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Aging is thought to be a consequence of an accumulation of errors in the storage of genetic informa-
tion. But mounting experimental evidence suggests that aging can be slowed or even stopped. To
help resolve this mystery, we present a mathematical framework for understanding the evolutionary
benefits of aging. We derive a mortality equation which governs the transition matrix of an evolving
population. We find that its largest eigenvalue increases with the maximum age, but the spectral
gap decreases. Remarkably, this is independent of the choice of fitness function. As the maximum
age of a population decreases, the population grows slower but converges faster. Thus aging confers
no benefit in a constant environment, but in a changing one can be favored by natural selection.

Why do we get old? Darwin’s theory tells us that evolu-
tion is the result of mutation, inheritance and selection.
It doesn’t refer to death explicitly, but dying is a conse-
quence of competition for finite resources, or when one
life form becomes the resource for another carnivorous
one. Some mutants, ill equipped to cope with their envi-
ronment or changes to it, simply break down.

This accounts for the pervasiveness of death, but it tells
us nothing about the universality of aging. The standard
explanation is that aging is a consequence of an accu-
mulation of errors in life’s information storage system—
as inevitable as the increase of entropy. But why should
the second law of thermodynamics apply to information
transmission, especially via machinery that is far from
equilibrium? Error correcting codes are effective in life as
well as in technology. Even if there were some inevitable
rate of decay, it would be minuscule compared to that
which is posited to explain aging over lifetimes.

Aging is something with which we have become so fa-
miliar with that we don’t recognize its strangeness. So
the question arises, rather than being inevitable, could
aging simply be an evolutionary bolt-on, favored by nat-
ural selection? This question is of supreme importance,
because ‘if aging is programmed’, as Werfel et al. [1] sur-
mise, ‘rather than a collection of secondary breakdowns
or genetic tradeoffs, then effective health and life exten-
sions through dietary, pharmacological, or genetic inter-
ventions are likely to be possible’.

One of the limitations of theoretical work in the study
of aging is that it largely relies on narratives and com-
puter simulation, rather than mathematical proof. In
a detailed critique of mathematical and computational
models of programmed death, Smith identified shortcom-
ings ranging from hard-coded mechanisms of kin selection
to the absence of genotypic storage. We set out to pro-
vide a more rigorous understanding of the dynamics of
an aging population, and to what extent is it favored by
natural selection.

In this Letter we do four things. First, we derive a
mortality equation which relates the growth of a popula-
tion with maximum age a to that with maximum age 1.
This equation is universal in that it applies to any fitness
function. Second, we show how to solve the mortality

equation, and relate the spectrum of eigenvalues of the
population transition matrix for maximum age a to that
of maximum age 1. We provide a geometric characteriza-
tion of the shift in eigenvalues as a increases. Third, we
show that the growth rate of the population, set by the
largest eigenvalue, increases with the maximum age, but
the convergence rate, set by the spectral gap, decreases.
Thus in a constant environment, immortality wins, but
in a shifting environment, mortality can have the upper
hand. Fourth, we test our predictions on populations
evolving according to three different fitness functions—
constant, Hamming and overlap—confirming our theory.

Mutation
In our model, we have a population of individuals
with binary genotypes of length n. The population
vector is given by p = (p1, . . . , p2n), which is the size
of the population with genotypes 1, . . . , 2n. Offspring
are identical to their parents apart from a single point
mutation in the genotype.

The process of mutation in the population can be
captured by the mutation matrix M. The rows of M
correspond to genotype 00 . . . 0 at the top to genotype
11 . . . 1 at the bottom, in lexicographical order. The
same applies to the columns from left to right. The
1s in each row indicate the different parents that can
give birth to that row’s genotype, keeping in mind that
an offspring differs from its parent by a single bit. For
example, for n = 4, the genotype 1100 can arise from
mutations in the parents 1101, 1110, 1000 and 0100.

The first eight mutation matrices M are shown in Fig-
ure 1. The mutation matrix M can be defined recursively
in block form:

Mn+1 =

(
Mn In
In Mn

)
, (1)

where In is the 2n × 2n identity matrix.
Let pMn

be the characteristic polynomial of Mn, the
roots of which are the eigenvalues of the matrix. Then

pMn+1
(λ) = det

(
λIn −Mn −In
−In λIn −Mn

)
= det(Mn − (λ− 1)In) · det(Mn − (λ+ 1)In)

= pMn(λ)|λ=λ−1 · pMn(λ)|λ=λ+1,
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FIG. 1: The M matrices, for n = 1 to n = 8, which are of size 2× 2 to 256× 256, where 0 is white and 1 is black.

where pM0
= λ. Thus we see that the characteristic poly-

nomial pMn+1
is the product of pMn

evaluated at λ − 1
and pMn

evaluated at λ+1. This recursive step can be un-
derstood visually though a Pascal’s triangle of the terms.
The product of the terms in row n is the characteristic
polynomial:

λ
λ− 1 λ+ 1

λ− 2 λ2 λ+ 2
λ− 3 (λ− 1)3 (λ+ 1)3 λ+ 3

λ− 4 (λ− 2)4 λ6 (λ+ 2)4 λ+ 4.
(2)

We immediately see that the eigenvalues of Mn are
n, n−2, n−4, . . . ,−n, with degeneracies

(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
.

The principal eigenvector of Mn is (1, 1, 1, . . .).

Selection
An environment amounts to an assignment of a fitness to
each genotype. To give preferential treatment to certain
genotypes, we need to define a fitness function. The
fitness of each individual is determined by the distance
of the genotype g from some target genotype g̃ which
is optimally suited to the environment. The closer g is
to the optimum g̃, the higher is the individual’s fitness,
and therefore reproduction rate. As the population
repeatedly reproduces and mutates, it drifts towards the
vicinity of this optimum g̃.

Let f = (f1, . . . , f2n) be the vector of fitnesses for the
2n genotypes, and let F be the matrix in which the diago-
nal is f and all other elements are zero. If we assume that
every individual reproduces once before dying, then the
distribution of the population at time t gets transformed
to an updated distribution at time t+ 1 according to the
transition matrix is MF:

p(t+ 1) = MFp(t). (3)

While the results in this Letter are independent of the
the fitness function F, it is illustrative to consider an ac-
tual example. The Hamming fitness is the Hamming dis-
tance between g and some target genotype g̃, optimally
suited to the environment, that is, the number of bits by
which g and g̃ differ. For example, if g̃ is 11111 and g is
01101, then h = 2. The matrices M5, F5 and M5F5 for
Hamming fitness are in the top of Fig. 2.

Starting from a given initial population at time t = 0,
we can determine the population distribution at time t
by repeatedly apply the matrix MF, or just raising it to

a power:

p(t) = (MF)tp(0).

However, to find the shape of the steady state distri-
bution, we don’t actually need to raise the matrix to a
power. This is given by the principal eigenvector of the
matrix MF, and the long term growth rate is given by
the largest eigenvalue of MF.

Age
The matrix MF tells us how a population with maxi-
mum age a = 1 evolves. Now let’s consider a greater
than 1.

We start with maximum age a = 2. Let
x = (x1, . . . , x2n) be the size of the population with
age 1 and genotypes 1, . . . , 2n, and let y = (y1, . . . , y2n)
be the size of the population with age 2 and genotypes
1, . . . , 2n. Individuals with ages 1 and 2 can give birth,
but all of the offspring are born with age 1. Let p = x+y
be the total population size, of all ages. Then

x(t+ 1) = MFp(t) and y(t+ 1) = x(t). (4)

Inserting these into p(t+ 1) = x(t+ 1) + y(t+ 1) gives

p(t+ 1) = MFp(t) + x(t).

FIG. 2: The top row shows, for genome length n = 5, the
mutation matrix M, the Hamming fitness function F, and
their product MF. The bottom row shows the mutation ma-
trix M, the overlap fitness function F, and their product MF.
For maximum age a = 1, Q = MF, but for higher a, we must
solve a matrix polynomial for Q.
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Incrementing both sides by one time step and again ap-
plying eq. (4) gives

p(t+ 2) = MFp(t+ 1) + MFp(t). (5)

Our goal is to obtain the transition matrix Q for which
p(t+ 1) = Qp(t). Writing (5) in terms of Qp(t), we find
Q2p(t) = MF(Q + I)p(t), and so Q satisfies

Q2 = MF(I + Q).

This is a quadratic equation in terms of matrices, where
MF is constant and we are solving for Q.

We can take a similar approach for general maximum
age a. Now we need to keep track of a population vectors,
with ages 1, . . . , a, respectively. Instead of x and y that
we used above, now we use x1, . . . ,xa to indicate the
vectors of populations with different ages. Individuals of
all ages can give birth, but all of the offspring are born
with age 1. Let

p(t) = x1(t) + . . .+ xa(t) (6)

be the total population size, of all ages. Then

x1(t+ 1) = MFp(t) and xi+1(t+ 1) = xi(t). (7)

Inserting these into eq. (6) evaluated at time t+ 1 gives

p(t+ 1) = MFp(t) + x1(t) + . . .xa−1(t).

Incrementing the time in both sides by 1 and again ap-
plying eq. (7) gives

p(t+ 2) = MFp(t+ 1) + MFp(t) + x1(t) + . . .xa−2(t).

Repeating this process until all of the xs are converted
to ps, we obtain

p(t+ a) = MF(p(t+ a− 1) + . . .+ MF(p(t).

Then, with p(t+ 1) = Qp(t), Q satisfies

Qa = MF(I + Q + . . .+ Qa−1). (8)

Since, for a general matrix A,

I + A + . . .+ Aa−1 = (I−A)−1(I−Aa),

we can write (I−Q)Qa = MF (I−Qa) or, equally,

Qa(I + MF−Q) = MF. (9)

We call this the mortality equation, and it is one of
the main results of this Letter. Its concision belies its
power. It gives the transition matrix of a population
with maximum age a in terms of that with maximum
age 1, for any fitness function F. Notice that while
the compact eq. (9) has degree a + 1, it can always be
reduced to degree a by dividing through by I − Q to
give eq. (8).

Solving the mortality equation
With our mortality equation in hand, what kind of
meaning can we extract from it? It is unusual in that
it is a polynomial equation in term of matrices rather
than numbers. However, matrix polynomials are subject
to most of the usual machinery for solving ordinary
polynomials, with some extra care required for taking
roots.

Taking roots of a matrix works as follows. A matrix
A is diagonalizable if there exists an invertible matrix P
and a diagonal matrix D such that A = PDP−1. The
roots of such a matrix A are then n

√
A = P n

√
DP−1,

where n
√
D just amounts to taking the roots of the

diagonal elements, bearing in mind to take all n roots of
each.

To provide some intuition for our mortality equation,
we first consider the case of constant fitness across all
genotypes, that is, we set F = I. Applying M to a pop-
ulation has the effect of diffusing it over the hypercube,
smoothing it out towards a uniform population. Setting
a = 2, eq. (9) becomes

Q2 = M(Q + I). (10)

Eq. (10) can be solved like an ordinary quadratic:

Q = M/2±
√

(M/2)2 + M. (11)

The actual matrices will depend on n. For n = 2,

Q = M/2±
((√

3 + i
)
1− 2 iM

)
/4, (12)

where 1 is the all-1s matrix. These two matrices have
eigenvalues 1 +

√
3, 0, 0,−1 + i and 1 −

√
3, 0, 0,−1 − i.
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FIG. 3: The eigenvalues for maximum age a = 1 (of the matrix
Q) are mapped to higher eigenvalues for a = 2 and a = 3,
according to the curves shown here. The a = 2 curve is the
solution to x2 = λ(1+x) and the a = 3 curve is the solution to
x3 = λ(1+x+x2). Curves for higher maximum age a approach
the top line x+1, which corresponds to a =∞ (immortality).
These new eigenvalues correspond to the transition matrix Q,
described by our mortality equation in eq. (9). This mapping
of the eigenvalues is independent of the fitness function F,
which only determines the initial eigenvalues, but not how
they get shifted.
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FIG. 4: We tested our theory for the shift in eigenvalues by simulating populations evolving according to three different fitness
functions: constant fitness, Hamming fitness and overlap fitness. In particular, for each fitness we compare the eigenvalues for
populations with maximum age a = 1 and a = 2 (points), and find complete agreement with our prediction (lines).

For n = 3,

Q3 = M3/2±
((√

21−
√

5
)
1 + 4

(√
5 +
√

3i
)
I

−2
(√

5−
√

3i
)

(J−M3)
)
/16, (13)

where I and J are the identity and antidiagonal identity
matrices. These two matrices have eight eigenvalues each.
Notice that even though M and F are real, Q can be
complex.

We can in principle extend this process to solving for
higher n, and indeed for larger maximum age a. However,
this requires painstaking matrix diagonalization and in-
version and is not analytically tractable. The good news
it that there is a shortcut for computing the eigenvalues
of Q from those of MF.

When it comes to the eigenvalues of Q, what’s good
for the goose is good for the gander. The eigenvalues of
Q have the same functional relation to those of MF as
the matrix Q does to the matrix MF. Let µ1, . . . , µ2n be
the eigenvalues of Q. We can express them in terms of
λ1, . . . , λ2n , the eigenvalues of MF, using the analogue to
our mortality equation in eq. (9), but for numbers rather
than matrices:

µai (1 + λi−µi) = λi, (14)

where λi is constant and we are solving for µi. For a = 2
we can solve this explicitly:

µi = λi/2±
√

(λi /2)2 + λi. (15)

As a test, we know from eq. (2) that the eigenvalues
of M for n = 2 are −2, 0, 0, 2. Plugging these into eq.
(15) gives the same eigenvalues as we obtained for the
matrices in eq. (12).

Discussion
The growth rate of our population is set by µ1, the
largest eigenvalue of Q. As Fig. 1 illustrates, µ1 increases
with the maximum age a, from λ1 at a = 1 to λ1 + 1
at a = ∞. Therefore the fastest growing population is

the immortal one. In a constant environment, there is
no growth rate benefit afforded by aging; mortality is a
losing strategy.

However, in reality populations do not reach steady
state, where they are optimally suited to their environ-
ment. Rather, they are in continually out of equilibrium,
adapting to a continuously shifting environment. The
rate of convergence is determined by the so-called spec-
tral gap, which is the difference between the first and
second eigenvalues. As we shall see, the spectral gap al-
ways decreases with the maximum age a, regardless of
the choice of fitness function F. First let’s prove that the
gap decreases from a = 1 to a = 2. The condition is

(λ1 − λ2)/λ1 > (µ1 − µ2)/µ1.

Substituting eq. (15) in for µ1 and µ2 and rearranging,
this becomes

λ1 +
√
λ2(λ2 + 4) < λ2 +

√
λ1(λ1 + 4).

Since λ1 > λ2, this is always true.
We can show that the spectral gap continues to dimin-

ish as a increases using the convexity of the eigenvalue
curves in Fig. 1.

To test our approach for predictions, we simulated a
population evolving according to three fitness functions:
constant fitness, Hamming fitness and overlap fitness.

Constant fitness, which we looked at earlier, is our con-
trol. In this case the eigenvalues for a = 1 (and thus of the
matrix MF) occur at regular intervals, and their aging

equivalents for a = 2 lie on the line x/2 +
√

((x/2)+x).
We plot both sets of eigenvalues in Fig. 2C, and see that
they lie on the two predicted lines.

Second, we considered the Hamming fitness h, de-
scribed earlier. Third, we considered the overlap fitness
v, which is the length of the longest initial sub-string over
which g and the g̃ match. For example, if g̃ is 11111 and
g is 11001, then v = 2, since the first two bits in g and g̃
match, but not the first three.

That programmed death, which we also refer to as mor-
tality, can have an evolutionary advantage is further ev-
idence that it is not fundamental to life itself.
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This work motivates a number of open questions, and
we hope that others will pick up where we have left off.
First, we conjecture that the general transition matrix
MF has only real eigenvalues and that they come in plus-
minus pairs. Second, a complete solution for a non-trivial
fitness function F, such as our Hamming or overlap fitness
or something else, would shed light on any connections

between maximum age a and genome size n. Third, even
if aging does confer an evolutionary benefit, it remains
to show how this might be bootstrapped into existence.
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