
while no site is critical do
add a unit of distress on a randomly chosen site
end while
{fast part of the dynamics:}
repeat
distribute the distress of critical sites on their neighbours
adsorb distress on boundaries
until no site is critical
end loop

We first check that cascades evolve in a tree-like fashion; if this is true, we expect
to observe A = S since if the number of loops are irrelevant then there is a vanishing
probability that a site become critical more than once during a cascade. Analogously,
we expect also that the the quantity of distress G distributed in a cascade to be
proportional to S. We observe such behaviour in Fig. 2.

The functional form Eq. (1) for the cascades’ size pdf for an annealed BTW model
on a random graph implies that S%/2pg is a decaying exponential in S/¢; in Fig. 3
we show that this is the case for several values of the dissipation p. Hence, by fitting
such exponentials, we can recover the observed dependence of ¢ from p.

We compare such behaviour with quenched cases in which dissipation occurs on a
fraction p of fixed lattice sites, i.e. distress gets absorbed when reaching such sites. In
particular, we consider the case where sites are chosen at random and the case where
sites are chosen in decreasing order of degree. In both cases we still observe that
S3/2 pg has the form a decaying exponential in S /€; hence, we can use exponential
fitting to estimate the dependence of £ from p also in the quenched cases.
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Fig. 2. Numerical checks of the tree-like nature of cascades on random graphs. The line
S ~ A shows that the number of sites A affected by the cascade approximatively equals
the number of sites S that become critical during a cascade, i.e. each sites becomes critical
just once. On the same footing, the amount of distress G distributed by critical sites is
approximated by the area A times the average degree (k) of the network.
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Fig. 3. Cascades on a random graph have a functional form ps o< S~3/2 exp(—S/€). Hence,
plotting $%/? ps vs S allows to estimate the cutoff ¢ via exponential fitting.

In Fig. 4 we show £(p) for the three cases of annealed dissipation p, of a fraction
p of randomly chosen dissipating sites and of centrality (degree k) based dissipating
sites. We find that £ oc p~2 not only in the annealed case but in all the cases under
consideration. If our purpose is to minimize cascade’s impact on the system, we want
to have the least possible value of £ for a given p. As expected, the random quenched
case is worse than the annealed case: in fact, while in the annealed case the distress
has a probability p of being dissipated at each step, in the quenched case nothing
happens until a distress site has not been reached. On the other hand, if we assume
that distress redistribution resembles a random walk, sites with higher degree will be
visited more frequently and hence are better choices for dissipation sites; in fact, we
observe that the centrality based choice of sites leads to the lowest values of &.
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Fig. 4. Cascades’ cutoff size £ vs p for different immunization strategies on a random graph.
Circles (quenched strategy): a fraction p of sites is randomly chosen to be the absorbing
sites. Squares (annealed strategy): each time a unit of distress is shed from a critical site,
it has a probability p to be absorbed. Diamonds (centrality-based strategy): a fraction p of
sites is chosen in decreasing order of degree-centrality to be absorbing sites. The errors in
the estimation of the £ are of the order of 3%.

4 Discussion

In this paper we us the BTW sandpile model to mimic the propagation of distress
on a network of financial institutions. Each institution is supposed to have both
the size and the distress threshold proportional to its degree. Distress is supposed
to accumulate continuously (although on a long time scale) on the network but to
discharge abruptly (on very short time scale) via cascades. In absence of policies,
distress is supposed to dissipate with a rate p during the cascades. Alternatively,
financial immunization policies can be mimicked by choosing the sinks (absorbing
sites) on the network; such choices correspond to “protecting” a fixed (quenched) set
of financial institution. Given a policy, the amount of dissipation or the fraction of
immunized institutions defines a cutoff ¢ limiting cascades’ size; for a given p, the
lower the &, the better the policy.

We observe that a policy based on a random choice of such institutions perform
worse than letting the system adjust by itself. On the other hand, targeted policies
can enhance the capacity of the system to limit large cascades. In particular, we
observe that centrality based policies (“too central to fail” — but in our case also “too
big to fail”) perform better than no policy or the random policy. The effectiveness
of the centrality based policy is possibly due to the strong correlation among degree
centrality and random walk centrality [20]; in fact, the path of each distress unit
during a cascade is a random walk on the graph [21]; hence, sinks should be chosen
according to RW-centrality to define optimal policies.

Our analysis considers random graph topologies and disregards correlations among
financial institutions [22]; however, it has been observed that degree-degree correal-
tion already enables to control the cascade size in financial networks [6]. Hence, our
analysis points that controlling the topology of the financial network could strongly
enhance the effectiveness of targeted immunization policies. As an example, the pres-
ence of Rich Clubs could augment the effects of targeted policies for securing the
financial network. This result would represent a highly controversial point from the
perspective of policy makers trying to enforce a free market and to avoid oligopolies.
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Moreover, networks of networks [23] should be considered when modelling the

financial system in more details; as an example, multiplex networks can be used to
capture the temporal structure of the debts [24]. Of particular interest would be the
possibility that coupling systems could mitigate cascades in single systems at the

ex

pense of enlarging inter-system cascades [25].
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