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Networks of gene regulation determine cell identity and regulate cell function, but little is known
about which logics are biologically favored. We show that, remarkably, the number of logical de-
pendencies that a gene can have on others is severely restricted. This is because genes interact via
transcription factors but only gene-gene interactions are observed. We enumerate the number of
biologically permitted logics by mapping the problem onto the composition of Boolean functions,
and confirm our predictions computationally. This is a key insight into how information is processed
at the genetic level.

Puzzle. Here is a simple question with a surprising an-
swer. Imagine that people only have two moods, happy
or sad. As a man, your own mood depends on the moods
of two women. For instance, you might be happy only if
both women are happy. Or you might ignore them both
and always be sad. The mood of each woman depends, in
turn, on the mood of two men (Fig. 1a). So, ultimately,
your mood is governed by the mood of the four men. In
how many ways can your mood depend on them?

Solution. You might guess that there are 22
4

= 65,536
ways, which is the number of logical dependencies on
four variables. But in reality there are just 520 ways to
depend on the four men. The hidden variables of the
women greatly reduces the range of logical dependencies.

Why we care. The solution to this puzzle hints at a
fundamental aspect of dynamical systems in which two
species depend on each other but not themselves. It sug-
gests that the logical dependencies observed between a
single species are highly restricted. The preeminent ex-
ample of such a system is gene regulatory networks, in
which genes interact via transcription factors. As we shall
see, the range of permissible gene-gene logics is severely
reduced.

Boolean networks. For 50 years, single-species Boolean
networks have been extensively studied as crude mod-
els of gene regulatory networks. The model was a first
attempt to model cell states [1], in which attractors in
the dynamics mirror different cell types [2]. But despite
their simplicity, a theoretical understanding of Boolean
networks proved elusive until the mid-2000s [3–7].

Drawbacks. However, this model has a major draw-
back: it assumes that just one species of player is in-
volved, when in reality there are two key species. Through
a series of biochemical events known as gene expression,
genes produce proteins. Some of these proteins, called
transcription factors, bind to the DNA and regulate the
transcription of genes. In this way, the expression levels
of genes are determined by those of other genes, but only
indirectly—transcription factors act as middlemen [8].

Bipartite Boolean networks. To address this drawback,
a new model of gene regulatory networks has emerged
that explicitly accounts for the transcription factor mid-

dlemen: bipartite Boolean networks [9–11]. These are
Boolean networks in which two species of nodes depend
on each other but not themselves. In our social network
analogy, men and women play the role of genes and tran-
scription factors. The expression of a gene is a Boolean
function of its transcription factor regulators, and the
synthesis of a transcription factor is a Boolean function
of its contributing genes. Bipartite models of regulation
can reflect biologically important details, such as differ-
ent gene and transcription factor connectivities [9, 10].
They are also used to study gene knock-out experiments
[11].

Two perspectives. So why have these more realistic
models taken so long to emerge? One reason is that they
are ostensibly harder to study. Another is that, despite
the underlying bipartite biochemistry, experimentalists
persist in studying networks of gene expression and pro-
tein interactions separately [12–14]. In other words, what
actually takes place are interactions between genes and
transcription factors, but what gets measured are interac-
tions between genes. Our goal is to provide a framework
for translating between these perspectives, an example of
which is shown in Fig. 1c.

In this paper. In this paper we do two things. First, we
show that a bipartite Boolean network can be projected
into two ordinary Boolean networks, one for each species
of nodes. The dynamics of a given species is the same
in the bipartite and projected perspectives. Second, we
derive an exact expression for the number of biologically
permitted logics, which is the number of Boolean func-
tions that can be expressed as a composition of Boolean
functions. We find that biological logics are severely re-
stricted, and confirm our predictions with computational
enumeration. Throughout this paper, we refer to Boolean
functions and logics interchangeably.
Projection of bipartite Boolean networks
Network projection. This paper is about dynamics on bi-
partite networks, which has received little attention [9–
11]. But the structure of bipartite networks has been
heavily investigated. The structure problem is to deter-
mine the connectivity of a single species of nodes from
the connectivity between the two species of nodes, where
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FIG. 1: Bipartite Boolean networks. A A Boolean function of two variables, each of which is a Boolean function of two
variables. We indicate this composition structure by the shorthand {2, 2}. The function f ultimately depends on a, b, c and d, but
the range of logics is highly restricted. B A generalization of the composition structure to the left. Now f is a Boolean function
of n variables, each of which is a Boolean function of t1, t2, . . . , tn variables, respectively. We indicate this by {t1, t2, . . . , tn}.
C A bipartite Boolean network, in which two species depend on each other but not themselves. It can be projected into two
ordinary Boolean networks. The dynamics of each species are identical in both perspectives. The Boolean functions on the right
are compositions of those on the left.

two nodes of the same species are taken to be connected if
they are second-nearest neighbors. In our social network
analogy, this is finding the connectivity of men with com-
mon female friends. This process is called projection, an
example of which can be seen in Fig.1c. Researchers have
focused on the degree distributions of projected networks
[15, 16] and differences between operators on bipartite
graphs and their projections [17], among other things.

Projecting dynamics. Despite the interest in project-
ing bipartite structure, projecting bipartite dynamics has
not been studied. Here we show that a bipartite Boolean
network can be projected into two ordinary Boolean
networks. But unlike the projection of structure, where
structure information gets lost in the process, remarkably
the projection of dynamics is lossless. Each species will
follow identical trajectories in the original and projected
networks.

Proof of projection. To prove this, consider a bipar-
tite Boolean network with p nodes of one species and q
nodes of another species. We call the two sets of nodes
X and Y. The binary states of X and Y are given by
x = (x1, . . . , xp) and y = (y1, . . . , yq). Associated with
each species is a set of Boolean functions, one for each
node: f = (f1, . . . , fp) and g = (g1, . . . , gq). To be clear,
f and g are associated with X and Y but depend on Y
and X. The two state vectors x and y change with time
according to the Boolean functions:

x(t+ 1) = f(y(t)) and y(t+ 1) = g(x(t)).

Combining these,

x(t+ 1) = f(g(x(t− 1))) = h(x(t− 1)),

where h = (h1, . . . , hp) are the composed Boolean func-
tions. (There will also be another set of compositions for
when f and g are swapped, but the same arguments ap-
ply.) In other words, the state vector of one species is
uniquely determined by its state vector two steps back,
without the need to consider the state vector of the other
species. Fig. 1c shows an example of this.

Definition of composition. Now let’s zoom in on the
composed Boolean functions h = f(g). The fs and gs
will depend on a subset of the states y1, . . . , yq and
x1, . . . , xp—just which ones depending on the network
connectivity. Consider the state of some node x with in-
degree n. It will be governed by its Boolean function f
of n input variables, each of which is a Boolean function
gi of ti input variables. This composed Boolean function
h is a function of t1 + . . .+ tn variables:

h(x11, . . . , x
1
t1 ; . . . ;xn1 , . . . , x

n
tn) =

f
(
g1(x11, . . . , x

1
t1), . . . , gn(xn1 , . . . , x

n
tn)
)
.

(1)

We assume that all of the nodes xji are distinct, that is,
there are no loops of size four in the bipartite network.
We can express such a composition using the shorthand

{t1, t2, . . . , tn},

which we call the composition structure. For ex-
ample, {2, 2} is shorthand for h(x11, x

1
2;x21, x

2
2) =

f(g1(x11, x
1
2), g2(x21, x

2
2)).

Number of permitted logics
Review of Boolean functions. Before we calculate the
number of biologically permitted logics, we review
some general properties of logics. (We refer to logics
and Boolean functions interchangeably.) There are 22

n

Boolean functions of n variables. For n = 2, they are
true, false, a, b, a, b, ab, ab, ab, ab, a + b, a + b, a + b,
a+ b, ab+ ab and ab+ ab. In this notation, a means not
a, ab means a and b, and a+b means a or b. Notice that
two of these functions depend on no variables (true and
false), four depend on one variable (a, b, a and b), and
the rest depend on two variables. Let a(n) be the number
of Boolean functions of n variables that depend on all n
variables. By the principle of inclusion and exclusion,

a(n) =

n∑
i=0

(−1)n−i
(
n

i

)
22

i

.

The first several a(n) are 2, 2, 10, 218, 64594 (OEIS
A000371 [19]), starting at n = 0. Generalizing this, let
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a(n,m) be the number of Boolean functions of n vari-
ables that depend on m ≤ n variables. Since there are(
n
m

)
ways of selecting those m variables,

a(n,m) =

(
n

m

)
a(m).

The first several a(n,m) are

2;
2, 2;
2, 4, 10;
2, 6, 30, 218;
2, 8, 60, 872, 64594,

starting at n = m = 0. Note that a(n, n) = a(n),
a(n, 0) = 2, and summing a(n,m) over m gives 22

n

.
Two simple bounds. We want to count the number

of distinct Boolean functions of the form f(g1, . . . , gn),
where the gi are Boolean functions of t1, . . . , tn inputs,
respectively (Fig. 1b), when we run through all possible
Boolean functions for f and the gi. We denote this num-
ber by c(t1, . . . , tn), where we drop the braces around
{t1, . . . , tn} inside functions for convenience. It follows
from the definition of c that

c(t1, . . . , tn) ≤ 22
n

22
t1
. . . 22

tn
,

where the right side is the number of assignments of logics
to f and g1, . . . , gn. It also follows that

c(t1, . . . , tn) ≤ 22
t1+...+tn

,

where the right side is the number of possible logics of
t1 + . . .+ tn variables. These upper bounds are shown in
Table I for n and the ti ranging from 1 to 3.

Calculating q. Now let’s calculate our main result. Let
q(t1, . . . , tn) be the number of distinct compositions that
depend on at least one variable in each and every of the
gi. The number of choices of gi that depend on at least
one of its ti variables is 22

ti − 2, since true and false
depend on no variables. But because both gi and gi can
appear in the main function f and are always distinct,
to avoid double counting we must divide this number by
two. Let

αti = (22
ti − 2)/2.

Then

q(t1, . . . , tn) = a(n)αt1 . . . αtn . (2)

For example,

q(i) = 2αi,

q(i, j) = 10αiαj ,

q(i, j, k) = 218αiαjαk.

Composition Biological Assignments Possible
structure logics of logics logics

{t1, . . . , tn} c(t1, . . . , tn) 22n22t1. . . 22tn 22t1+...+tn

{1, 1} 16 256 16

{1, 2} 88 1,024 256

{1, 3} 1528 16,384 65,536

{2, 2} 520 4,096 65,536

{2, 3} 9160 65,536 4.3× 109

{3, 3} 161,800 1,048,576 1.8× 1019

{1, 1, 1} 256 16,384 256

{1, 1, 2} 1696 65,536 65,536

{1, 1, 3} 30,496 1,048,576 4.3× 109

{1, 2, 2} 11,344 262,144 4.3× 109

{1, 2, 3} 204,304 4,194,304 1.8× 1019

{1, 3, 3} 3,680,464 67,108,864 1.8× 1019

{2, 2, 2} 76,288 1,048,576 1.8× 1019

{2, 2, 3} 1,375,168 16,777,216 3.4× 1038

{2, 3, 3} 24,792,448 268,435,456 1.2× 1077

{3, 3, 3} 447,032,128 4,294,967,296 1.3× 10154

TABLE I: Number of Boolean functions, or logics, for
different composition structures. The composition struc-
ture {t1, . . . , tn} indicates a Boolean function of n inputs,
which are themselves Boolean functions of t1, . . . , tn inputs,
respectively. The number of biological logics is the number of
logics that can be composed in this way. We compare this to
the number of was of assigning logics to f and the gi, and to
the number of possible logics of t1 + . . . + tn variables. We
tested our predictions against computational enumeration for
all but the last three rows and found exact agreement.

We take q(∅) to be a(0), which is 2.
Calculating c. To calculate the number of distinct com-

positions c(t1, . . . , tn)—which is the number of biologi-
cally permitted logics—we just need to sum q over the
ways of depending on none of the gi, plus the ways of
depending on one of the gi, and so on, up to the ways of
depending on all n of the gi. We can write this as

c(t1, . . . , tn) =
∑

e∈2{t1,...,tn}

q(e), (3)

where the sum is over the power set of {t1, . . . , tn},
that is, all subsets e of the set {t1, . . . , tn}, denoted by
2{t1,...,tn}. For example,

c(i) = q(∅) + q(i),

c(i, j) = q(∅) + q(i) + q(j) + q(i, j),

c(i, j, k) = q(∅) + q(i) + q(j) + q(k)

+ q(i, j) + q(j, k) + q(i, k) + q(i, j, k).

Inserting (2) into (3) gives

c(t1, . . . , tn) =
∑

e∈2{t1,...,tn}

a(|e|)ασ1
. . . ασ|e| ,
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where the σi are the elements of e. Grouping together
subsets of the same size, this becomes

c(t1, . . . , tn) =

n∑
m=0

a(m)
∑

σ1...σm

ασ1 . . . ασm , (4)

where the second sum is over all of the subsets of size m
of {t1, . . . , tn}. For m = 0, this sum is over the null set
and is taken to be 1.

Main result. Eq. (4) is our main result. It can be used to
calculate the exact number of distinct Boolean functions
for any composition. For example,

c(i) = 2 + 2αi,

c(i, j) = 2 + 2(αi + αj) + 10αiαj ,

c(i, j, k) = 2 + 2(αi + αj + αk)

+ 10
(
αiαj + αjαk + αiαk

)
+ 218αiαjαk,

where αi = (22
i−2)/2, and so on. Explicit values of these

are given in Table I for i, j and k ranging from 1 to 3. For
the case of c(2, 2), the 520 permitted Boolean functions
are indicated explicitly in Table II.

Testing our theory. To test our predictions, we wrote
a computer program to compose all possible logics of all
possible logics for a given composition structure. In par-
ticular, we tested all of the structures in Table I, apart
from the last three which took too long to compute. The
numbers of distinct composable logics agree exactly with
our predictions.

Uniform structures. For composition structures in
which all of the inputs are functions of the same number
t of inputs, eq. (4) simplifies:

c(t, . . . , t) =

n∑
m=0

a(n,m)αmt .

For t = 1, this reduces to 22
n

. So for structures such as
{1, 1} and {1, 1, 1}, the number of composable and pos-
sible logics are the same, as Table I indicates.
Discussion and applications
A remarkable link. We have discovered a remarkable cor-
respondence between biologically permitted logics and
the composition of Boolean functions. This is direct con-
sequence of the bipartite nature of the interactions be-
tween genes and transcription factors. The range of log-
ical dependence that one gene can have on others is
greatly reduced by the transcription factor middlemen.
This is a fundamental insight into how networks of gene
regulation process information and, ultimately, govern
morphogenesis, determine cell identity and regulate cell
function.

Example of permitted logics. To gain some intuition for
which logics are permitted, we summarize them all for the
composition structure {2, 2} in Table II. This is a Boolean
function of two inputs, each of which is a Boolean func-
tion of two inputs. It is equivalent to the social network

analogy that we started this paper with. Out of the pos-
sible 22

4

= 65,536 Boolean functions of four variables,
only 520 are biologically permitted.

Biased degeneracy. Our work motivates several appli-
cations and extensions, and we present five here. First,
while different assignments of logics can map to the same
logic under composition, we have not considered here the
degeneracies of this many-to-one map. For example, for
the composition structure {2, 2} in Table II, 4,096 as-
signments map to 520 logics. But the degeneracies are
not uniform. Some show up much more frequently than
others, with the most frequent logics depending on fewer
variables. The logics in the left columns of Table II tend
to be more degenerate than those in the right. If, as we
believe, this trend persists, it would imply that biological
logics are not only restricted, but also tend to be simple.

Input-output maps. Second, the composition of
Boolean networks are a preeminent testbed for under-
standing input-output maps [28]. Many input-output
maps in nature and mathematics are many-to-one,
but with a non-uniform degeneracy that is biased to-
wards simple outputs. Our composition model might be
amenable to a mathematical explanation as to why.

Modelling. Third, since bipartite Boolean networks can
be exactly projected onto ordinary Boolean networks, the
latter can be used to model the former. For example, a
random bipartite network with two inputs at every node
projects onto two random ordinary networks with four in-
puts everywhere, but with a weighted distribution of the
520 permitted logics. Thus questions about bipartite dy-
namics can be answered by studying ordinary dynamics,
such as the conditions for the critical regime separating
order and chaos.

Circuits and neural networks. Fourth, we studied
Boolean function composition only over two levels, but
it should be possible to generalize our results to multi-
ple levels. This could give theoretical backing to compu-
tational insights into the robustness and evolvability of
circuits [29]. When the number of composition levels is
large, this could shed light on the space of functions in
some types of neural networks [30].

Cell reprogramming. Fifth, since the landmark recog-
nition of induced pluripotent stem cells, there has been
a series of discoveries of small numbers of transcription
factors which control cell identity [20, 21]. These have
the potential for manufacturing cells for personalized and
regenerative medicine [22, 23], drug development [24]
and disease modelling [25]. These special combinations
of transcription factors give rise to a cascade event which
ultimately controls the cell identity. Our insights into bio-
logical logics will help make reverse engineering the right
transcription factor sets considerably easier.

Acknowledgements. This research was supported by a
grant from Bit.Bio. We acknowledge Andriy Fedosyeyev
and Alexander Mozeika for helpful discussions.



5

0 var. 1 var. 2 variables 3 variables 4 variables 4 variables (cont.)
1 × T 2 × a 4 × ab 8 × abc 16 × abcd 16 × ab + c + d
1 × F 4 × a + b 8 × a + b + c 16 × ab + cd 16 × a + b + c + d

2 × ab + ab 8 × ab + c 16 × abc + abd 16 × ac + ad + bc + bd
8 × ac + bc 16 × acd + bcd 16 × abc + abd + acd + bcd

8 × ab + ab + c 16 × abcd + abcd 16 × abc + abc + abd + abd

4 × abc + abc 16 × a + b + cd 16 × ac + ad + bc + bd + abcd

4 × abc + ac + bc 8 × ab + ab + cd 8 × ab + cd + cd

4 × ac + abc + bc 8 × ab + cd + cd 8 × ab + ab + c + d

2 × abc + abc + abc + abc 8 × a + b + cd + cd

8 × abcd + abcd + abc + abd + abc + abd

8 × abcd + abcd + acd + bcd + acd + bcd

4 × ab + ab + cd + cd

4 × abcd + abcd + abcd + abcd

2 × abcd + abcd + abcd + abcd + abcd + abcd + abcd + abcd

TABLE II: Valid logics. Of the 224 = 65,536 Boolean functions of four variables (f(a, b, c, d)), only 520 can be expressed as the
composition of a Boolean function of two 2-input Boolean functions (f(g(a, b), h(c, d))). Here ab means a and b, a+ b means a
or b, and a means not a. The columns show the Boolean functions that depend on m = 0, 1, 2, 3 and 4 variables. The number
of ways to choose those variables is

(
4
m

)
. There are

(
4
2

)
choices of two variables, for instance, but we only show the functions

for a and b. The number before each function is its inversion degeneracy: the number of functions when none or some of its
variables are everywhere replaced by its inverse. For example, the inversions of ab are ab, ab, ab and ab. The column sums are
2, 2, 10, 50 and 250, and 2

(
4
0

)
+ 2

(
4
1

)
+ 10

(
4
2

)
+ 50

(
4
3

)
+ 250

(
4
4

)
= c(2, 2) = 520. Table I gives other composition structure totals.
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