On the number of biologically permitted logics
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Networks of gene regulation are responsible for such complex feats as morphogenesis and cell pro-
gramming. At a molecular level, they rely on local updates rules, or logics. But quantitative insights
into how many and which logics are used have proved elusive. We analyze the number of biologically
permitted logics, which we calculated in a recent paper using the composition of Boolean functions,
and bound it with a simple function of the local connectivity. It confirms that the range of biological
logics is highly restricted, which makes it easier to infer them through experiments.

Can the study of life lead to new mathematical theorems?
One reason to hope so is that the very existence of life
remains deeply mysterious [1]. Darwin’s theory tells us
that evolution is the result of mutation, selection and
inheritance. But, from a physics point of view, we have
essentially no understanding of how life got started in
the first place [2]. Studies of artificial digital life that
possess these key ingredients exhibit intricate dynamics
and have even led to new approaches to optimization.
But they have yet to exhibit the sorts of innovative leaps
found in biological evolution.

Coming back down to earth and turning to the only
life we actually know—biology—we are confronted with
serious gaps in our knowledge. How do networks of gene
regulation achieve complex feats such as morphogenesis
[5] and cell programming? The economy of viruses sug-
gest the existence of modular subroutines, but we have
little understanding of the operating system of life.

We would like the study of life to lead to new types
of mathematics for describing it, but how likely is this in
practice? One reason to be hopeful is that mathematics
tends to progress along the lines that mathematicians at-
tend to [4]. Research areas that require new mathematics
to advance, and for which there is a demand for progress,
tend to influence what mathematics gets done.

The problem of identifying biologically permitted log-
ics is just such an example. It is simple to state in bio-
logical terms, yet translates into a precise and seemingly
important mathematical problem, namely, the number
and degeneracy of Boolean functions under composition.

Why are these two problems equivalent? In genetic
regulatory networks, genes talk to transcription factors
and transcription factors talk to genes, but neither group
talks to itself. This type of network structure is called bi-
partite, and it shows up in many contexts, such as the
network of academic papers and their authors.

Genetic regulatory networks have been extensively
modeled using Boolean networks [6]. In this model, genes
are either on or off and the state of a node at time ¢+ 1 is
a Boolean function of the states of its inputs at time ¢. A
Boolean function is just a fixed update rule for what to do
in response to what your inputs are doing, and through-
out this paper I use the phrases Boolean function and
logic interchangeably.

A major drawback of Boolean networks is that they as-
sume that there is one species of node when in fact there
are two. Genes can only interact indirectly via transcrip-
tion factors. To capture this feature, a new model for
modeling networks of gene regulation has emerged, called
bipartite Boolean networks [12, 13]. To describe how a
gene talks to other genes via the transcription factor mid-
dlemen, it’s necessary to keep track of the number of
second-nearest neighbors as well as neighbors. Then the
Boolean functions of the transcription factors, which are
themselves Boolean functions of genes, can be expressed
as a composition of such functions. This is denoted with
the shorthand

{t1,t2,...,tnt,

which I call the composition structure. For example,
{2,2} is shorthand for h(a,b,c,d) = f(gi(a,b),g2(c,d)),
where a, b, ¢ and d are binary-valued input variables.

In a recent paper, my coauthor and I showed that a
bipartite Boolean networks can be decomposed into two
ordinary Boolean networks. Based on this, we derived
an exact expression for the number of logics that are
biologically valid, based on the composition of Boolean
functions [3].

In this paper, we explore the properties of this quantity
and what it tells us about the number and type of bio-
logically permitted logics. Specifically, we show that the
number of logics is tightly bound from below and above
by
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where a(n) is the number of Boolean functions of n vari-
ables which depend on all n variables, that is,

a(n) = i(—l)”’i <7;> 22", 2)
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We use these bounds to confirm that the fraction of bi-
ologically permitted logics is small, and that many com-
positions of logics lead to the same logic.

Boolean functions and two stepping stones

Before we derive our main result, let’s review some gen-
eral properties of Boolean functions and work out two



stepping stones which will prove useful later. There are
22" Boolean functions of n variables. For n = 2, for ex-
ample, these are true, false, a, b, @, b ab, ab, ab, ab, a + b,
a+b,a+0b, a+b, ab+ab and ab+ ab. In this notation, @
means NOT a, ab means a AND b, and a + b means a OR
b. Two of these 16 functions depend on no variables, four
depend on one variable, and 10 depend on two variables

For our first stepping stone, let a(n) be the number
of Boolean functions of n variables that depend on all n
variables. By the principle of inclusion and exclusion, we
can write a(n) as the inverse binomial transform of 22",
which is the expression given in (2). The first several a(n)
are 2, 2, 10, 218, 64594 (OEIS A000371 [15]). Our first
stepping stone is that we can bound a(n) from below and
above:

22" _ 22 < a(n) < 2%, (3)

The right bound follows from the definition of a(n).
The left bound can be deduced by showing that the mag-
nitude of the ¢ — 1th term in (?7?) is less than half that
of the ith term. Why is this helpful? Because it implies
that the sum of the third (i = 2) term onwards, even
were they to all have the same sign, could never add up
to more than the second term. So, we need to show that
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which implies that
2% < (n—i+1)22

where ¢ < n. Since the smallest that n — ¢+ 1 can be is
1, we need only that 2i < 22" . It is indeed for all i > 1,
establishing the left bound in (3).

Now let’s turn to our second stepping stone. It turns
out, as we shall see, that it is also useful to consider the
inverse binomial transform of a(n), namely,

The first several u(n) are 2, 0, 8, 192, 63776 (OEIS
A193247 [15]). Our second stepping stone is that, as with
a(n), we can bound u(n) from below and above:

a(n) —naln —1) <u(n) <a(n). (5)

To prove this, again we rely on showing that the mag-
nitude of the ¢ — 1th term in (4) is less than half that of
the ith term. We need to show that

(;" )t -1 < 5(7)at), )

2ia(i—1) < (n—1i+1)a(s), (7)

that is,

where i < n. Inserting the upper and lower bounds from
(3) into the left and right sides and rearranging, we find

2ig(n—z‘+1)(22“—z').

Since the smallest that n —i+1 can be is 1, we need only
21 < 227" i Tt is for all i > 3, and inserting ¢+ = 1 and
i = 2 into eq. (6) confirms the result for those values too.
Derivation of bounds

We are now ready to derive eq. (1), our main result.
Consider a Boolean function of n inputs, which are them-
selves Boolean functions of ¢4, ..., ¢, inputs. Our starting
point is the main result of my recent paper on biologi-
cally permitted logics [3], namely, that the number of
permitted logics is

c(ty,.tn) =Y alm) > g .. 00, (8)

m=0 01...0m

where
a; = (22 —2)/2.

The second sum adds up the product of all m-tuples of
the a;. For m = 0, the sum is over the null set and is
taken to be 1. For example,

(i) = 2+ 20, (9)
c(i,j) = 242 + o) + 10 ey, (10)
c(i,j, k) = 24 2(0y + a; + ax) (11)

+ 10(0@0@ + ajop + aiak) + 218 oy,

Composition Lower True Upper  Permitted
(k1y... kn) bound value bound fraction
(1,13 10 16 40 1
{1,2} A 70 88 160 0.34
(1,3} I\ 1,270 1528 2560 0.023
2,21 A\ 490 520 640 0.0079
2,3} A\ 8,890 9160 10,240 2.1 x10~°
3,3} A\ 161,200 161,800 163,840 8.8 x 1071
{1,1,1} 218 256 1744 1
{1,1,22 M 1526 1696 6976 0.026
{1,1,3} 1 27,686 30,496 111,616 7.1x10°°
{1,2,2} A 10,682 11,344 27,904 2.6 x 1076
{1,2,3} A 193,802 204,304 446,464 1.1 x 10~
{2,2,2} A 74,774 76,288 111,616 4.1 x 107'°

{2,2,3} A\ 1,356,614 1,375,168 1,785,856 4.0 x 10~
{2,3,3) I\ 2.46 x 107 24,792,448 2.86 x 107 2.1 x 10™7°
{3,3,3} DN 4.46 x 10° 447,032,128 4.57 x 10° 3.3 x 10~ 146

TABLE I: The composition structure {t1,...,t,} indicates a
Boolean function of n inputs, which are themselves Boolean
functions of ¢1, ..., t, inputs. The true value of the number of
pemitted logics is given by eq. (8) and the bounds are given
by eq. (1). The ratio of the true value and the number of
Boolean functions of ¢t; + ... + t,, variables is very small for
most structures.



Explicit values of these are given in Table I for 4, j and
k ranging from 1 to 3.

Eq. (8), while exact, does not provide much intuition
for how this function behaves over different composition
structures because it involves a sum over all subsets of a
set. We would like to express it in simpler terms to get a
better feel for its behavior. Our goal is to tightly bound
it from below and above, as shown in eq. (1).

We can immediately bound eq. (8) from below by tak-
ing just the last (m = n) term. This gives
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But is this bound any good? This depends on how much
the other terms contribute to the total, which is not at
all clear.

To find out, we need to bound ¢(t1, ..., t,) from above,
which is harder. Our first step is to re-express eq. (8) in
terms of products of 8; = 2% /2 instead of a; = (22" —
2)/2. For example, with a little algebra, we find

ci) = 28, (13)
c(i,j) = 8—8(B8i+ B;) +105:p;, (14)
c(i,j, k) = —192+4200(8; + B; + Bk) (15)

—208 (8: 85 + BiBr + BiBr) + 218 ;B br.

Notice that the coefficients in egs. (13-15) are different
for each line, unlike the case for eqs. (9—11). These new
expressions of ¢ in terms of the 3; are less “natural” than
the ones in terms of the «;. Nevertheless, let us put up
with the extra complexity in the hope of finding our up-
per bound.

By analogy with the expansion of (1—2)™ into an alter-
nating series of powers of z, we can express c(t1,...,1,)
as

n
et ...ty :Z

u(n, m) Z ﬁgl...ﬁam,
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where the coefficients u(n, m) satisfy
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Notice that u(n,m) is similar to u(n) in our second step-
ping stone, but it differs in that it sums only the top
n—m of the a(i) terms, and the binomial coefficients are

shifted downwards. The first several u(n,m) are

2
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8, —8, 10;

192, —200, 208, —218;

63,776, —63,968, 64,168, —64,376 64,594.

Note that u(n,0) = u(n) and u(n,n) = (=1)"a(n). Just
like we were able to bound u(n) from below and above,
we can do the same for the magnitude of u(n,m):

a(n) —na(n —1) <u(n,m) < a(n). (18)

This proof of this is along similar lines to that of the
bounds for u(n). We will make use of (18) soon.

But before we do, we can make (16) tidier. Let B, be
the average value of the product of m randomly selected
choices of the f3;. Then the sum on the right of (16) can
be expressed as () By,. Aesthetics isn’t the only reason
for doing this. While the sum of the products of the m-
tuples is not an increasing function of m, B,, is. This will
prove useful in a moment. But for now we can write

(try .. tn) = i:(—l)"u(n,m) (;)Bm. (19)

m=0

We want to show that this is bounded from above by
the last (m = n) term. To prove this, we need to show
that all but the last terms sum to at most zero, that is,

"i:l u(n,m) (Z) By < :Z_:Zu(n, m) (:;) Bp.

m=0
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Inserting the upper and lower bounds from (18) into the
left and right sides and rearranging, we find

o) S ( )8 < (aln) - 0y (
(20)

m=0 m:O
—m eve —m 0
Recall that B,, increases with m. This means that we
can set the B,, to 1, the validity of which implies the
validity of the above. So we need only show

o & () £ (1)
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Since the even binomial coefficients and the odd binomial
coefficients both sum to 2"~ !, we need only show

a(n)(2" 1 —

that is,

1) < (an —na(n—1))2""1,

a(n+1) > (n+1)2"%a(n). (21)

Inserting the upper and lower bounds from (3) into the
left and right sides and rearranging, we find

22" > (2" + 1) (n + 1),

which is true for n > 2. For n = 1, (21) is true by inspec-
tion, completing the proof of the right side of (1).



There are two limiting regimes for ¢(ty,...,t,) which
provide some intuition for how the function behaves. The
first is a composition with few inputs, each of which has
many inputs. The second is one with many inputs, each
of which has few inputs.

For n = 2 and arbitrary ¢ and j, by eq. (8)

c(i,j) < 10/22 . 2% 2%

For arbitrary n and t; = 2,
- n
2,...,2) = ™ < 8" .
c(2,...,2) WZ::O <m>a(n,m) < 8"a(n)

The equality is by eq. (8) and the inequality by eq. (1).

Discussion

Our lower and upper bounds, which are described in Ta-
ble I, are very tight. Dividing the left and right sides of
eq. (1) by the right side, the bounds are within

n

I1 (1 - 2/22”)

i=1

of the true result. For example, for the composition struc-
ture {3, 3}, the logarithm of the lower and upper bounds
differ by 0.1%.

There are two aspects of our upper bound to notice.
The first is that the composition of logics is highly re-
stricted. The number of logics of ¢, + ... + t, vari-
ables is 227", But the number of distinct logics is
22"92" 2" The base-2 logarithm of the fraction of log-
ics that are valid is less than 2" plus the sum of 2% minus
the product of 2%, that is, 27 4211 + ... 42t — 2t Ftn,

The second thing to notice is that the composition
of logics is a many-to-one input-output map. To see
why, consider all of the ways of assigning Boolean func-
tions to f and g1, ..., gn. This is 22722 22" But we
know from our upper bound in eq. (1) that these map
to at most a(n)/2" 22" ... 22" Boolean functions of the
t1,...,t, variables. So the average degeneracy—the num-
ber of logic compositions that map to the same logic—is
at least 2722"/a(n). Since a(n) is bounded from above by
22" the average degeneracy is at least 2. Such redun-
dancy in how a particular logic is coded could make them
resistant to mistakes [20].

But what makes this more interesting is that this de-
generacy appears to be far from uniform. Some logics
show up much more frequently than others. Computer
enumeration suggests that simpler logics, in the sense of
depending on fewer of the t; + ...+ t,, inputs, tend to
show up more. For example, for the composition struc-
ture {2,2}, 22% of the 4,096 compositions map to true
and false, and 30% map to 28 other relatively simple log-
ics. If this effect applies generally to other composition
structures, it would suggest that not only are biologically
permitted logics restricted, but they tend to be simple as

well. Both properties would make the reverse engineering
of genetic regulatory logics through experiments easier.

The study of the composition of Boolean functions is
motivated by how biology processes information at a ge-
netic level. But it is also a beautiful and fundamental
mathematical question in its own right. That it seems to
have received little attention until motivated by the study
of life suggests that new theorems are indeed around the
corner.
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