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RECURSIVELY DIVISIBLE NUMBERS

ABSTRACT. Divisible numbers are useful whenever a whole needs to be divided
into equal parts. But sometimes we need to divide the parts into subparts, and
subparts into sub-subparts, and so on, in a recursive way. To understand num-
bers that are recursively divisible, I introduce the recursive divisor function: a
recursive analog of the usual divisor function. I study the number and sum of
recursive divisors and give a geometric interpretation of recursive divisibility.
I show that the number of recursive divisors is twice the number of ordered
factorizations, a problem much studied in its own right. By computing those
numbers which are more recursively divisible than all of their predecessors,
I recover many of the numbers prevalent in design and technology, and sug-
gest new ones which have yet to be adopted. These are useful for recursively
modular systems which operate across multiple organizational length scales.

1. INTRODUCTION

1.1. Divisor function. The usual divisor function is

ox(n) = me.

m|n
It sums the divisors of n raised to some integer power x.

When z = 0, the divisor function counts the number of divisors of n and is
written d(n). It is well known that for n = p{™* p52 .. .p?j, with p1, pe, ..., p; prime,

(1) dn)=14a1)(1+a2)...(1+«ay).

Numbers n for which d(n) is larger than that of all of the predecessors of n are
called highly composite numbers and have been extensively studied [3, 4].

When 2 = 1, the divisor function sums the divisors of n and is written o(n). It
is well known that

ay+1 ol o+l
—1 —1 » 1
2) o(n) = 21 P2 b

pr—1  p2—1 pj—1

Numbers n for which o(n)/n is larger than that of all of the predecessors of n are
called super-abundant numbers and have also been studied [4].

1.2. Recursive divisor function. In contrast with the usual divisor function, in
this paper I am concerned not only with the divisors of a number n but also the
divisors of the resultant quotients, and the divisors of those resultant quotients,
and so on. I introduce and study the recursive divisor function,

(3) Ra(n) =% + 3 kp(m),

m|n

where the sum is over the proper divisors of n. When x = 0, I call this the number
of recursive divisors a(n). When z = 1, T call this the sum of recursive divisors b(n).
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2 RECURSIVELY DIVISIBLE NUMBERS

Definition 1. The number of recursive divisors is a(l) =1 and

a(n) =1+ Z a(m),

m|n
where m|n means m is a proper divisor of n.
For example, a(10) =1+ a(1) 4+ a(2) + a(5) = 6, illustrated in Fig. 1.

Definition 2. The sum of recursive divisors is b(1) =1 and

b(n) =n+ Z b(m).

m|n

For example, b(10) = 10 + b(1) + b(2) + b(5) = 20, illustrated in Fig. 1. Note that
a(n) depends only on the set of exponents in the prime factorization of n, but b(n)
depends on both the set of exponents and the set of primes.

1.3. General remarks. My path to the recursive divisor function began with a
discussion with colleagues about numbers whose divisors have many divisors, and so
on. To my surprise, when I wrote down (3), I found that, so far as I could tell, it had
not been investigated. As I discuss below, the related (for £ = 1) number of ordered
factorizations has been studied for some time. However, casting the problem more
generally in terms of the recursive divisor function suggests a deeper perspective,
not only in terms of k, but by motivating other properties. While here I study when
a(n) and b(n) are high, more recently I considered when a(n) = n and a(n) > n [1],
which are the recursive counterparts of the perfect and abundant numbers. Parallels
between theorems concerning the divisor function and its recursive analog suggest
a deeper connection between the two, worthy of further investigation.

I believe this work may stimulate significant new research activity, for three

hmhbn

FIGURE 1. Divisor trees for 1 to 24. The number of recursive divisors a(n) counts
the number of squares in each tree and the sum of recursive divisors b(n) adds up the
side length of the squares in each tree. Divisor trees can be generated for any n at
lims.ac.uk/recursively-divisible-numbers.
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reasons. First, the novelty of the recursive divisor function suggests there is low-
hanging fruit. Second, I have mainly relied on elementary methods, so this paper
is accessible to a wide audience. Third, I list a number of specific open questions at
the end. As well as prompting new research, effective papers should, in the words of
Thurston, “advance human understanding of mathematics” [2]. To this end, I have
included a geometric interpretation of recursively divisible numbers and tables and
plots of how they grow.

1.4. Example. Consider one of the earliest references to a number that can be
divided into equal parts in many ways. Plato writes in his Laws that the ideal
population of a city is 5040, since this number has more divisors than any number
less than it. He observes that 5040 is divisible by 60 numbers, including one to 10.
A highly divisible population is useful for dividing the city into equal-sized sectors
for administrative, social and military purposes.

This conception of divisibility can be extended. Once the city is divided into
equal parts, it is often necessary to divide a part into equal subparts. For example,
if 5040 is divided into 15 parts of 336, each part can in turn be divided into subparts
in 20 ways, since 336 has 20 divisors. But if 5040 is divided into 16 parts of 315,
each part can be divided into subparts in only 12 ways, since 315 has 12 divisors.
Thus the division of the whole into 15 parts offers more optionality for further
subdivisions than the division into 16 parts. Similar reasoning can be applied to
the divisibility of the subparts into sub-subparts, and so on, in a recursive way.

The goal of this paper is to quantify the notion of recursive divisibility and
understand the properties of numbers which possess it to a large degree.

1.5. Outline of paper. Including this introduction, this paper is divided into six
parts. In part 2, I introduce divisor trees (Figs. 1 and 2), which give a geometrical
interpretation of the recursive divisor function. Using this, I show that the number
of recursive divisors is twice the number of ordered factorizations, a problem much
studied in its own right [5, 6, 7, 8, 9]. Examining the internal structure of divisor
trees yields a relation between the sum and number of recursive divisors.

In part 3, I investigate properties of the number of recursive divisors, taking
advantage of their relation to the number of ordered factorizations. I give recursion
relations for when n is the product of distinct primes, and for when n is the product
of primes to a power. The latter can be solved for up to three primes.

In part 4, I investigate properties of the sum of recursive divisors. I give recursion
relations for when n is the product of primes to a power. These can be solved using
the relation between the sum and number of recursive divisors in part 2.

In part 5, I study numbers which are recursively divisible to a high degree. I call
numbers with a record number of recursive divisors recursively highly composite,
and list them up to a million. These have been studied in the context of the number
of ordered factorizations [9]. I call numbers with a record sum of recursive divisors,
normalized by n, recursively super-abundant, and also list them up to a million.

In part 6, I survey applications of highly recursive numbers in design and tech-
nology. I conclude with a list of open problems.

Throughout, m|n means m divides n and m|n means m is a proper divisor of n.
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2. RECURSIVE DIVISOR FUNCTION AND DIVISOR TREES

2.1. Divisor trees. A geometric interpretation of the recursive divisor function
k(n) can be had by drawing the divisor tree for a given value of n. Divisor trees
for 1 to 24 are shown in Fig. 1. The number of recursive divisors a(n) counts the
number of squares in each tree, whereas d(n) in (1) counts the number of squares
in the main diagonal. The sum of recursive divisors b(n) adds up the side length of
the squares in each tree, whereas o(n) in (2) adds up the side length of the squares
in the main diagonal. This can be extended to x2(n), which adds up area, and so
on, but in this paper I only consider a(n) = ko(n) and b(n) = k1(n).

A divisor tree is constructed as follows. First, draw a square of side length n.
Let mq,mao, ... be the proper divisors of n in descending order. Then draw squares
of side length m1, mo, ... with each consecutive square situated to the upper right
of its predecessor, kitty-corner. This forms the main arm of a divisor tree. Now, for
each of the squares of side length my,ms, ..., repeat the process. Let l1,ls,... be
the proper divisors of m; in descending order. Then draw squares of side length [,
lg, ..., but with the sub-arm rotated 90° counter-clockwise. Do the same for each
of the remaining squares in the main arm. This forms the branches off of the main
arm. Now, continue repeating this process, drawing arms off of arms off of arms,
and so on, until the arms are single squares of size 1.

2.2. Properties of divisor trees. In order to establish properties of the number
and sum of recursive divisors, it helps to consider a more fine-grained description
of divisor trees, namely, one that counts the number of divisors of a given size.

Definition 3. The number of recursive divisors of n of size k is a(n,n) =1 and

a(n, k) = Z a(m, k)

m|n

for k|n and a(n, k) = 0 otherwise.

FIGURE 2. Divisor trees for 96 and 100. There are a(96) = 224 squares in the left tree
and a(100) = 52 squares in the right. The sum of the side length of the squares, or one-
fourth of the tree perimeter, is b(96) = 768 in the left tree and b(100) = 340 in the right.
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Lemma 1. The number of recursive divisors of size k satisifes a(kn, k) = a(n,1).
Proof. By Definition 3,

(4) a(n,1) =Y a(m,1)
mln
and so
alkn, k) = Z a(m, k).
m|kn

Since a(m, k) = 0 if k does not divide m, this can be rewritten as

(5) a(kn, k) = a(km,k).
m|n

Let the prime omega function €(n) sum the exponents in the prime factorization
of n, that is, for n = p{* p5*...p;7, Q(n) = a1 + as + ... + ;. I prove the lemma
by induction on ©(n). The base case (n) = 0, or n = 1, holds by Definition 3:
a(k-1,k) = a(1,1). I now show that if a(k n, k) = a(n, 1) for all n such that Q(n) < 1,
then a(kn, k) = a(n,1) for all n such that Q(n) < i+ 1. To see why, observe that in
(5) all of the proper divisors m of n must have Q(m) at most £2(n) — 1. Therefore
by assumption all of the a(km, k) in (5) reduce to a(m, 1), and the right side of (5)
takes the form of the right side of (4) and thus equals a(n, 1). O

Lemma 2. For n > 1, the number of recursive divisors of size 1 is equal to half
the total number of recursive divisors, that is, a(n,1) = a(n)/2.

Proof. Clearly
a(n) = Z a(n,m).
m|n

By Lemma 1, this becomes

a(n) = Za(n/m, 1) = Za(m, 1) =a(n,1)+ Z a(m,1).

Inserting Definition 3 with k£ = 1 into the above gives the desired result. [

2.3. Relation to the number of ordered factorizations. Here I show that
for n > 1, the number of recursive divisors a(n) is twice the number of ordered
factorizations into integers greater than one, which I call g(n). But before getting
to that, I first introduce g(n) and mention some of the work on it.

The number of ordered factorizations g(n) satisifes g(1) = 1 and

g(n) =Y _g(m).
m|n
For example, 12 is the product of integers greater than one in eight ways: 12 =
6-2=2-6=4-3=3-4=3-2-2=2-3-2=2-2-3. S0 ¢(12) =8.
Kalmar [5] was the first to consider g(n), and it was later studied more system-
atically by Hille [6]. Over the last 80 years several authors have extended Hille’s
results [7, 8, 9], some of which we will mention later.

Theorem 1. Let g(n) be the number of ordered factorizations into integers greater
than one and set g(1) = 1. Then for n > 1, a(n) = 2g(n).

Proof. The definition of g(n) is identical to Definition 3 for k = 1, that is, identical
to a(n, 1). Since g(1) = a(1,1) = 1, the proof follows from Lemma 2. O
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FIGURE 3. On the left are the numbers of recursive divisors a(n). The recursively highly
composite numbers, which satisfy a(n) > a(m) for m < n, are the big red points. On
the right are the sums of recursive divisors b(n), normalized by n. The recursively super-
abundnant numbers, which satisfy b(n)/n > b(m)/m for m < n, are the big red points.

2.4. Relating the number and sum of recursive divisors. The quantity b(n)
is more difficult to calculate than a(n). Here I give an expression for b(n) in terms
of a(n). I will use it later to explicitly determine b(n) for certain values of n.

Theorem 2. Let B(n) = b(n)/n and A(n) = a(n)/n. Then
B(n) = 5+ 5 3 Alm).
m|n

Proof. We can write b(n) as

b(n) = Zma(n, m).

m|n
By Lemma 1,
b(n) = Zma(n/m, H=n+ Z ma(n/m,1).
By Lemma 2,
1 n 1 n on
b(n)=n+ 3 Et:ma(n/m) =3 + 2z:ma(n/m) =35 + 3 Zla(m)/m.

Dividing by n, the theorem follows. [

3. NUMBER OF RECURSIVE DIVISORS

3.1. Table and plot of values. The number of recursive divisors a(n) is harder
to compute than the number of divisors d(n). The first 72 values of a(n) and an
algorithm to generate them are given in Table 1. The first 10* are plotted in Fig.
3.
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3.2. Distinct primes. Let n = py py ... pg be the product of k distinct primes. By
(1), d(pyp2 - ..px) = 2F. Here I calculate a(p1 ps ... pr)-

Theorem 3. Let n = pyps...pi be the product of k distinct primes. Then the

exponential generating function of a(pips . ..pk) is
xT

EG(a(pip2-..pr),x) = 5 i =
Proof. This theorem is equivalent to
=1
(6) alpipa...pr) =1+ Y (Z.)a(Plpz D)
i=0

I prove it by induction. First note that a(p;) = 1+ (é)a(l) = 2. I now show that
if (6) is true for k, then it is true for k + 1. I do so by adding to a(pips2 ... pk)
all of the a values for divisors that include pgy1, apart from a(p1ps ... pr+1), since
P1P2 - . - Pk+1 1s not a proper divisor of itself. I also add a(pips ... pk), which is left
out of the expression for a(pips...px) for the same reason. There are (g) a values
that are the product of one prime that include pg41, (]1“) that are the product of
two primes that include py41, and so on. Since a depends on the number of primes
but not their values, we are not concerned with how we label the primes. Then

a(py...prs1) = a(p1-..pr) + (lg)a(pl) + (lf)a(plpg) +...+ (kﬁ l)a(pl...pk)
+ alpy ... pr)
~tatp) + 5 (ot + 3 (Nt
i+ 5 () ()
_ 1+§k: (kjl)a(pl...pi). 0
=0

So for the product of k = 1,2, ... distinct primes, a(k) = 2, 6,26, 150,1082,.. ..

3.3. Primes to a power. When n is the product of primes to powers, a(n) satisfies
recursion relations relating it to values of a(n) for primes to lower powers.

Theorem 4. Let p,q and r be prime. Then

a(p®) = 2a(p*Y),
ape”) = 2(akp e +alp ) —alp "),
a(pchre) — 2<a(pc_1qdre)+a(pch_1re)+a(pchre_1)—a(pch_lre_l)

_ a(pc—lqdre—l) _ a(pc—lqd—lre) T a(pc—lqd—lre—l)>.
Analogous recursion relations apply for the product of more primes to powers.

Proof. The approach is similar to, but somewhat simpler than, that used to prove
Theorem 6. However, Hille [6] and Chor et al. [7] proved that identical recursion
relations govern g(n), the number of ordered factorizations into integers greater
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than one. From Theorem 1, a(n) = 2g(n), and inserting this into Hille’s and Chor’s
recursion relations gives the desired results. ([

Corollary 1. Let 7 be the maximum exponent in the prime factorization of n.
Then 27 divides a(n).

Proof. All of the recursion relations in Theorem 4 have a factor of 2 on the
right side. The corollary is implied by iterating the recursion relation 7 times.
Each time, the exponents on the right are reduced by at most 1. Iterating until
the smallest exponent is reduced to 0, the exponent disappears since, for example,
a(p°q®) = a(p®). Continuing this process ultimately gives a total of 7 factors of 2.
The a(n) are expressed as a product of an integer and 27 in Table 2. O

The three recursion relations shown in Theorem 4 can be solved explicitly.

Theorem 5. Let p,q and r be prime. Then

a(p) = 2°
o < =50
a(piqr®) = i(*l)j (d) <C - Z B j) a(pt?Ire).

=0 J

Proof. The result for n = p°¢ follows by inspection. For n = p°¢? and n =

pqire, Chor et al. [7] give the analogous results for g(n), the number of ordered

n a(n) b(n) n a(n) b(n) n a(n) b(n) n a(n) b(n)
1 1 1 19 2 20 37 2 38 55 6 74
2 2 3 20 16 58 38 6 62 56 40 196
3 2 4 21 6 34 39 6 58 57 6 82
4 4 8 22 6 38 40 40 156 58 6 92
5 2 6 23 2 24 41 2 42 59 2 60
6 6 14 24 40 116 42 26 132 60 88 346
7 2 8 25 4 32 43 2 44 61 2 62
8 8 20 26 6 44 44 16 106 62 6 98
9 4 14 27 8 46 45 16 96 63 16 124
10 6 20 28 16 74 46 6 74 64 64 256
11 2 12 29 2 30 47 2 48 65 6 86
12 16 42 30 26 104 48 96 304 66 26 188
13 2 14 31 2 32 49 4 58 67 2 68
14 6 26 32 32 112 50 16 112 68 16 154
15 6 26 33 6 50 51 6 74 69 6 98
16 16 48 34 6 56 52 16 122 70 26 184
17 2 18 35 6 50 53 2 54 71 2 72
18 16 54 36 52 176 54 40 190 72 152 524

TABLE 1. The first 72 values of the number of recursive divisors a(n)
and the sum of recursive divisors b(n). A Mathematica algorithm for a(n)
iss n=2; max = 72; a = {1}; While[n <= max, a = Append[a, 1 + Total[Part[a,
Delete[Divisors[n], -1]111]1; n++]; a For b(n), replace the 1 before Total with n.
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factorizations into integers greater than one. From Theorem 1, a(n) = 2¢g(n), and
applying this to Chor’s results gives the desired recurrence relations. ([

4. SUM OF RECURSIVE DIVISORS

I now turn to the sum of recursive divisors b(n). This quantity is more intricate
than a(n), because it depends on the primes as well as their exponents in the prime
factorization of n. The first 72 values and an algorithm to generate them are shown
in Table 1. The first 10* are plotted in Fig. 3.

4.1. Primes to a power. When n is equal to the product of primes to powers,
b(n) satisfies recursion relations relating it to values of b(n) for primes to lower
powers. The recursion relations are similar to those for a(n), but more complex.

Theorem 6. Let p,q and r be prime. Then

b(p?) = 2b(p°h)+(p—1)p~,
bpfa”) = 2(be° ") + b ) b ")) + (- Dia - Dyl
b(pq'r) = 2<b(pc %) + alp®q®re) + a(pgrTh)
. b(pch 1.e— 1) a(pcflqdrefl)7a(pcflqdflre)

+ b(p"‘lqd‘lre‘l)) +(p—D(g—1)(r=1)p~ g reh

Proof. 1 first prove the case of n = p°. From Definition 2,

(7) b(p°) =p° + i b(p")
=0

Adding b(p®) to both sides and with ¢ — ¢ — 1,

C

I
-

b(p') = 2b(p™ ") —p° 7,

I
=

i
which, when inserted into (7), gives the desired recurrence relation.
I now prove the case of n = p°q®. From Definition 2,

c—1 d —1
(®) b(p°g") = pqt + )Y b(p'd’) Z b(p°q’).
1=0 j=0 =0
Adding b(p°q?) to both sides,
c—1 d d
(9) 2b(p°q") = p°g + YD b'd) + Y b(pd
i=0 j=0 §=0

which we can equally write

c d
(10) 2b(p°q”) = p°g* + > > _b'e’)
i=0 j=0
With d - d — 1 in (9), we find
d—1 c—1

(11) S b(rq’) = 2b(p°a™ ) b(p

§=0 Jj=01

IS8
=

I
=]
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With ¢ - ¢—1and d - d — 1 in (10), and inserting the result into (11), yields
(12) > b(ra’) = 2 ") = 2b(p ") + (1 - p)p g

With ¢ — ¢ — 1 in (10), we find

c—1 d
(13) DD ') =26(p° g —p Mg
i=0 j—=0

Inserting (12) and (13) into (8) gives the desired recursion relation.
For n = p°q®r®, the proof is similar to that for n = p°q? and is omitted here. O

4.2. Explicit values. The recursion relations in Theorem 6 can be solved. I only
give the results for n = p¢ and n = p°¢?. For n = p°q?re, the solution is more
intricate but can be solved in a similar way to that for n = p°¢?.

Theorem 7. Let p and q be prime, and B(n) = b(n)/n. Then
—1-(2/p)*
B(p°) = p—(2 /) for p odd,

2)/2,

(&

(c+
B(pq?) = %+% ygqﬁ;(ﬁk)()

=P

B(2¢) =

Proof. 1 first prove the case of n = p°. From Theorem 2,

o

—

(14) B(p°) =5

From Theorem 4, a(p®) = 2¢ and A(p') = a(pi)/pi = (2/p)". Inserting this into
(14), we find the desired result. For p = 2, B(2°) = (¢ + 2)/2.
I now prove the case of n = p°q?. From Theorem 2,

c d
(15) Bfa) = 5 + 550D AW

i=0 j=0

Theorem 5 gives a(p°q?) explicitly. Inserting A(pi¢’) = a(p'¢?)/(p'¢?) into (15)
yields the desired result. For p = 2, the result simplifies to contain just two sums. [

5. NUMBERS THAT ARE RECURSIVELY DIVISIBLE TO A HIGH DEGREE

5.1. Highly composite and super-abundant numbers. I briefly review highly
composite and super-abundant numbers [3, 4] before considering their recursive
analogues. A number n is highly composite if it has more divisors than any of its
predecessors, that is, d(n) > d(m) for all m < n. These are shown in the right side
of Table 2. A number n is super-abundant if the sum of its divisors, normalized by
n, is greater than that of any of its predecessors, that is, o(n)/n > o(m)/m for all
m < n. These are the starred numbers in the right side of Table 2. For small n,
super-abundant numbers are also highly composite, but later this ceases to be the
case. The first super-abundant number that is not highly composite is 1,163,962,800
(A166735 [10]), and in fact only 449 numbers have both properties (A166981 [10]).



RECURSIVELY DIVISIBLE NUMBERS 11

n a(n) n d(n)
x1 = 1 1 x1 = 1 1
x2 = 2 1-2 *x2 = 2 2
x4 = 22 1.22 x4 = 22 3
6 = 2-3 3-2 6 = 2-3 4

8 = 28 1.23
x12 = 22.3 4.9? x12 = 22.3 6
%24 = 2°.3 5.23 x24 = 2%.3 8
%36 = 22.3%2 13- 22 x36 = 22.32 9
%48 = 2.3 6-24 x48 = 2%.3 10
*60 = 22.3.5 12

72 = 23.32 19 - 23

96 = 2°-.3 7.2°
%120 = 2%.3.5 33.23 %120 = 2%.3.5 16

144 = 2%.3?2 26 - 2*
x180 = 22.32.5 18

192 = 26.3 8. 26
240 = 2*.3.5 46 - 24 %240 = 2*.3.5 20

288 = 2°.32 34 .95
%360 = 23.32.5 151 - 23 %360 = 2%.3%.5 24

432 = 2*.33 96 - 24

480 = 2°.3-5 61-2°

576 = 2°.32 43 .28
720 = 2%*.32.5 236 - 24 720 = 2*.32.5 30
840 = 23.3.5.7 32

864 = 2°.33 138 - 2°

960 = 2°.3.5 78 . 28

x1152 = 27.32 53 .27
%1260 = 22.3%2.5.7 36

%1440 = 2°.3%2.5 346 - 2°
x1680 = 2%*.3.5.7 40

1728 = 26.33 190 - 26

1920 = 27-3-5 97.27

%2160 = 2%.3%.5 996 - 24

2304 = 28.32 64 - 28
%2520 = 2%.32.5.7 48

%2880 = 26.3%2.5 484 - 28

3456 = 27.3° 253 - 27

%4320 = 2°.3%.5 1590 - 2°
%5040 = 2%*.3%2.5.7 60

*5760 = 27.32.5 653 - 27

6912 = 28.33 328 .28
7560 = 23.3%.5.7 64

%8640 = 26.3%.5 2402 - 2°
x10080 = 2°.3%2.5.7 72

x11520 = 28.32.5 856 - 28

TABLE 2. The left side shows the recursively highly composite numbers and the recursively
super-abundant numbers (starred) up to a million. All of the recursively super-abundant
numbers shown are also recursively highly composite, apart from one, 181,440. The right
side shows the highly composite numbers and the super-abundant numbers (starred) up
to a million. All of the super-abundant numbers shown are also highly composite.
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*17280

23040

25920

*x30240
*34560

46080

x51840

*60480
69120

86400
x103680

*120960
138240
161280

*172800
*207360

%241920
276480

311040
*345600
*362880
x414720
*483840

552960

604800
622080

691200
*725760

829440
*967680
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.3%.5

.33.52

.32.5.7
.3%.5
.32.5.7

.33 .52
-3%.5

.3%.5.7
.3%.5

.3%.5

.33.52

3t.5.7

210.3%.5
29.3%.5.7

212.3%.5

27.3%.5%. 7
29.3%.5

010 33 52
28.3%.5.7

ott.3%.5
210.33.5.7

a(n)

3477 -

1096 -

10368 -

20874 -
4864 -

27
29
26

25
28

1376 - 210

15979

34266

28481 -
23692 -

53485 -

.97

.96
6616 -

29

27
28

27

8790 - 210

17656 -

42520 -
34026 -

80176 -

29

28
29

28

11447 - 211

103540 -

61436 -
267219 -

28

29
27

47576 - 210

116256 -

29

14652 - 212

480953 -
156278 -

27
29

86362 - 21°

422932 -

28

65018 - 21!

Recursively super-abundant but
not recursively highly composite

181440

20.3%.5.7

163934 - 210

*x15120

20160

x25200

*27720

45360

50400

+55440

83160

110880

166320

221760

*277200

*332640

498960

554400

665280

*720720

25

24.

23.

26

24

25.

24

25

26

24.

.32.

32.

33.

.32.

.32.

33.

.34,

.32.

.33.

32.

90

96

100

108

120

128

144

160

168

180

192

200

216

224

240
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5.2. Recursively highly composite numbers. By analogy with highly compos-
ite numbers, a number n is recursively highly composite if it has more recursive
divisors than any of its predecessors.

Definition 4. A number n is recursively highly composite if a(n) > a(m) for all
m < n.

These numbers are shown in the left side of Table 2. From the third term, they
correspond to the sequence records of indices of g(n), the K-champion numbers [9].
Because a(n) depends only on the exponents in the prime factorization of n, the
exponents in recursively highly composite numbers must be non-increasing.

5.3. Recursively super-abundant numbers. By analogy with super-abundant
numbers, a number n is recursively super-abundant if the sum of its recursive
divisors, normalized by n, is greater than that of any of its predecessors.

Definition 5. A number n is recursively super-abundant if b(n)/n > b(m)/m for
allm < n.

These numbers are starred in the left side of Table 2. Early on, recursively super-
abundant numbers are recursively highly composite. The first exception is 181,440.

6. APPLICATIONS

6.1. Design grids. In graphic and digital design, the layout of graphics and text
is often constrained to lie on an underlying rectangular grid [11]. The grid elements
are the primitive building blocks from which bigger columns or rows can be formed.
For example, grids of 24 and 96 columns are often used for books and websites, re-
spectively [11]. Using a grid reduces the space of possible designs, making it easier
to navigate. And the design elements become more interoperable, like how Lego
bricks snap into place with one another, making it faster to build new designs.

What are the best grid sizes? The challenge is committing to a grid size now
that provides the greatest optionality for an unknown future. Imagine, for exam-
ple, that we have to cut a pie into slices, to be divided up later for an unknown
number of colleagues. How many slices should we choose? The answer in this case
is straightforward: the best grids are the ones with the most divisors, such as the
highly composite or super-abundant numbers [3, 4].

What are the best grid sizes? The challenge is committing to a grid size now
that provides the greatest optionality for an unknown future. Imagine, for exam-
ple, that we have to cut a pie into slices, to be divided up later for an unknown
number of colleagues. How many slices should we choose? The answer in this case
is straightforward: the best grids are the ones with the most divisors, such as the
highly composite or super-abundant numbers [3, 4].

But the story gets more complicated when we need to consider multiple steps
into the future. For instance, imagine now that each colleague takes his share of
pie home to further divide it amongst his family. In this case, not only does the
whole need to be highly divisible, but the parts need to be highly divisible, too.
This process can be extended in a recursive way.

Recursive modularity, in which there are multiple levels of organization, has long
been a feature of graphic and digital design. For example, newspapers are divided
into columns for different stories, and columns into sub-columns of text. But with
the rise of digital technologies, recursive modularity is becoming the rule. Different
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n Design and technology Display standards
*24 24 x 16  Biotech 384-well assay
*48 128 x 48 TRS 80
72 72 points/in  Adobe typography point
96 96 x 65 Nokia 1100 phone
*120 120 x 160 Nokia 100 phone 160 x 120 QQVGA
144 144 x 168 Pebble Time watch
*240 240 x 64 Atari Portfolio 320 x 240 Quarter VGA
288 352 x 288 Video CD 352 x 288 CIF
*360 360 x 360 LG Watch Style 640 x 360 nHD
480 320 x 480 iPhone 1-3 640 x 480 VGA
576 576 lines PAL analog television 1024 x 576 WSVGA
*720 720 x 364 Macintosh XL, Hercules 1280 x 720 HD
864 1152 x 864 XGA-+
960 Facebook website to 2019
*1152 1152 x 2048 QWXGA
*1440 3.5” disk block size 2560 x 1440 Quad HD
1920 1920 x 1080 Full HD
*2160 2160 x 1440 Microsoft Surface Pro 3 4096 x 2160 4K Ultra HD

2304 2304 x 1440 MacBook Retina
*2880 2880 x 1800 15” MacBook Pro Retina 5120 x 2880 bHK

3456 Canon EOS 1100D
*4320 7680 x 4320 8K Ultra HD
*8640 15360 x 8640 16K Ultra HD

TABLE 3. Recursively divisible numbers predict the numbers that frequently show up in
design and technology and display standards. All of the numbers n are recursively highly
composite; those that are starred are also recursively super-abundant.

pages of a website are divided into different numbers of columns, each of which can
be broken down into smaller design elements. Often one column from the website
fills the full screen of a phone.

6.2. Examples. Recursively divisible numbers are especially well suited to recur-
sive modularity. They provide maximal optionality for dividing wholes into parts
in a recursive way. They are frequently used in design and technology and display
standards. Examples of these are shown in Table 3.

In design and technology, these numbers are used for the screen resolutions of
watches, phones, cameras and computers. They appear in typesetting, websites and
experimental equipment, such as test tube microplates.

In display standards, many resolutions use these numbers in the height or width,
measured in pixels. Because these standards tend to preserve certain aspect ratios,
such as 16:9, usually just one of the two dimensions is highly recursively divisible.

6.3. Open questions. There are many open questions about the recursive divisor
function and recursively divisible numbers. I list eight here.

1. For what values of n does a divisor tree overlap itself?

2. For what values of n do divisor trees have an (approximate) fractal dimension?
3. Is the normalized sum of the squares of the recursive divisors, k2(n)/n?, bounded?
4. Theorem 2 relates a(n) = ko(n) and b(n) = k1 (n). What about x1(n) and k2(n)?
5. What is the recursion relation for b(n) when n is the product of k distinct primes?
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6. How many numbers are recursively highly composite? Recursively super-abundant?
7. Recursively perfect numbers satisfy a(n) = n. How dense are they?
8. Recursively abundant numbers satisfy a(n) > n. Are any odd and, if so, what is
the smallest?

I acknowledge Andriy Fedosyeyev for creating the divisor tree generator,
lims.ac.uk/recursively-divisible-numbers.

REFERENCES

[1] T. Fink, Recursively abundant and recursively perfect numbers, arxiv.org/abs/2008.10398.

[2] W. Thurston, On proof and progress in mathematics, Bull Am Math Soc 30, 161 (1994).

[3] S. Ramanujan, Highly composite numbers, P Lond Math Soc 14, 347 (1915). (The part of this
paper on super-abundant numbers was originally suppressed.)

[4] L. Alaoglu, P. Erdés, On highly composite and similar numbers, T Am Math Soc 56, 448
(1944).

[5] L. Kalmar, A factorisatio numerorum probelmajarol, Mat Fiz Lapok 38, 1 (1931).

[6] E. Hille, A problem in factorisatio numerorum, Acta Arith 2, 134 (1936).

[7] B. Chor, P. Lemke, Z. Mador, On the number of ordered factorizations of natural numbers,
Disc Math 214, 123 (2000).

[8] M. Klazara, F. Luca, On the maximal order of numbers in the factorisatio numerorum problem,
J Number Theory 124, 470 (2007).

[9] M. Deléglise, M. Hernane, J.-L. Nicolas, Grandes valeurs et nombres champions de la fonction
arithmétique de Kalmar, J Number Theory 128, 1676 (2008).

[10] N. J. A. Sloane, editor, The On-Line Encyclopedia of Integer Sequences, published electron-
ically at https://oeis.org, 2018.

[11] J. Miller-Brockmann, Grid Systems in Graphic Design (Verlag Niggli, 1999).



