
DRAFT

Biological logics are restricted
Thomas Finka and Ryan Hannama

aLondon Institute for Mathematical Sciences, Royal Institution, 21 Albermarle St, London W1S 4BS, UK

This manuscript was compiled on April 28, 2022

Networks of gene regulation govern morphogenesis, determine cell
identity and regulate cell function. But we have little understanding,
at the local level, of which logics are biologically preferred or even
permitted. To solve this puzzle, we studied the consequences of a
fundamental aspect of gene regulatory networks: genes and tran-
scription factors talk to each other but not themselves. Remarkably,
this bipartite structure severely restricts the number of logical depen-
dencies that a gene can have on other genes. Our insight is the result
of linking two seemingly unrelated fields: dynamics on networks and
the composition of logic functions. We developed a theory for the
number of permitted logics for different local architectures of genes
and transcription factors. We tested our predictions against a sim-
ulation of the 19 simplest local architectures, and found complete
agreement. The restricted range of biological logics is a key insight
into how information is processed at the genetic level. It puts se-
vere constraints on global network behavior and makes it easier to
reverse engineer regulatory circuits from their observed behavior.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

gene regulation | Boolean function | biomathematics | discrete dynamics

The development and maintenance of living organisms re-1

quires a considerable amount of computation. This is mainly2

performed at the molecular level through gene regulatory net-3

works. They govern the creation of body structures, regulate4

cell function, and are responsible for the progression of diseases.5

Since the landmark discovery of induced pluripotent stem cells,6

scientists have identified special combinations of transcription7

factors which control cell identity (1, 2). Precision control over8

cell fate opens up the possibility of manufacturing cells for9

drug development (3), disease modelling (4) and personalized10

and regenerative medicine (5).11

Models of gene regulatory networks have been investigated12

for half a century (6). They actually predate aspects of our13

understanding of gene regulation itself, such as the role of tran-14

scription factors. Partly because of this, models of regulatory15

networks have tended to be overly simplistic (7). Despite this,16

a theoretical understanding of Boolean networks, for example,17

proved elusive until the mid-2000s (8–11). More recently, com-18

plementary approaches to explicit models of gene regulation19

have been advanced, such as the geometry of gene regulatory20

dynamics (12) and integrative methods to decode regulatory21

logics (13).22

During the 20th century, various problems in biology have23

transitioned from a descriptive (14) to a predictive science (15),24

such as properties of genotype-phenotype maps (16) and pro-25

tein structure (17). Yet our understanding of how regulatory26

circuits perform complex computational tasks lags behind our27

ability to probe the expression profiles of biological systems.28

Why is this so hard?29

Predictability comes from mathematical structure, and30

mathematical structure is the consequence of constraints. In31

physics, there is an abundance of constraints, typically ex-32

pressed in the form of conservation laws. The role of constraints33

in biology is less well understood, but modularity (18, 19) and34

symmetry (20, 21) seem to play important roles. 35

One constraint on gene regulatory networks that is hiding 36

in plain site is their bipartite nature: genes and transcription 37

factors talk to each other but not themselves. Through a series 38

of biochemical events known as gene expression, genes produce 39

proteins. Some of these proteins, called transcription factors, 40

bind to the DNA and regulate the transcription of genes. In 41

this way, the expression levels of genes are determined by 42

those of other genes, but only indirectly—transcription factors 43

act as middlemen (22). Bipartite models of regulation can 44

reflect biologically important details, such as different gene 45

and transcription factor connectivities (23, 24). 46

Our familiarity with the bipartite constraint belies its im- 47

portance in determining function. As we shall see, it severely 48

restricts the range of logical dependencies that any one gene 49

can have on other genes. Identical arguments apply to the 50

dependencies that a transcription factor can have on other 51

transcription factors, but for brevity we stick to genes. 52

In this article we do three things. First, we enumerate the 53

different local architectures that relate one gene to other genes 54

via transcription factor middlemen. Gene regulatory networks 55

are built out of these local architectures, the 19 simplest of 56

which are shown in Fig. 1. Second, we develop an exact theory 57

for the number of permitted gene-gene logics, for any local 58

architecture. This number tends to be vastly smaller than the 59

number of possible gene-gene logics. Third, for the 19 simplest 60

local architectures, we compared our theoretical prediction 61

to a simulation of how gene and transcription factor logics 62

combine, and found exact agreement. We conclude with a 63

discussion of what drives this restriction and the implications 64

for reverse engineering gene regulatory circuits. 65

Significance Statement

The development and maintenance of life requires a consid-
erable amount of computation. This is mainly done by gene
regulatory networks. But there is little understanding, at the
local level, of the kinds of logical dependencies that one gene
can have on other genes. To address this, we investigated the
consequences of a well-known but under-appreciated aspect
of regulatory networks: genes and transcription factors talk
to each other but not themselves. Remarkably, this bipartite
property drastically reduces the range of permitted gene-gene
logics. This puts severe constrains on the global behavior of
gene regulatory networks, and makes it easier to reverse engi-
neer genetic circuits from observed behavior. It brings us one
step closer to understanding how biology performs advanced
computation at the genetic level.

T.F. wrote the paper and did the mathematical derivations. T.F and R.H did the simulations and
made the figures.

The authors declare no conflict of interest.

2To whom correspondence should be addressed. E-mail: tf@lims.ac.uk

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX PNAS | April 28, 2022 | vol. XXX | no. XX | 1–7

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

Results66

67

Our key insight is that the bipartite nature of gene68

regulatory networks severely limits the number of logical69

dependencies that one gene can have on other genes. To70

understand this conceptually, consider a social network puzzle.71

Imagine that men and women talk to the opposite sex but not72

their own, and each person has one of only two moods, happy73

or sad. As a man, your own mood depends on the moods of74

two women. For instance, you might be happy only if both75

women are happy. Or you might copy the mood of the first76

and ignore the second. The mood of each woman depends, in77

turn, on the mood of two men. So, ultimately, your mood is78

governed by the mood of the four men. In how many ways79

can your mood depend on them?80

You might guess that there are 224
= 65,536 ways, which81

is the number of logical dependencies on four variables. But82

in reality there are just 520 ways to depend on the four men.83

The hidden variables of the women greatly reduces the range84

of logical dependencies.85

The solution to this puzzle hints at a fundamental aspect of86

dynamical systems in which two species depend on each other87

but not themselves. It suggests that the logical dependencies88

observed between a single species are highly restricted. The89

preeminent example of such a system is gene regulatory90

networks, in which genes interact via transcription factors.91

As we shall see, the number of permissible gene-gene logics is92

severely reduced.93

94

Theory95

Before we calculate the number of permissible gene-gene96

logics—which we call biological logics—we review some97

general properties of logics. Logics are also known as Boolean98

functions, and we use the terms interchangeably. There are99

22n

logics of n variables. For n = 2, they are true, false, a,100

b, a, b, ab, ab, ab, ab, a + b, a + b, a + b, a + b, ab + ab and101

ab+ ab. In this notation, a means not a, ab means a and b,102

and a + b means a or b. Notice that two of these functions103

depend on no variables (true and false), four depend on one104

variable (a, b, a and b), and the rest depend on two variables.105

Let s(n) be the number of logics of n variables that depend106

on all n variables. By the principle of inclusion and exclusion,107

s(n) =
n∑
i=0

(−1)n−i
(
n
i

)
22i

. [1]108

The first few s(n) are 2, 2, 10, 218, 64594, starting at n = 0.109

The biological equivalent of our social network puzzle is a110

gene that depends on two transcription factors, each of which111

depends on two genes. This is the sixth local architecture graph112

in Fig. 1B. A local architecture is the connectivity that a gene113

has with other genes via transcription factor middlemen. For114

a gene that depends on n transcription factors, each of which115

depends on t1, . . . , tn genes (Fig. 1A), we use as a shorthand116

for the local architecture {t1, . . . , tn}, which counts the number117

of genes in the n branches of the tree.118

Our main theoretical result, which we derive in the Methods,119

is an expression for the exact number of biological (permissable120

gene-gene) logics for any local architecture c(t1, . . . , tn). (For121

convenience, we drop the braces around {t1, . . . , tn} when it122

π
tn

f

g1 g2 gn

π
t2

π
t1

transcription factors

genes

genes

B

A

Local architecture Projected local architect-
Short- & number of logics ure & number of logics
hand (Biological logics) (All logics)

{1} 4 4

{2} 16 16

{3} 256 256

{1, 1} 16 16

{1, 2} 88 256

{2, 2} 520 65, 536

{1, 3} 1528 65, 536

{2, 3} 9160 4.3× 109

{3, 3} 161,800 1.8× 1019

{1, 1, 1} 256 256

{1, 1, 2} 1696 65,536

{1, 2, 2} 11,344 4.3× 109

{1, 1, 3} 30,496 4.3× 109

{2, 2, 2} 76,288 1.8× 1019

{1, 2, 3} 204,304 1.8× 1019

{1, 3, 3} 3,680,464 1.8× 1019

{2, 2, 3} 1,375,168 3.4× 1038

{2, 3, 3} 24,792,448 1.2× 1077

{3, 3, 3} 447,032,128 1.3× 10154

Fig. 1. The number gene-gene logical dependencies for the 19 simplest local
architecture and their projections. A In a local architecture, a gene (blue) depends
on n transcription factors (red), each of which depends on t1, . . . , tn genes (blue).
As a shorthand, we write {t1, . . . , tn}, which counts the number of genes in the n

branches of the tree. B For the 19 simplest local architectures, we show the number of
logical dependencies c(t1, . . . , tn) (left) that a gene can have on other genes. This
tends to be much smaller than the number of logical dependencies in the absence of
the transcription factor middlemen (right), when the local architecture is projected.

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Fink et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

is the argument of a function.) It is123

c(t1, . . . , tn) =
n∑

m=0

s(m)
∑

σ1...σm

ασ1 . . . ασm , [2]124

where
αi = (22i

− 2)/2.

The second sum in eq. (2) is over all of the subsets of size m of125

the set {t1, . . . , tn}. Eq. (2) is simpler than it looks, as some126

examples illustrate:127

c(i) = 2 + 2αi,128

c(i, j) = 2 + 2(αi + αj) + 10αiαj ,129

c(i, j, k) = 2 + 2(αi + αj + αk)130

+ 10
(
αiαj + αjαk + αiαk

)
+ 218αiαjαk.131

With this, it is easy to calculate the number of biological logics
for all of the local architectures in Fig. 1. Let’s calculate c(2, 2).
Since α2 = (222

−2)/2 = 7, c(2, 2) = 2+2(7+7)+10 ·72 = 520.
These 520 biological logics are given explicitly in Fig. 3.

Fig. 1B shows the number of gene-gene logics for the
19 simplest local architectures (left) and their projections
(right). The numbers on the left tend to be vastly smaller
than those on the right. The presence of the transcription
factor middlemen severely restricts the number of permissible
gene-gene logics. We call such logics biological logics.

Simulation
To test our prediction for the number of biological logics in eq.
(2) and the left of Fig. 1B, we wrote a computer simulation to
compute how different gene and transcription factor logics
combine. For a given local architecture, we assigned all
possible logics to the gene at the top and to the transcription
factor middlemen—the f and the gi in Fig. 1A. We call
different combinations of logics equivalent if they produce
the same logical dependence of the top gene on the bottom
genes. We simulated the different architectures in Fig. 1 and
compared them to our prediction, and found exact agreement,
as shown in Fig. 2.

In general, only a tiny fraction of all logics are biological
logics, for a given local architecture. To gain some sense for
which logics make the cut, we show them explicitly for the
local architecture {2, 2} in Fig. 3. Of the possible 224

= 65,536
logics of four variables, only 520 are biological.

Discussion

The restriction of biological logics can be understood
as the consequence of two things. First, most logics cannot
be written as a composition of logics, where the composition
structure reflects the local architecture. Second, the assign-
ment of logics to genes and transcription factors is redundant,
in the sense that different combinations produce the same

Theory

Simulation

10
1

2
102 108 1032 10128

100

105

108

No. of gene-gene logics for a projected local architecture (all logics)

N
o.
of
ge
ne

-
ge
ne
lo
gi
cs
fo
r
a
lo
ca
la
rc
hi
te
ct
ur
e
(b
io
lo
gi
ca
ll
og
ic
s)

Fig. 2. Theory and simulation for the number of logics for the 19 simplest local architectures. Our theoretical prediction (circles) is perfectly confirmed by computer
simulation (crosshairs). Here we have plotted each local architecture according to the number of gene-gene logics allowed by it and its projection—in other words, in the
presence and absence of the transcription factor middlemen. These are the numbers on the left and right of Fig. 1B.

Fink et al. PNAS | April 28, 2022 | vol. XXX | no. XX | 3



DRAFT

gene-gene dependence. We consider each of these in turn
before discussing the implications for reverse engineering
regulatory networks.

Restriction of gene-gene logics
Although we have shown that, for a given local architecture,
most gene-gene logics are not permitted, is not self-evident
which ones belong to this select group. For example, for the
local architecture {2, 2} (Fig 3), the logic ab+ cd is permitted,
meaning that the dependent gene is expressed if a and b
are expressed, or c and d are expressed. But ac + bd is not
permitted—swapping a and c in the valid logic invalidates it.

Ultimately, the condition for a valid logic is being able
to express it as a composition of logics. For the 19 simplest
local architectures, brute force enumeration is sufficient to
determine the biologically permitted logics. However, there
are some shortcuts for going about this for these and more
complex local architectures. For example, one condition for
a logic to be valid for {2, 2} is that swapping the genes in
either branch does not change the logic, as is the case for
ab+ cd. But this is not sufficient: (a+ b)c is permitted, but
(a+ b)c+ ab is not, even though swapping a and b leaves both
unchanged. Further investigation will likely uncover more
comprehensive tests for biological logics.

Redundancy of gene-gene logics
We know that the number of biological logics can be at most
the number of assignments of logics to f and the gi in Fig.
1A. But we observe that the number of biological logics is
less than this. This is because different assignments of logics
to genes and transcription factors can compose to give the
same gene-gene logic. For example, for the local architecture
{2, 2} in Fig. 3, 4096 assignments compose to 520 logics. An
example of different assignments of logics which compose to
the same logic is given in Fig. 4.

So the map from the assignment of logics to gene-gene
logics is many-to-one. But not all gene-gene logics are equally

popular. Some logics show up much more frequently than
others, with the simplest logics tending to be the most
frequent. For {2, 2}, 452 assignments map each to the simplest
logics, true and false; 44 map each to simple logics such as a,
b, a or b, and others; and 4 map each to more complicated
logics, such as (a and b) or (c and d). Overall, 52% of the
4096 assignments of logics map to just 30 different gene-gene
logics. If, as we believe, this bias towards simple logics persists
in other local architectures, it would imply that biological
logics are not only restricted, but also tend to be simple.

The composition of logics is a preeminent testbed for
understanding input-output maps. Many input-output maps
in nature and mathematics are many-to-one, but with a
non-uniform degeneracy that is exponentially biased towards
simple outputs (21). Examples include RNA secondary
structure, protein complexes and model gene regulatory
networks (20). Our insight into the composition of logics is an
opportunity to give a mathematical explanation of this widely
observed empirical trend.

Looking farther afield, while we studied the composition of
logics over only two levels, we believe it is possible to generalize
our results to multiple levels. This could give theoretical
backing to computational insights into the robustness and
evolvability of logic gates, deftly studied by Andreas Wagner
and co-workers in the context of genotype-phenotype maps
(30). When the number of composition levels is large, the
limiting distribution of logics could shed light on the space of
functions in some types of neural networks (31).

Reverse engineering gene regulation
The reduction in the number of gene-gene logics severely
restricts the range of global behavior of gene regulatory
networks. A bound on the range of global behavior is the
amount of information required to reverse engineer the
regulatory network that gives rise to it. Reverse engineering
is a major goal of systems biology (13), and advances in
methods for doing so are highly sought.

Biological logics for
0 variables 3 variables 4 variables 4 variables
1 · true 8 · abc 16 · abcd 8 · ab(cd+ cd)
1 · false 8 · ab+ c 16 · ab+ cd 8 · (ab+ ab)cd

8 · (a+ b)c 16 · ab(c+ d) 8 · ab+ cd+ cd

1 variable 8 · a+ b+ c 16 · (a+ b)cd 8 · ab+ ab+ cd

2 · a 8 · (a+ b)c+ abc 16 · a+ b+ cd 8 · a+ b+ cd+ cd

4 · (ab+ ab)c 16 · ab+ c+ d 8 · ab+ ab+ c+ d

2 variables 4 · ab+ ab+ c 16 · a+ b+ c+ d 8 · (ab+ ab)(c+ d)
4 · ab 2 · (ab+ ab)c+ (ab+ ab)c 16 · (a+ b)(c+ d) 8 · (a+ b)(cd+ cd)
4 · a+ b 16 · ab(c+ d) + (a+ b)cd 8 · (ab+ ab)(c+ d) + (ab+ ab)cd
2 · ab+ ab 16 · (a+ b)(c+ d) + abcd 8 · (a+ b)(cd+ cd) + ab(cd+ cd)

4 · ab+ ab+ cd+ cd 2 · (ab+ ab)(cd+ cd) + (ab+ ab)(cd+ cd)
4 · (ab+ ab)(cd+ cd)

Fig. 3. Biologically valid gene-gene logics for a gene which depends on two transcription factors, each of which depends on two genes. Of the 224
= 65,536 logics

of four variables, only 520 are biologically valid. In our notation, ab means a and b, a + b means a or b, and a means not a. We group together logics that depend on m = 0,
1, 2, 3 and 4 variables. We need not show all 520 logics because of two kinds of symmetry. In the first, there are

(
4
m

)
ways to choose the m variables. For example, for m = 2,

there are 6 choices of two variables: ab; ac; ad; bc; bd; and cd. But the structure of the logics is the same for all choices, and we only show the logics for ab. The second
symmetry is given by the number before each logic. It is the number of logics when none or some of its variables are everywhere replaced by their negation, since doing so
does not change the structure of the logic. For example, applying this to ab gives ab, ab, ab and ab, so we put a 4 in front of the logic ab, and don’t show the rest. The column
sums are 2, 2, 10, 50 and 250, and 2

(
4
0

)
+ 2
(

4
1

)
+ 10
(

4
2

)
+ 50
(

4
3

)
+ 250

(
4
4

)
= c(2, 2) = 520. Fig. 1 gives the number of biological logics for other local architectures.

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Fink et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

a b c d
a and b c and d

f

a b c d
a and b c or d

f

g1

a b c d
a or b c and d

f

a b c d

f

– –

g1 or g2–

c or d– –– – a or b– –

g2

g1 or g2 g1 or g2–

g1 or g2– –

g1 g1

g1

g2 g2

g2

Fig. 4. Different assignments of logics to genes and transcription factors com-
pose to give the same dependence of a gene on other genes. For a gene which
depends on two transcription factors, each of which depends on two genes, there are
four ways to achieve the logic f = (a and b) or (c and d). In general, we observe
that the simplest logics tend to be the most redundant.

As we noted earlier, a global network can be broken
down piecewise into its constituent local architectures. The
information required to reverse engineer the whole is the sum
of the information required to reverse engineer the parts.
Let’s work out the information required to reverse engineer
a local architecture, on the one hand, and a projected local
architecture, on the other (Fig. 5). On the face of it, local
architectures are more intricate, and ostensibly harder to
reverse engineer. But, as we shall see, the opposite is true.

The information required to reverse engineer a projected
local architecture, which is derived in the Methods, is

Ipla = log2

((
N

t1+...+tn

)
22t1+...+tn

)
.

The information required to reverse engineer a local architec-
ture (Fig. 5 left), also derived in the Methods, is

Ila = log2
((

N
t1+...+tn

)
Bt1+...+tnc(t1, . . . , tn)

)
,

where Bi is the ith Bell number.
We show Ila and Ipla for the 19 simplest local architectures

in Fig. 5, for networks of 10 and 100 genes. The mean of Ila is
24 and 42 bits for 10 and 100 genes, and the mean of Ipla is
80 and 98 bits for 10 and 100 genes. This translates into a
considerable savings in the experimental effort necessary to
decode regulatory networks, and parts thereof, such as the
circuits activated by the transcription factor sets responsible
for cell programming.

Methods

Derivation of the number of biological logics
Here we derive an exact expression for the number of
biologically permitted logics for different local architectures.
This is the number of logics that can be expressed as a
composition of logics, according to the dependence implied by
each local architecture.

Let q(t1, . . . , tn) be the number of distinct compositions of
logics that depend on at least one variable in each and every
of the logics gi. The number of choices of gi that depend on
at least one of its ti variables is 22ti − 2, since only true and
false depend on no variables. But because both gi and gi can

Information in bits required to reverse engineer
Ila(local architecture) Ipla(projected local arch.)

Arch. 10 genes 100 genes Arch. 10 genes 100 genes

5 9 5 9

9 16 9 16

15 25 15 25

10 17 9 16

15 25 15 25

19 34 24 38

20 34 24 38

24 43 40 58

29 52 72 94

17 28 15 25

22 36 24 38

26 45 40 58

27 45 40 58

30 53 72 94

31 54 72 94

36 63 135 162

35 62 135 162

39 71 261 293

43 80 515 553

Fig. 5. The information in bits required to reverse engineer local architectures
and their projections. To reverse-engineer a local architecture or its projection, we
need to deduce two things: the connectivity and the logic. The number of connectivities
depends on the size of the entire regulatory network, so we gives examples for
networks of 10 and 100 genes. In general, the bipartite structure of local architectures
significantly reduces the amount of information necessary to reverse engineer them.

appear in the main function f and are always distinct, to
avoid double counting we must divide this number by two. Let

αti = (22ti − 2)/2.

Then 132

q(t1, . . . , tn) = s(n)αt1 . . . αtn , [3] 133

where s(0) was defined in eq. (1). For example, 134

q(i) = 2αi, 135

q(i, j) = 10αiαj , 136

q(i, j, k) = 218αiαjαk. 137

We take q(∅) to be s(0), which is 2. 138

To calculate the number of distinct logic compositions 139

c(t1, . . . , tn), we just need to sum q over the ways of depending 140

on none of the gi, plus the ways of depending on just one of 141

Fink et al. PNAS | April 28, 2022 | vol. XXX | no. XX | 5



DRAFT

the gi, and so on, up to the ways of depending on all n of the142

gi. We can write this as143

c(t1, . . . , tn) =
∑

e∈2{t1,...,tn}

q(e), [4]144

where the sum is over the power set of {t1, . . . , tn}, that is, all145

subsets e of the set {t1, . . . , tn}, denoted by 2{t1,...,tn}.146

Inserting (3) into (4) gives

c(t1, . . . , tn) =
∑

e∈2{t1,...,tn}

s(|e|)ασ1 . . . ασ|e| ,

where the σi are the elements of e and |e| is the number of147

elements in e. Grouping together subsets of the same size,148

c(t1, . . . , tn) =
n∑

m=0

s(m)
∑

σ1...σm

ασ1 . . . ασm , [5]149

as desired. For m = 0, the second sum is over the null set and
is taken to be 1.

Simulation of biological logics
To test our predictions, we simulated the logical dependence of
one gene on other genes when they interact via transcription
factors. We wrote a program in Mathematica to handle
each of the local architectures in Fig. 1B. In particular, we
determined the logical dependence of the top gene on the
bottom genes (Fig. 1A) for each possible assignment of logics
to f and to g1, g2, . . . , gn. Since f depends on n variable, there
are 22n

logics that f must run through. Since gi depends on
ti variable, there are 22ti logics that gi must run through, for
each of the gi. Thus we must run through a total of

22n

22t1
. . . 22tn

compositions of logics, for each of the local architectures.150

As an aside, this implies that c(t1, . . . , tn) is bounded151

from above by this number, which we indeed observed.152

For example, for the local architecture {2, 2}, we have153

c(2, 2) = 520 ≤ 222
222

222
= 4096. For {1, 2, 3}, we have154

c(1, 2, 3) = 204,304 ≤ 223
221

222
223

= 4,194,304.155

156

Representation and composition of logics157

Throughout this article, we write out logics in the disjunctive158

normal form, which consists of a disjunction of conjunctions.159

In other words, we write them as ors of ands, or sums of160

products. As with the product and sum, and takes precedence161

over or. Thus, for example, we have162

(a and b) or (c and d) ≡ ab+ cd163

and164

(a and c) or (a and d) or (b and c) or (b and d)165

≡ ac+ ad+ bc+ bd ≡ (a+ b)(c+ d).166

In general, for the local architecture {t1, . . . , tn}, a logic is
biologically permitted only if it can be expressed in the form

h(x1,1, . . . , x1,t1 ; . . . ;xn,1, . . . , xn,tn ) =

f
(
g1(x1,1, . . . , x1,t1 ), . . . , gn(xn,1, . . . , xn,tn )

)
,

where xi,j is the jth gene in the ith branch in Fig. 1A. For 167

example, consider the bottom right logic in Fig. 3: 168

h(a, b, c, d) = (ab+ ab)(cd+ cd) + (ab+ ab)(cd+ cd) 169

= (ab+ ab)(cd+ cd) + (ab+ ab) (cd+ cd) 170

= g1g2 + g1 g2 171

where

g1(a, b) = ab+ ab and g2(c, d) = cd+ cd.

Thus we are able to write h(a, b, c, d) as a composition of a
logic of two variables, each of which is a logic of two variables,
which corresponds to the local architecture {2, 2}.

Information for reverse engineering
The information associated with realizing a discrete random
variable that is uniformly distributed is log2 of the range
of the random variable. To reverse engineer a projected
local architecture (Fig. 5 right), we need to deduce the
connectivity and the logic, both of which we take to be
uniformly distributed. (Were the distributions to deviate
from uniform, the required information would be less.) For
a network of N genes, the number of ways that a gene can
connect to t1 + . . .+ tn other genes is

(
N

t1+...+tn

)
. The number

of logics is 22t1+...+tn . So the information, in bits, required to
reverse engineer a projected local architecture is

Ipla = log2

((
N

t1+...+tn

)
22t1+...+tn

)
.

Now let’s reverse engineer a local architecture (Fig. 5
left). For a network of N genes, the number of ways that
a gene can connect to other genes via transcription factors is(

N
t1+...+tn

)
Bt1+...+tn . The second term is the (t1 + . . .+ tn)th

Bell number, which is the number of ways to partition a set
of t1 + . . . + tn labeled elements. The number of logics is
c(t1, . . . , tn) in eq. (2). So the information required to reverse
engineer a local architecture is

Ila = log2
((

N
t1+...+tn

)
Bt1+...+tnc(t1, . . . , tn)

)
.

Acknowledgements 172

This research was supported by a grant from bit.bio. We 173

acknowledge Andriy Fedosyeyev and Alexander Mozeika for 174

helpful discussions. 175

176

1. M. Pawlowski et al., Inducible and deterministic forward programming of human pluripotent 177
stem cells into neurons, skeletal myocytes, and oligodendrocytes, Stem Cell Reports 8, 803 178
(2017). 179

2. H. Kamao et al., Characterization of human induced pluripotent stem cell-derived retinal pig- 180
ment epithelium cell sheets aiming for clinical application, Stem Cell Reports 2, 205 (2014). 181

3. S. J. Engle, D. Puppala, Integrating human pluripotent stem cells into drug development, Cell 182
Stem Cell 12, 669 (2013). 183

4. R. R. Kanherkar, N. Bhatia-Dey, E. Makarev, A. B. Csoka, Cellular reprogramming for under- 184
standing and treating human disease, Front Cell Dev Biol 2, 1 (2014). 185

5. A. B. C. Cherry, G. Q. Daley, Reprogrammed cells for disease modeling and regenerative 186
medicine, Annu Rev Med 64, 277 (2013). 187

6. S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, J 188
Theor Biol 22, 437 (1969). 189

7. S. Huang, G. Eichler, Y. Bar-Yam, D. E. Ingber, Cell fates as high-dimensional attractor states 190
of a complex gene regulatory network, Phys Rev Lett 94, 128701 (2005). 191

8. J. E. Socolar, S. A. Kauffman, Scaling in ordered and critical random Boolean networks, Phys 192
Rev Lett 90, 068702 (2003). 193

9. B. Samuelsson, C. Troein, Superpolynomial growth in the number of attractors in Kauffman 194
networks, Phys Rev Lett 90, 098701 (2003). 195

10. I. Shmulevich, S. A. Kauffman, Activities and sensitivities in Boolean network models, Phys 196
Rev Lett 93, 048701 (2004). 197

11. T. Mihaljev, B. Drossel, Scaling in a general class of critical random Boolean networks, Phys 198
Rev E 74, 046101 (2006). 199

12. D. A. Rand et al., Geometry of gene regulatory dynamics, P Natl Acad Sci USA 118, 200
e2109729118 (2021). 201

6 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Fink et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

13. B. Yan et al., An integrative method to decode regulatory logics in gene transcription, Nat202
Commun 8, 1044 (2017).203

14. M. Reed, Why is mathematical biology so hard?, Not Am Math Soc 51, 338 (2004).204
15. M. Reed, Mathematical biology is good for mathematics, Not Am Math Soc 62, 1172 (2015).205
16. A. Wagner Robustness and evolvability: a paradox resolved, Proc R Soc B 275, 91 (2008).206
17. J. Jumper et al., Highly accurate protein structure prediction with AlphaFold. Nature 596, 583207

(2021).208
18. S. E. Ahnert and T. M. A. Fink, Form and function in gene regulatory networks J Roy Soc209

Interface 13, 20160179 (2016).210
19. G. P. Wagner, M. Pavlicev, J. M. Cheverud, The road to modularity, Nat Rev Genet 8, 921211

(2007).212
20. I. G. Johnston et al., Symmetry and simplicity spontaneously emerge from the algorithmic213

nature of evolution, P Natl Acad Sci USA 119, e2113883119 (2022).214
21. K. Dingle, C. Q. Camargo, A. A. Louis, Input-output maps are strongly biased towards simple215

outputs, Nat Commun 9, 761 (2018).216
22. C. Buccitelli, M. Selbach, mRNAs, proteins and the emerging principles of gene expression217

control, Nat Rev Genet 21, 630 (2020).218
23. R. Hannam, R. Kühn, A. Annibale, Percolation in bipartite Boolean networks and its role in219

sustaining life, J Phys A 52, 334002 (2019).220
24. R. Hannam, Cell states, fates and reprogramming, Ph.D. thesis, King’s College London221

(2019).222
25. G. Torrisi, R. Kühn, A. Annibale, Percolation on the gene regulatory network, J Stat Mech223

2020, 083501 (2020).224
26. Y. Liu, A. Beyer, R. Aebersold, On the dependency of cellular protein levels on mRNA abun-225

dance, Cell 165, 535 (2016).226
27. K. J. Karczewski, M. P. Snyder, Integrative omics for health and disease, Nat Rev Genet 19,227

299 (2018).228
28. N. J. A. Sloane, editor, The On-Line Encyclopedia of Integer Sequences, published electroni-229

cally at https://oeis.org, 2021.230
29. J. L. Payne and A. Wagner, Mechanisms of mutational robustness in transcriptional regulation,231

Front Genet 6, 322 (2015).232
30. K. Raman, A. Wagner, The evolvability of programmable hardware, J Roy Soc Interface 8,233

269 (2011).234
31. A. Mozeika, B. Li, D. Saad, The space of functions computed by deep layered machines, Phys235

Rev Lett 125, 168301 (2020).236

32. S. E. Ahnert et al., Principles of assembly reveal a periodic table of protein complexes, Sci-237

ence 350, aaa2245 (2015).238

Fink et al. PNAS | April 28, 2022 | vol. XXX | no. XX | 7


