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Divisible numbers are useful whenever a whole needs to be divided into equal
parts. But sometimes it is necessary to divide the parts into subparts, and
subparts into sub-subparts, and so on, in a recursive way. To understand num-
bers that are recursively divisible, I introduce the recursive divisor function: a
recursive analog of the usual divisor function. I give a geometric interpretation
of recursively divisible numbers and study their general properties—in partic-
ular the number and sum of the recursive divisors. I show that the number of
the recursive divisors is equal to twice the number of ordered factorizations
into integers greater than one, a problem that has been much studied in its
own right. By computing those numbers which are more recursively divisible
than all of their predecessors, I recover many of the grid sizes commonly used
in graphic design and digital technologies, and suggest new grid sizes which
have not yet been adopted but should be. These are especially relevant to re-
cursively modular systems which must operate across multiple organizational
length scales.

1. Introduction

1.1. Plato’s ideal city. Consider one of the earliest references to numbers which
can be divided into equal parts in many ways. Plato writes in his Laws [1] that
the ideal population of a city is 5040, since this number has more divisors than any
number less than it. He observes that 5040 is divisible by 60 numbers, including one
to 10. A highly divisible population is useful for dividing the city into equal-sized
sectors for administrative, social and military purposes.

This conception of divisibility can be extended. Once the city is divided into
equal parts, it is often necessary to divide a part into equal subparts. For example,
if 5040 is divided into 15 parts of 336, each part can in turn be divided into subparts
in 20 ways, since 336 has 20 divisors. But if 5040 is divided into 16 parts of 315,
each part can be divided into subparts in only 12 ways, since 315 has 12 divisors.
Thus the division of the whole into 15 parts offers more optionality for further
subdivisions than the division into 16 parts. Similar reasoning can be applied to
the divisibility of the subparts into sub-subparts, and so on, in a hierarchical way.

The goal of this paper is to quantify the notion of recursive divisibility and
understand the properties of numbers which possess it to a large degree.
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1.2. Modular design. In graphic and digital design, grid systems [2, 3] use a
fixed number of columns or rows which form the primitive building blocks from
which bigger columns or rows are made. For example, a grid of 24 columns is often
used for books [2], and a grid of 96 columns is frequently used for websites [4]. In
exchange for giving up some freedom to choose the size of parts (columns or rows),
the space of possible designs gets smaller, making it easier to navigate. And the
design elements become more interoperable, like how Lego bricks snap into place
on a discrete grid, making it faster to build new designs.

What are the best grid sizes for modular design? The challenge is committing
to a grid size now that provides the greatest optionality for an unknown future.
Imagine, for example, that I have to cut a pie into slices, to be divided up later for
an unknown number of colleagues. How many slices should I choose? The answer
in this case is relatively straightforward: the best grids are the ones with the most
divisors, such as the highly composite or super-abundant numbers [5, 6].

But the story gets more complicated when it is necessary to consider multiple
steps into the future. For instance, imagine now that each colleague takes his share
of pie home to further divide it amongst his family. In this case, not only does the
whole need to be highly divisible, but the parts need to be highly divisible, too.
This process can be extended in a hierarchical way.

Design across multiple length scales has long been a feature of graphic design. For
example, newspapers are divided into columns for different stories, and columns into
sub-columns of text. But with the rise of digital technologies, recursive modularity
is becoming the rule. Columns of a website become the full screen of the same site
on a phone. Different regions of the phone site offer different kinds of functionality,
each with its own number of parts, which may change over time.

What are the design rules for recursive modularity? The state-of-the-art seems
to be artisans’ lore [2, 3, 7], and there is little in the way of quantitative reasoning.
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Figure 1. Divisor trees for 1 to 24. The number of recursive divisors a(n) counts the
number of squares in each tree and the sum of recursive divisors b(n) adds up the side
lengths of the squares in each tree. Divisor trees can be generated for any number n at
lims.ac.uk/recursively-divisible-numbers.
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Indeed, my interest in this problem originated in discussions with designers about
the optimal grid size for the London Institute’s website.

This paper gives a mathematical basis for choosing grids that are suitable for
recursive design. It explains the preponderance of certain numbers in graphic design
and display technologies, and predicts new numbers which have not been used but
should be. More generally, it helps us understand recursively modular systems which
must simultaneously operate across multiple organizational length scales.

1.3. Outline of paper. Including this introduction, this paper is divided into five
parts. In part 2, I review the usual divisor function and define the recursive divisor
function. I consider two specific instances of the recursive divisor function: the num-
ber of recursive divisors and the sum of recursive divisors. I introduce divisor trees
(Figure 1), which give a geometrical interpretation of the recursive divisor func-
tion. Using this, I show that the number of recursive divisors is twice the number
of ordered factorizations into integers greater than one, a problem which has been
well-studied in its own right [8, 9, 10, 11, 12]. By examining the internal structure
of divisor trees, I find a relation between the number and sum of recursive divisors.

In part 3, I investigate properties of the number of recursive divisors, taking
advantage of their relation to the number of ordered factorizations. I give recursion
relations for when n is the product of distinct primes, and for when n is the product
of primes to a power. The latter can be written in closed form for one, two and
three primes.

In part 4, I investigate properties of the sum of recursive divisors, which are
more difficult to calculate than the number of recursive divisors in part 3. I give
recursion relations for when n is the product of primes to a power. These can be
written in closed form for one, two and three primes by making use of the relation
between the sum and number of recursive divisors in part 2.

In part 5, I investigate numbers which are recursively divisible to a high degree.
I call numbers with a record number of recursive divisors recursively highly com-
posite, and list them up to one million. These have been studied in the context
of the number of ordered factorizations [12]. I call numbers with a record sum of
recursive divisors, normalized by n, recursively super-abundant, and also list them
up to one million. I list applications of highly recursive numbers in technology and
digital displays, and conclude with a list of open problems.

2. Recursive divisor function and divisor trees

Throughout this paper I write m|n to indicate m divides n and mbn to indicate m
is a proper divisor of n.

2.1. Divisor function. In order to write down a recursive divisor function, I first
recall the usual divisor function,

σx(n) =
∑
m|n

mx.

This sums the divisors of n raised to some integer power x.
When x = 0, the divisor function counts the number divisors of n and is generally

written d(n). It is well known that for

n = pα1
1 pα2

2 . . . p
αj

j ,
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where p1, p2, . . . , pj are prime,

(1) d(n) = (1 + α1)(1 + α2) . . . (1 + αj).

Numbers n for which d(n) is larger than that of all of the predecessors of n are
called highly composite numbers and have been extensively studied [5, 6].

When x = 1, the divisor function sums the divisors of n and is generally written
σ(n). It is well known that

σ(n) =
pα1+1
1 − 1

p1 − 1

pα2+1
2 − 1

p2 − 1
. . .

p
αj+1
j − 1

pj − 1
.

Numbers n for which σ(n)/n is larger than that of all of the predecessors of n are
called super-abundant numbers and have also been studied [6].

The quantity σ(n)/n can be contrasted with d(n) in the following way. Highly
divisible numbers can be divided into equal-sized parts in many different ways.
But when it comes to practical applications, not all divisions are equally useful. In
general, divisions into fewer parts are more useful than divisions into many parts,
because we are more likely to encounter the need for fewer parts. In other words,
there is a greater need to divide a region into halves than into thirds, and into
thirds than into fourths, and so on. To give preferential treatment to numbers with
smaller divisors, consider that d(n) awards a point for each divisor of n. Now let us
give fewer points for larger divisors. In particular, let us award 1 point for numbers
that can be divided into 1 part (namely, all numbers), 1/2 point for numbers that
can be divided into 2 parts, 1/3 point for numbers that can be divided into 3 parts,
and so on. This scheme gives the score of σ(n)/n.

2.2. Recursive divisor function. In contrast with the usual divisor function, in
this paper I am concerned not only with the divisors of a number n but also the
divisors of the resultant quotients, and the divisors of those resultant quotients,
and so on. I introduce and study the recursive divisor function,

κx(n) = nx +
∑
mbn

κx(m),

where the sum is over the proper divisors of n. When x = 0, I call this the number
of recursive divisors a(n), and when x = 1, I call this the sum of recursive divisors
b(n).

Definition 1. The number of recursive divisors is a(1) = 1 and

a(n) = 1 +
∑
mbn

a(m),

where mbn means m is a proper divisor of n.

For example, a(10) = 1+a(1)+a(2)+a(5) = 6. Note that a(n) depends only on the
set of exponents in the prime factorization of n and not on the primes themselves.

Definition 2. The sum of recursive divisors is b(1) = 1 and

b(n) = n+
∑
mbn

b(m),

where mbn means m is a proper divisor of n.
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For example, b(10) = 10 + b(1) + b(2) + b(5) = 20. Unlike a(n), b(n) depends on
both the exponents and the primes in the prime factorization of n. Ultimately I
will be interested in b(n)/n, analogous to σ(n)/n described above, but for now it is
more natural to define and work with b(n).

2.3. Divisor trees. A geometric interpretation of the recursive divisor function
κ(n) can be had by drawing the divisor tree for a given value of n. Divisor trees
for 1 to 24 are shown in Figure 1. The number of recursive divisors a(n) counts the
number of squares in each tree, whereas d(n) counts the number of squares in the
main diagonal. The sum of recursive divisors b(n) adds up the side lengths of the
squares in each tree, whereas σ(n) adds up the side lengths of the squares in the
main diagonal. This can be extended to κ2(n), which adds up area, and so on, but
in this paper I only consider a(n) = κ0(n) and b(n) = κ1(n).

A divisor tree is constructed as follows. First, draw a square of side length n.
Let m1,m2, . . . be the proper divisors of n in descending order. Then draw squares
of side length m1, m2, . . . with each consecutive square situated to the upper right
of its predecessor, kitty-corner. This forms the main arm of a divisor tree. Now, for
each of the squares of side length m1,m2, . . ., repeat the process. Let l1, l2, . . . be
the proper divisors of m1 in descending order. Then draw squares of side length l1,
l2, . . ., but with the sub-arm rotated 90◦ counter-clockwise. Do the same for each
of the remaining squares in the main arm. This forms the branches off of the main
arm. Now, continue repeating this process, drawing arms off of arms off of arms,
and so on, until the arms are single squares of size 1. Divisor trees can be generated
for any number n at lims.ac.uk/recursively-divisible-numbers.
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Figure 2. Divisor trees for 96 and 100. There are a(96) = 224 squares in the left tree and
a(100) = 52 squares in the right. The sum of the side lengths of the squares, or one-fourth
of the tree perimeter, is b(96) = 768 in the left tree and b(100) = 340 in the right. Divisor
trees can be generated for any number n at lims.ac.uk/recursively-divisible-numbers.
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2.4. Properties of divisor trees. In order to establish properties of the number
and sum of recursive divisors, it is helpful to consider a more fine-grained description
of divisor trees, namely, the number and sum of divisors—or squares in the divisor
tree—of a given size.

Proposition 1. Let the number of recursive divisors of size k be a(n, k). Then
a(n, n) = 1 and for kbn,

a(n, k) =
∑
mbn

a(m, k),

and a(n, k) = 0 otherwise, where kbn means k is a proper divisor of n.

Proof. The Proposition follows immediately on considering the divisor trees. �

Lemma 1. The number of recursive divisors of size k satisifes

a(k n, k) = a(n, 1).

Proof. By Proposition 1,

(2) a(n, 1) =
∑
mbn

a(m, 1)

and

a(k n, k) =
∑
mbk n

a(m, k).

Since a(m, k) = 0 if k does not divide m, this can be rewritten as

(3) a(k n, k) =
∑
mbn

a(km, k).

Let the prime omega function Ω(n) sum the exponents in the prime factorization
of n, that is, for n = pα1

1 pα2
2 . . . p

αj

j , Ω(n) = α1 +α2 + . . .+αj . I prove the theorem

by induction on Ω(n). The base case Ω(n) = 0, or n = 1, holds by Proposition 1:
a(k·1, k) = a(1, 1). I now show that if a(k n, k) = a(n, 1) for all n such that Ω(n) < i,
then a(k n, k) = a(n, 1) for all n such that Ω(n) < i+1. To see why, observe that in
(3) all of the proper divisors m of n must have Ω(m) at most Ω(n)− 1. Therefore
by assumption all of the a(km, k) in (3) reduce to a(m, 1), and the right side of (3)
takes the form of the right side of (2) and thus equals a(n, 1). �

Lemma 2. For n > 1, the number of recursive divisors of size 1 is equal to half
the total number of recursive divisors, that is,

a(n, 1) = a(n)/2.

Note that recursive divisors of size 1 are equivalent to squares of size 1 in the divisor
trees.

Proof. Clearly

a(n) =
∑
m|n

a(n,m).

By Lemma 1, this becomes

(4) a(n) =
∑
m|n

a(n/m, 1) =
∑
m|n

a(m, 1),
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which we can equally express as

(5) a(n) = a(n, 1) +
∑
mbn

a(m, 1).

Inserting Proposition 1 with k = 1 into the above,

a(n) = 2a(n, 1). �

2.5. Relation to the number of ordered factorizations. Here I show that
for n > 1, the number of recursive divisors a(n) is twice the number of ordered
factorizations into integers greater than one, which I call g(n). But before getting
to that, I first introduce g(n) and mention some of the work on it.

The number of ordered factorizations g(n) satisifes g(1) = 1 and

g(n) =
∑
mbn

g(m).

For example, 12 can be written as the product of integers greater than one in eight
ways: 12 = 6 · 2 = 2 · 6 = 4 · 3 = 3 · 4 = 3 · 2 · 2 = 2 · 3 · 2 = 2 · 2 · 3. So g(12) = 8.

Kalmar [8] was the first to consider g(n), and it was later studied more system-
atically by Hille [9]. Over the last 80 years several authors have extended Hille’s
results [10, 11, 12], some of which we will mention later.

Theorem 1. Let g(n) be the number of ordered factorizations into integers greater
than one and set g(1) = 1. Then for n > 1,

a(n) = 2g(n).

Proof. The definition of g(n) is identical to Proposition 1 for k = 1, that is,
identical to a(n, 1). Since g(1) = a(1, 1) = 1, the proof follows directly from Lemma
2. �

2.6. Relation between the number and sum of recursive divisors. The b(n)
are more difficult to calculate than the a(n), and it would be helpful to have an
expression relating the b(n) to the a(n). Here I give just such a relation. I will use
it later to explicitly determine b(n) for certain values of n.

Theorem 2. Let B(n) = b(n)/n and A(n) = a(n)/n. Then

B(n) =
1

2
+

1

2

∑
m|n

A(m).

Proof. Let b(n,m) be the sum of the side lengths of squares of size m in the nth
divisor tree. Then

b(n) =
∑
m|n

b(n,m) =
∑
m|n

ma(n,m).

By Lemma 1,

b(n) =
∑
m|n

ma(n/m, 1) = n+
∑
mbn

ma(n/m, 1).
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By Lemma 2,

b(n) = n+
1

2

∑
mbn

ma(n/m) =
n

2
+

1

2

∑
m|n

ma(n/m) =
n

2
+
n

2

∑
m|n

a(m)/m.

With B(n) = b(n)/n and A(n) = a(n)/n, the theorem follows. �

3. Number of recursive divisors

The number of recursive divisors a(n) is not as readily determined as the number
of divisors d(n). The first 96 values of a(n) are shown in Table 1, which also gives
a concise Mathematica algorithm for generating them. The first 100,000 values are
plotted in Figure 3.

3.1. Distinct primes. Let n = p1 p2 . . . pk be the product of k distinct primes. By
(1), the number of divisors is simply d(p1 p2 . . . pk) = 2k. Here I calculate the less
straightforward a(p1 p2 . . . pk).

Theorem 3. Let n = p1 p2 . . . pk be the product of k distinct primes. Then the
exponential generating function of a(p1p2 . . . pk) is

EG(a(p1p2 . . . pk), x) =
ex

2− ex
.

Proof. This theorem is equivalent to

(6) a(p1p2 . . . pk) = 1 +

k−1∑
i=0

(
k

i

)
a(p1p2 . . . pi).

I prove it by induction. First note that a(p1) = 1 +
(
1
0

)
a(1) = 2. I now show that if

(6) is true for k, then it is true for k+1. I do so by adding to a(p1p2 . . . pk) all of the

n a(n) n a(n) n a(n) n a(n) n a(n) n a(n)
1 1 17 2 33 6 49 4 65 6 81 16
2 2 18 16 34 6 50 16 66 26 82 6
3 2 19 2 35 6 51 6 67 2 83 2
4 4 20 16 36 52 52 16 68 16 84 88
5 2 21 6 37 2 53 2 69 6 85 6
6 6 22 6 38 6 54 40 70 26 86 6
7 2 23 2 39 6 55 6 71 2 87 6
8 8 24 40 40 40 56 40 72 152 88 40
9 4 25 4 41 2 57 6 73 2 89 2

10 6 26 6 42 26 58 6 74 6 90 88
11 2 27 8 43 2 59 2 75 16 91 6
12 16 28 16 44 16 60 88 76 16 92 16
13 2 29 2 45 16 61 2 77 6 93 6
14 6 30 26 46 6 62 6 78 26 94 6
15 6 31 2 47 2 63 16 79 2 95 6
16 16 32 32 48 96 64 64 80 96 96 224

Table 1. The first 96 values of the number of recursive divisors a(n). A concise Math-
ematica algorithm for the a(n) is as follows: n = 2; max = 96; a = {1}; While[n <=

max, a = Append[a, 1 + Total[Part[a, Delete[Divisors[n], -1]]]]; n++]; a
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as for divisors which include pk+1, apart from a(p1p2 . . . pk+1), since p1p2 . . . pk+1

is not a proper divisor of itself. I also must add a(p1p2 . . . pk), which is left out of
the expression for a(p1p2 . . . pk). This adds up to a(p1p2 . . . pk+1), and we can write

a(p1p2 . . . pk+1) = a(p1p2 . . . pk) + a(p1p2 . . . pk)

+

(
k

0

)
a(p1) +

(
k

1

)
a(p1p2) + . . .+

(
k

k − 1

)
a(p1p2 . . . pk)

= 1 + a1(p1p2 . . . pk) +

k−1∑
i=0

(
k

i

)
a(p1p2 . . . pi) +

k−1∑
i=0

(
k

i

)
a(p1p2 . . . pi+1)

= 1 + (k + 1)a1(p1p2 . . . pk) +

k−1∑
i=0

((
k

i

)
+

(
k

i− 1

))
a(p1p2 . . . pi)

= 1 + (k + 1)a1(p1p2 . . . pk) +

k−1∑
i=0

(
k + 1

i

)
a(p1p2 . . . pi)

= 1 +

k∑
i=0

(
k + 1

i

)
a(p1p2 . . . pi). �

So for the product of k = 1, 2, . . . distinct primes, a(k) = 2, 6, 26, 150, 1082, 9366, . . .,
which is the number of ordered set partitions of subsets of {1, . . . , n} (OEIS A000629
[13]).

3.2. Primes to a power. When n is equal to the product of primes to powers,
a(n) is governed by recursion relations relating it to values of a(n) for primes to
lower powers.

1 10 100 1000 104

1

10

100

1000

104

105

n

a(
n)

Figure 3. The number of recursive divisors a(n). The recursively highly composite
numbers, which satisfy a(n) > a(m) for all m < n, are the big red points.
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Theorem 4. Let p, q and r be prime. Then

a(pc) = 2a(pc−1),

a(pcqd) = 2
(
a(pc−1qd) + a(pcqd−1)− a(pc−1qd−1)

)
,

a(pcqdre) = 2
(
a(pc−1qdre) + a(pcqd−1re) + a(pcqdre−1),

− a(pcqd−1re−1)− a(pc−1qdre−1)− a(pc−1qd−1re),

+ a(pc−1qd−1re−1)
)
.

Analogous recursion relations apply for the product of four and more primes to
powers.

Proof. I first prove the case of n = pc. From Definition 1,

(7) a(pc) = 1 +

c−1∑
i=0

a(pi).

Adding a(pc) to both sides,

2a(pc) = 1 +

c∑
i=0

a(pi).

With c→ c− 1,
c−1∑
i=0

a(pi) = 2a(pc−1)− 1,

which, when inserted into (7), gives

a(pc) = 2a(pc−1).

Using this, the recursion relation for n = pcqd can be proved, which can in turn
be used to prove the case for n = pcqdre, and so on. The approach is similar
to, but somewhat simpler than, that used to prove Theorem 6. However, Hille
[9] and Chor et al. [10] proved that identical recursion relations govern g(n), the
number of ordered factorizations into integers greater than one. From Theorem 1,
a(n) = 2g(n), and inserting this into Hille’s and Chor’s recursion relations gives
the desired results. �

Corollary 1. Let τ be the maximum exponent in the prime factorization of n.
Then 2τ divides a(n).

Proof. Notice that all of the recursion relations in Theorem 4 have a factor of 2
on the right-hand side. The corollary is implied by iterating the recursion relation τ
times. On each iteration, the exponents on the right are reduced by at most 1. Now
iterate until the smallest exponent is reduced to 0. Then the exponent disappears
since, for example, a(pcq0) = a(pc). Continuing this process, the recursion relations
are iterated τ times, giving τ factors of 2. �

In Table 3, which shows the high water marks for a(n), the a(n) are expressed as
a product of 2τ and an integer. Note that there are in general no other guaranteed
divisors of a(n), since in many cases a(n) is the product of 2τ and a prime.

The recursion relations in Theorem 4 can be solved for one, two and three primes
to powers.
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Theorem 5. Let p, q and r be prime. Then

a(pc) = 2c

a(pcqd) = 2c
d∑
i=0

(
d

i

)(
c+ i

i

)
.

a(pcqdre) =

d∑
j=0

(−1)j
(
d

j

)(
c+ d− j

d

)
a(pc+d−jre).

Proof. The result for n = pc follows by inspection. For n = pcqd and n =
pcqdre, Chor et al. [10] give the analogous results for g(n), the number of ordered
factorizations into integers greater than one. From Theorem 1, a(n) = 2g(n), and
applying this to Chor’s results gives the desired recurrence relations. �

4. Sum of recursive divisors

The first 96 values of the sum of recursive divisors b(n) are shown in Table 2, which
also gives a concise Mathematica algorithm for generating them. The first 100,000
values are plotted in Figure 4.

4.1. Primes to a power. When n is equal to the product of primes to powers,
b(n) is governed by recursion relations relating it to values of b(n) for primes to
lower powers. The recursion relations are similar to those for a(n), but are more
complex.

Theorem 6. Let p, q and r be prime. Then

b(pc) = 2b(pc−1) + (p− 1)pc−1,

n b(n) n b(n) n b(n) n b(n) n b(n) n b(n)
1 1 17 18 33 50 49 58 65 86 81 146
2 3 18 54 34 56 50 112 66 188 82 128
3 4 19 20 35 50 51 74 67 68 83 84
4 8 20 58 36 176 52 122 68 154 84 430
5 6 21 34 37 38 53 54 69 98 85 110
6 14 22 38 38 62 54 190 70 184 86 134
7 8 23 24 39 58 55 74 71 72 87 122
8 20 24 116 40 156 56 196 72 524 88 276
9 14 25 32 41 42 57 82 73 74 89 90

10 20 26 44 42 132 58 92 74 116 90 432
11 12 27 46 43 44 59 60 75 144 91 114
12 42 28 74 44 106 60 346 76 170 92 202
13 14 29 30 45 96 61 62 77 98 93 130
14 26 30 104 46 74 62 98 78 216 94 146
15 26 31 32 47 48 63 124 79 80 95 122
16 48 32 112 48 304 64 256 80 400 96 768

Table 2. The first 96 values of the sum of recursive divisors b(n). A concise Mathematica
algorithm for the b(n) is as follows: n = 2; max = 100; b = {1}; While[n <= max, b =

Append[b, n + Total[Part[b, Delete[Divisors[n], -1]]]]; n++ ]; b



12 THOMAS FINK

b(pcqd) = 2
(
b(pc−1qd) + b(pcqd−1)− b(pc−1qd−1)

)
+ (p− 1)(q − 1)pc−1qd−1,

b(pcqdre) = 2
(
b(pc−1qdre) + a(pcqd−1re) + a(pcqdre−1)

− b(pcqd−1re−1)− a(pc−1qdre−1)− a(pc−1qd−1re)

+ b(pc−1qd−1re−1)
)

+ (p− 1)(q − 1)(r − 1)pc−1qd−1re−1.

Proof. I first prove the case of n = pc. From Definition 2,

(8) b(pc) = pc +

c−1∑
i=0

b(pi).

Adding b(pc) to both sides,

2b(pc) = pc +

c∑
i=0

b(pi).

With c→ c− 1,
c−1∑
i=0

b(pi) = 2b(pc−1)− pc−1,

which, when inserted into (8), gives the desired recurrence relation.

1 10 100 1000 104

1

2

5

10

20

50

n

B
(n
)
=
b(
n)
/n

Figure 4. The sum of recursive divisors b(n), normalized by n. The recursively super-
abundant numbers, which satisfy b(n)/n > b(m)/m for all m < n, are the big red points.
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I now prove the case of n = pcqd. From Definition 2,

(9) b(pcqd) = pcqd +

c−1∑
i=0

d∑
j=0

b(piqj) +

d−1∑
j=0

b(pcqj).

Adding b(pcqd) to both sides,

(10) 2b(pcqd) = pcqd +

c−1∑
i=0

d∑
j=0

b(piqj) +

d∑
j=0

b(pcqj),

which we can equally write

(11) 2b(pcqd) = pcqd +

c∑
i=0

d∑
j=0

b(piqj).

With d→ d− 1 in (10), we find

(12)

d−1∑
j=0

b(pcqj) = 2b(pcqd−1)− pcqd−1 −
c−1∑
j=0

d−1∑
i=0

b(piqj).

With c→ c− 1 and d→ d− 1 in (11), we find

c−1∑
i=0

d−1∑
j=0

b(piqj) = 2b(pc−1qd−1)− pc−1qd−1,

which inserting into (12) yields

(13)

d−1∑
j=0

b(pcqj) = 2b(pcqd−1)− 2b(pc−1qd−1) + (1− p)pc−1qd−1.

With c→ c− 1 in (11), we find

(14)

c−1∑
i=0

d∑
j=0

b(piqj) = 2b(pc−1qd)− pc−1qd.

Inserting (13) and (14) into (9) gives the desired recursion relation.
For n = pcqdre, the proof is similar to that for n = pcqd and is omitted here. �

4.2. Explicit values. The recursion relations in Theorem 6 can be solved. I only
give the results for n = pc and n = pcqd. For n = pcqdre, the solution is more
intricate but can be solved in a similar way to that for n = pcqd. The expressions
simplify when p = 2.

Theorem 7. Let p and q be prime, and B(n) = b(n)/n. Then

B(pc) =
p− 1− (2/p)c

p− 2
for p odd,

B(2c) = (c+ 2)/2,

B(pcqd) =
1

2
+

1

2

c∑
i=0

2i

pi

d∑
j=0

1

qj

j∑
k=0

(
i+ k

k

)(
j

k

)
,

B(2cqd) =
1

2
+

1

2

d∑
j=0

1

qj

j∑
k=0

(
j

k

)(
c+ k + 1

k + 1

)
.
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Proof. I first prove the case of n = pc. From Theorem 2,

(15) B(pc) =
1

2
+

1

2

c∑
i=0

A(pi)

From Theorem 4, a(pc) = 2c and A(pi) = a(pi)/pi = (2/p)i. Inserting this into
(15), we find

B(pc) =
p− 1− (2/p)c

p− 2
.

For p = 2 this is indeterminate but, by L’Hôpital’s rule,

B(2c) = (c+ 2)/2.

I now prove the case of n = pcqd. From Theorem 2,

(16) B(pcqd) =
1

2
+

1

2

c∑
i=0

d∑
j=0

A(piqj).

Theorem 5 gives a(pcqd) explicitly. Inserting A(piqj) = a(piqj)/(piqj) into (16)
yields

B(pcqd) =
1

2
+

1

2

c∑
i=0

2i

pi

d∑
j=0

1

qj

j∑
k=0

(
i+ k

k

)(
j

k

)
.

For p = 2, this simplies:

B(2cqd) =
1

2
+

1

2

d∑
j=0

1

qj

j∑
k=0

(
j

k

) c∑
i=0

(
i+ k

k

)

=
1

2
+

1

2

d∑
j=0

1

qj

j∑
k=0

(
j

k

)(
c+ k + 1

k + 1

)
. �

5. Recursively highly composite and
recursively super-abundant numbers

5.1. Highly composite and super-abundant numbers. I briefly review highly
composite and super-abundant numbers before considering their recursive ana-
logues. A number n is highly composite if it has more divisors than any of its
predecessors, that is, d(n) > d(m) for all m < n. These are shown in the right-hand
column of Table 3. A number n is super-abundant if the sum of its divisors, normal-
ized by n, is greater than that of any of its predecessors, that is, σ(n)/n > σ(m)/m
for all m < n. These are the starred numbers in the right-hand column of Table
3. Both types of numbers have been extensively studied by Ramanujan and others
[5, 6]. For sufficiently small values of n, super-abundant numbers are also highly
composite, but later this ceases to be the case. The first super-abundant number
that is not highly composite is 1,163,962,800 (A166735 [13]), and in fact only 449
numbers are both super-abundant and highly composite (A166981 [13]).
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n . a(n) n d(n)
∗1 = 1 1 ∗1 = 1 1
∗2 = 2 1 · 2 ∗2 = 2 2
∗4 = 22 1 · 22 ∗4 = 22 3
∗6 = 2 · 3 3 · 2 ∗6 = 2 · 3 4
8 = 23 1 · 23

∗12 = 22 · 3 4 · 22 ∗12 = 22 · 3 6
∗24 = 23 · 3 5 · 23 ∗24 = 23 · 3 8
∗36 = 22 · 32 13 · 22 ∗36 = 22 · 32 9
∗48 = 24 · 3 6 · 24 ∗48 = 24 · 3 10

∗60 = 22 · 3 · 5 12
72 = 23 · 32 19 · 23

96 = 25 · 3 7 · 25

∗120 = 23 · 3 · 5 33 · 23 ∗120 = 23 · 3 · 5 16
144 = 24 · 32 26 · 24

∗180 = 22 · 32 · 5 18
192 = 26 · 3 8 · 26

∗240 = 24 · 3 · 5 46 · 24 ∗240 = 24 · 3 · 5 20
288 = 25 · 32 34 · 25

∗360 = 23 · 32 · 5 151 · 23 ∗360 = 23 · 32 · 5 24
432 = 24 · 33 96 · 24

480 = 25 · 3 · 5 61 · 25

576 = 26 · 32 43 · 26

∗720 = 24 · 32 · 5 236 · 24 ∗720 = 24 · 32 · 5 30
∗840 = 23 · 3 · 5 · 7 32

864 = 25 · 33 138 · 25

960 = 26 · 3 · 5 78 · 26

∗1152 = 27 · 32 53 · 27

∗1260 = 22 · 32 · 5 · 7 36
∗1440 = 25 · 32 · 5 346 · 25

∗1680 = 24 · 3 · 5 · 7 40
1728 = 26 · 33 190 · 26

1920 = 27 · 3 · 5 97 · 27

∗2160 = 24 · 33 · 5 996 · 24

2304 = 28 · 32 64 · 28

∗2520 = 23 · 32 · 5 · 7 48
∗2880 = 26 · 32 · 5 484 · 26

3456 = 27 · 33 253 · 27

∗4320 = 25 · 33 · 5 1590 · 25

∗5040 = 24 · 32 · 5 · 7 60
∗5760 = 27 · 32 · 5 653 · 27

6912 = 28 · 33 328 · 28

7560 = 23 · 33 · 5 · 7 64
∗8640 = 26 · 33 · 5 2402 · 26

∗10080 = 25 · 32 · 5 · 7 72
∗11520 = 28 · 32 · 5 856 · 28

TABLE 3. The left column shows the recursively highly composite numbers and the recur-
sively super-abundant numbers (which are starred) up to one million. All of the recursively
super-abundant numbers shown here are also recursively highly composite, apart from one,
181,440. The right column shows the highly composite numbers and the super-abundant
numbers (which are starred) up to one million. All of the super-abundant numbers shown
here are also highly composite.



16 THOMAS FINK

n a(n) n d(n)
∗15120 = 24 · 33 · 5 · 7 80

∗17280 = 27 · 33 · 5 3477 · 27

20160 = 26 · 32 · 5 · 7 84
23040 = 29 · 32 · 5 1096 · 29

∗25200 = 24 · 32 · 52 · 7 90
∗25920 = 26 · 34 · 5 10368 · 26

∗27720 = 23 · 32 · 5 · 7 · 11 96
∗30240 = 25 · 33 · 5 · 7 20874 · 25

∗34560 = 28 · 33 · 5 4864 · 28

45360 = 24 · 34 · 5 · 7 100
46080 = 210 · 32 · 5 1376 · 210

50400 = 25 · 32 · 52 · 7 108
∗51840 = 27 · 34 · 5 15979 · 27

∗55440 = 24 · 32 · 5 · 7 · 11 120
∗60480 = 26 · 33 · 5 · 7 34266 · 26

∗69120 = 29 · 33 · 5 6616 · 29

83160 = 23 · 33 · 5 · 7 · 11 128
86400 = 27 · 33 · 52 28481 · 27

∗103680 = 28 · 34 · 5 23692 · 28

∗110880 = 25 · 32 · 5 · 7 · 11 144
∗120960 = 27 · 33 · 5 · 7 53485 · 27

138240 = 210 · 33 · 5 8790 · 210

161280 = 29 · 32 · 5 · 7 17656 · 29

∗166320 = 24 · 33 · 5 · 7 · 11 160
∗172800 = 28 · 33 · 52 42520 · 28

∗207360 = 29 · 34 · 5 34026 · 29

221760 = 26 · 32 · 5 · 7 · 11 168
∗241920 = 28 · 33 · 5 · 7 80176 · 28

276480 = 211 · 33 · 5 11447 · 211

∗277200 = 24 · 32 · 52 · 7 · 11 180
311040 = 28 · 35 · 5 103540 · 28

∗332640 = 25 · 33 · 5 · 7 · 11 192
∗345600 = 29 · 33 · 52 61436 · 29

∗362880 = 27 · 34 · 5 · 7 267219 · 27

∗414720 = 210 · 34 · 5 47576 · 210

∗483840 = 29 · 33 · 5 · 7 116256 · 29

498960 = 24 · 34 · 5 · 7 · 11 200
552960 = 212 · 33 · 5 14652 · 212

∗554400 = 25 · 32 · 52 · 7 · 11 216
604800 = 27 · 33 · 52 · 7 480953 · 27

622080 = 29 · 35 · 5 156278 · 29

∗665280 = 26 · 33 · 5 · 7 · 11 224
691200 = 210 · 33 · 52 86362 · 210

∗720720 = 24 · 32 · 5 · 7 · 11 · 13 240
∗725760 = 28 · 34 · 5 · 7 422932 · 28

829440 = 211 · 34 · 5 65018 · 211

∗967680 = 210 · 33 · 5 · 7 163934 · 210

Recursively super-abundant but
not recursively highly composite

∗181440 = 26 · 34 · 5 · 7
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5.2. Recursively highly composite numbers. By analogy with highly compos-
ite numbers, a number n is recursively highly composite if it has more recursive
divisors than any of its predecessors.

Definition 3. A number is recursively highly composite if it satisfies

a(n) > a(m) for all m < n.

These numbers are shown in the left-hand column of Table 3 up to one million. In
terms of divisor trees, a number is recursively highly composite if its divisor tree has
more squares than any of its predecessors’ divisor trees. Because a(n) depends only
on the exponents in the prime factorization of n = pα1

1 pα2
2 . . . p

αj

j , the exponents
in recursively highly composite numbers must be non-increasing. For assume that
αi+k < αi in a recursively highly composite number. But p

αi+k

i pαi

i+k < pαi
i p

αi+k

i+k , so
there exists an m < n with the same value of a(n), contradicting the assumption.
(I take the primes to be in ascending order.)

n Technology Standard displays

*24 10× 24 Tetris

24× 16 384-well assay

*48 128× 48 TRS 80

72 72 points/in Adobe point

96 96× 64 TI-81 calculator

96× 65 Nokia 1100

*120 120× 160 Nokia 100 160× 120 QQVGA

144 144× 168 Pebble Time watch

*240 240× 64 Atari Portfolio 320× 240 Quarter VGA

288 352× 288 Video CD 352× 288 CIF

*360 360× 360 LG Watch Style 640× 360 nHD

480 320× 480 iPhone 1–3 640× 480 VGA

480× 480 LG Watch Sport

576 576 lines PAL analog television 1024× 576 WSVGA

*720 720× 364 Macintosh XL, Hercules 1280× 720 HD

864 1152× 864 XGA+

960 Facebook website

*1152 1152× 2048 QWXGA

*1440 3.5” disk block size 2560× 1440 Quad HD

1920 1920× 1080 Full HD

*2160 2160× 1440 Microsoft Surface Pro 3 4096× 2160 DCI 4K

3840× 2160 4K Ultra HD

2304 2304× 1440 MacBook Retina display

4096× 2304 21.5” 4K Retina iMac

*2880 2880× 1800 15 in MacBook Pro 5120× 2880 5K

3456 Canon EOS 1100D

*4320 7680× 4320 8K Ultra HD

*8640 15360× 8640 16K Ultra HD

Table 4. Some applications of recursively highly composite numbers and recursively
super-abundant numbers (which are starred) in technology and standard displays.
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5.3. Recursively super-abundant numbers. By analogy with super-abundant
numbers, a number n is recursively super-abundant if the sum of its recursive
divisors, normalized by n, is greater than that of any of its predecessors.

Definition 4. A number is recursively super-abundant if it satisfies

b(n)/n > b(m)/m for all m < n.

The b(n) are the starred numbers in the left-hand column of Table 3. In terms of
divisor trees, a number is recursively super-abundant if the perimeter of its divisor
tree, normalized such that the largest square has length unity, is bigger than that
of any of its predecessors’ divisor trees.

For sufficiently small values of n, recursively super-abundant numbers are recur-
sively highly composite. The first exception is at 181,440, and there are likely more.
(See the list of open questions at the end.)

5.4. Applications. Recursively divisible numbers are especially well suited to de-
sign across multiple length scales, in which the whole must be divided into parts,
the parts into subparts, and so on. Recursively highly composite and recursively
super-abundant numbers are frequently found in technology and standard displays,
examples of which are shown in Table 4.

In technology, these numbers are used for the screen resolutions of watches,
phones, cameras and computers. They appear in games, such as Tetris, and in
high-throughput technologies, such as test tube microplates. As a result, users of
these technologies have maximal optionality for dividing the space into parts in a
hierarchical way when, for example, building a website, designing a game or plan-
ning an experiment.

In display technologies, many standard resolutions use these numbers in the
height or width of the display, measured in pixels. Because standard displays tend
to preserve certain aspect ratios, such as 16:9, it is usually not possible for both
numbers to be either recursively highly composite or recursively super-abundant.

5.5. Ten open questions. In this paper I introduced and studied the recursive
divisor function and recursively divisible numbers. There are many open questions
on this topic, and I list 10 here.

Question 1. For what values of n does a divisor tree overlap itself?

Question 2. For what values of n do divisor trees have an exact or approximate
fractal dimension?

Question 3. For x = 2 in the definition of the recursive divisor function, is
σ2(n)/n2 bounded? If so, what is the bound?

Question 4. What are the recursion relations for σ2(n) for n equal to primes to a
power?

Question 5. Can the relation between a(n)/n and b(n)/n in Theorem 2 be gener-
alized to other values of x in the definition of the recursive divisor function?

Question 6. What is the recursion relation for b(n) when n is the product of k
distinct primes?

Question 7. Are there a finite number of numbers that are both recursively highly
composite and recursively super-abundant, like the highly composite and super-
abundant numbers (OEIS A166981 [13])?



RECURSIVELY DIVISIBLE NUMBERS 19

Question 8. If the former statement is true, what is the largest number that is
both recursively highly composite and recursively super-abundant?

Question 9. What is the largest number that is both highly composite and re-
cursively highly composite? And that is both super-abundant and recursively super-
abundant? (Table 3 suggests both might be 720.)

Question 10. How do the shapes of recursively highly composite and recursively
super-abundant numbers differ from each other, in terms of the distribution of ex-
ponents in their prime factorization?

I acknowledge Andriy Fedosyeyev and Rayan Melwani for helpful discussions.
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