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We analyze about two hundred naturally occurring networks with dis-
tinct dynamical origins to formally test whether the commonly as-
sumed hypothesis of an underlying scale-free structure is generally
viable. This has recently been questioned on the basis of statistical
testing of the validity of power law distributions of network degrees.
Specifically, we analyze by finite-size scaling analysis the datasets of
real networks to check whether the purported departures from power
law behavior are due to the finiteness of sample size. We find that a
large number of the networks follow a finite size scaling hypothesis
without any self-tuning. This is the case of biological protein interac-
tion networks, technological computer and hyperlink networks, and
informational networks in general. Marked deviations appear in other
cases, especially involving infrastructure and transportation but also
in social networks. We conclude that underlying scale invariance
properties of many naturally occurring networks are extant features
often clouded by finite-size effects due to the nature of the sample
data.
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Networks play a vital role in the development of predic-1

tive models of physical, biological, and social collective2

phenomena (1–3). A quite remarkable feature of many real net-3

works is that they are believed to be approximately scale-free:4

the fraction of nodes with k incident links (the degree) follows5

a power law p(k) ∝ k−λ for sufficiently large value of k (4, 5).6

The value of the exponent λ as well as deviations from power7

law scaling provides invaluable information on the mechanisms8

underlying the formation of the network such as small degree9

saturation, variations in the local fitness to compete for links,10

and high degree cut-offs owing to the finite size of the network.11

Indeed real networks are not infinitely large and the largest12

degree of any network cannot be larger than the number of13

nodes. Finite size scaling (6–12), firstly developed in the field14

of critical phenomena and renormalization group, is a useful15

tool for analyzing deviations from pure power law behavior16

as due to finite size effects. Here we show that despite the17

essential differences between networks and critical phenomena,18

finite size scaling provides a powerful framework for analyzing19

the scale-free nature of empirical networks.20

The search of ubiquitous emergent properties occurring in21

several different systems and transcending the specific system22

details is a recurrent theme in statistical physics and complex-23

ity science (13). Indeed the presence and the type of such24

“universal” law gives insights on the driving processes or on25

the characteristic properties of the observed system. Notably,26

complex systems have the propensity to display “power law” 27

like relationship in many diverse observables (such as event 28

sizes and centrality distribution, to name a few). In particular 29

the power law shape of the degree distribution, which is the 30

hallmark of scale-free networks, leads to important emergent 31

attributes such as self-similarity in the network topology, ro- 32

bustness to random failures and fragility to targeted attacks. 33

Notably scale invariance extends far beyond the degree dis- 34

tribution, affecting many other quantities as weighted degree, 35

betweenness (14) and degree-degree distance (15). 36

In the last decade the existence of such power laws in 37

complex networks (but also in other areas (16), e.g., law in 38

language (17)) has been questioned (18). A reason of the 39

shift in such conclusion is in the availability of larger (and 40

new) datasets, and especially in improved statistical methods. 41

Recently, Broido and Clauset(19) fitted a power law model to 42

the degree distribution of a variety of empirical networks and 43

suggested that scale-free networks are rare. Voitalovet al.(20) 44

rebutted that scale-free networks are not as rare if deviations 45

from pure power law behavior are permitted in the small 46

degree regime. The different conclusions may depend on very 47

fine but critical assumptions at the basis of the statistical test 48

for the power law hypothesis. Moreover, a crucial point that 49

is typically ignored but represents the condition for the proper 50
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Fig. 1. An illustrative example of the concept of how the underlying true scale invariance in a network may be clouded by a scale imposed by the sample size. If the degree
distribution P (k) of the network is scale-free, then small sub-samples of the network will have the same distribution – i.e., the degree structure of the network will not be altered
apart from deviations at hight values of k where the cutoff because of sample size operates. Specifically, the P (k) vs k log-log plots show respectively: the largest sample
(left); a reduced sample (center) where for comparison the largest distribution is shown via gray dots; and the smallest subsample, where the two previous distributions are
shown for comparative purposes (gray dots). Any Anderson-Darling-like test of the sample being drawn from a scale-free distribution would fail. The network in this example is a
snapshot of the structure of the Internet at the level of autonomous systems (22)

.

use of maximum likelihood methods is the independence of51

the empirical observations (21). In this work we tackle the52

problem of detecting power laws in networks from a different53

perspective, based on the the machinery of finite size scaling.54

Statistical physics of critical phenomena teaches us that a55

system at criticality exhibits power law singularities of physical56

quantities such as, for example, the compressibility, the specific57

heat, the density difference between the liquid and vapor, as58

well as the latent heat. Water at its critical point exhibits59

fluctuations at all scales between the molecular length scale and60

the size of the container, which could be macroscopically large.61

Moreover, one finds thoroughly mixed droplets of water and62

bubbles of gas. Indeed, any large part of the system looks like63

the whole – the system is self-similar. The length scale of these64

droplets and bubbles extends from the molecular scale up to the65

correlation length, which is a measure of the size of the largest66

droplet or bubble. The divergence of the correlation length67

in the vicinity of a phase transition at the thermodynamic68

limit thus suggests that properties near the critical point can69

be accurately described within an effective theory involving70

only long-range collective fluctuations of the system. However,71

both in experiments and in numerical simulations, the infinite72

size limit cannot be reached and thus one observe deviations73

from the predicted thermodynamics limit behavior. The finite74

size scaling (FSS) ansatz has been developed precisely to infer75

the singular behavior (i.e., the exponents determining the76

universality classes) of the physical properties of a system77

in the thermodynamic limit, having only information on the78

system properties at finite sizes.79

FSS has yet a more general validity and does not require80

the existence of a phase transition or an evolution process.81

Indeed, even though it was initially used to study finite systems 82

near the critical point of the corresponding infinite system, 83

FSS can be actually applied to describe structures that are 84

self-similar when observed in a certain range of scales. As 85

an example, we consider a Cantor set where we stop the 86

procedure to divide intervals in three parts and removing 87

the middle one at a scale s0 = 3−m. This corresponds to a 88

fractal structure on scales between s0 and 1, and to a non- 89

fractal structure on scale smaller than s0. If we measure the 90

total length, L(s), of the set with a stick of length s = 3−n 91

we find L(s) = s1−DF (s/s0) where F (x) = 1 when x > 1 92

whereas F (x) = x1−D when x < 1 and D = log3 2 is the 93

Hausdorff–Besicovitch (or fractal) dimension of the Cantor set. 94

Another illustration of FSS analysis is given by the truncated 95

geometrical series S(x,N) =
∑N−1

0 xn. When x is close to 1 96

it is easy to see that S(x,N) = t−1F (tN), where t = 1 − x 97

and F (z) = 1− e−z. As a matter of fact, the FSS approach 98

has been used to test scale invariance (and self similarity) also 99

for non-critical systems such as (just to mention some very 100

famous examples) polymers in confined geometries (23) and 101

interfaces (24, 25). In view of the above, FSS can also be 102

implemented on well-established models of scale-free networks 103

(like e.g. the Barabási-Albert model (4) or the Bak-Tang- 104

Wiesenfeld toy model of self-organized criticality (26)) where 105

the scale-free behavior is not an emergent property at a critical 106

point. Whether or not the same hypotheses holds for real world 107

network does not undermine the possibility of applying FSS 108

to them. 109

Employing the FSS machinery to test whether empirical 110

networks display scale-free behavior in their degree distribu- 111

tion is not straightforward though. Unlike for physical systems, 112
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representations of a network at different scales are typically113

not available. Thus, in order to test whether a network shows114

a power law distribution of its degree k, we have constructed115

smaller size subsamples, effective representations of the un-116

derlying population, drawn in an unbiased manner. We then117

use the characteristics of the large original network as well118

as the derived sub-networks to test the scale-free hypothesis.119

Figure 1 shows an illustration of this procedure for a snapshot120

of the structure of the Internet at the level of autonomous121

systems (22). Subsection A provides a brief summary of fi-122

nite size scaling applied to network topology. Subsection B123

presents an independent method of determining whether net-124

works are scale-free based on analyses of the size dependence125

of the ratio of moments of the degree distributions. Subsec-126

tion C provides information on the sampling scheme used to127

build sub-networks and on the region selected for the scaling128

analysis.129

In the Results section we test the scale-free hypothesis, (the130

power law behavior in the degree distributions) on around131

two hundred large empirical networks (those considered in132

(19) and (20)). Remarkably, we find that such a venerable133

hypothesis cannot be rejected for many (but not all) networks.134

Moreover the two scaling exponents for such networks satisfy135

an additional scaling relationship, which derives from the136

shape of the degree cross-over in scale-free networks. We137

benchmark our results against the quality measure of the well-138

known scale-free graph introduced by Barabási and Albert139

(4). Further we show that finite size scaling allows discerning140

pure power laws from log-normal and Weibull distributions. In141

conclusion, our results support the claim that scale invariance142

is indeed a feature of many real networks, with finite size143

effects accounting for quantifiable deviations.144

A. Finite Size Scaling of networks. A scale-free network is pos-145

tulated to have a degree distribution p(k) ∝ k−λ beyond some146

lower degree cut-off kmin. For an infinitely sized network,147

since kmin ≥ 1, the exponent λ > 1 in order for p(k) to be148

normalizable. In what follows, we will consider the cumulative149

distribution P (k) =
∫∞
k
p(q)dq ∝ k−γ where γ = λ− 1 > 0.150

Networks are of course not infinitely large. In a network151

comprising N nodes, k can be at most equal to N − 1. This152

is the intrinsic limit on k given by the network size. Thus it is153

plausible that, below some kc (cross-over value), the degree154

distribution follows a power law behavior as would be expected155

for an infinite network but falls more rapidly beyond kc. The156

finite size scaling hypothesis states that157

P (k,N) = k−γf(kNd) [1]158

where d < 0. The remarkable simplifying feature of the scaling159

hypothesis is that P is not an arbitrary function of the two160

variables k and N but rather k and N combine in a non-161

trivial manner to create a composite variable. The behavior162

of the system is fully defined by the two exponents, γ and163

d, and the scaling function f . The exponent d < 0 so that,164

for an infinite size network (N → ∞), the argument of f165

approaches zero. A pure power law decay of P (k,N) with k166

for very large N requires that f(x)→ constant as x→ 0. The167

additional normalization condition is f(x) → 0 sufficiently168

fast when x → 1. The finite size effects are quantified by169

the behavior of the function f as its argument increases, e.g.,170

when k & kc. For a network with a finite number of nodes,171

the degree distribution does not follow a pure power law but 172

is modified by the function f (see also (27) for a discussion of 173

finiteness in the context of growing network models). 174

A powerful way of assessing whether a network is scale 175

invariant is to confirm the validity of the scaling hypothesis 176

and determine the two exponents and the scaling function f 177

by using the collapse plot technique. One may recast Eq. (1) 178

as 179

P (k,N)kγ = f(kNd). [2] 180

Then the path forward is simple. For networks belonging to 181

the same class but with different N , one optimally selects 182

two fitting parameters γ and d by seeking to collapse plots 183

of P (k,N)kγ versus kNd for different N on top of each other 184

(28). The fidelity of the collapse plot provides a measure of 185

self-similarity and scale-free behavior, the optimal parameters 186

are the desired exponents, and the collapsed curve is a plot of 187

the scaling function. 188

We start out with a single representation of an empirical 189

network with N nodes. For purposes of the scaling collapse 190

plot, we seek additional representative networks of smaller 191

sizes. In order to accomplish this, we obtained the mean 192

degree distributions of multiple sub-networks of sizes N
4 ,

N
2 193

and 3N
4 , which were then collapsed on to each other and the 194

original network to create a master curve. The quality S of 195

the collapse plot is then measured as the mean square distance 196

of the data from the master curve in units of standard errors. 197

S is thus like a reduced χ2 test, and should be around one 198

if the data really collapse to a single curve and much larger 199

otherwise (29). 200

Note that as a measure of the size of a network (or sub- 201

network), one may use the number of nodes N or alternatively 202

the number of links E. The scaling function in this case reads 203

as follows: 204

P (k,E)kγ = fE(kEdE ), [3] 205

where the exponent γ is the same as before and the exponent 206

dE < 0 ought to be equal to the previously introduced expo- 207

nent d for networks satisfying the finite size scaling hypothesis 208

(see next section). 209

B. Ratio of moments test. A simple alternative and indepen- 210

dent test of the scale-free hypothesis is to study the size 211

dependence of the ratio between the i-th and the (i − 1)-th 212

moments of k, for various i. The i-th moment
〈
ki
〉
is defined 213

to be 214〈
ki
〉

=
∫ ∞
kmin

dk ki−1k−γf(kNd) ∝ N−d(i−γ) [4] 215

provided i > γ. Instead if i ≤ γ,
〈
ki
〉
converges to a constant 216

value for N →∞. Therefore when i− 1 > γ, 217〈
ki
〉/〈

ki−1〉 ∝ N−d, [5] 218

independently of i. Thus, for a scale-free network, a log-log 219

plot of the ratio of consecutive moments versus N is a straight 220

line with slope −d. Likewise 221〈
ki
〉

=
∫ ∞
kmin

dk ki−1k−γfE(kEdE ) ∝ E−dE(i−γ) [6] 222

when i > γ, otherwise
〈
ki
〉
goes to a constant for E → ∞. 223

Therefore when i− 1 > γ,224 〈
ki
〉/〈

ki−1〉 ∝ E−dE . [7]225
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The exponents d and dE are not independent for scale-free226

networks. On the one hand, equations (4) and (6) imply E ∝227

Nd/dE . On the other, in general 〈k〉 ∝ E/N ∝ Nd/dE−1. Due228

to the above equations 〈k〉 is constant for scale-free networks229

with γ > 1, implying that d = dE . Thus the difference230

between d and dE values (that we statistically assess through231

their Z-score) provides an independent quality measure of the232

scale-free attributes of a network.233

C. Sub-sampling and scaling region. In order to generate a234

sub-network of a given size n < N , we pick n nodes at random235

among the N nodes of the original network, removing all the236

other nodes and the links originating from them. It is well237

known that the sub-sampling procedure modifies the shape238

of the degree distribution of the network. In particular, sub-239

networks of scale-free networks are not scale-free because of240

deviations at low k values (30) (this happens independently241

of the sampling scheme adopted (31)). The problem of the242

left tail of the distribution however applies more generally,243

because deviations from the scale-free behavior at low degrees244

are rather common in empirical and network models. Therefore245

we perform the scaling analysis described in subsections A and246

B only for k ≥ kmin, where the lower bound of the scaling247

region kmin is chosen such that the empirical distribution of248

the original network and its best power law fit (with exponent249

Γ, computed with the maximum-likelihood method of Clauset,250

Shalizi and Newman (18), see Methods) are as similar as251

possible above kmin (32). In the Supplementary Information252

we show that this allows us to get rid of any deviations induced253

by the sub-sampling scheme. However, when the empirical254

distribution of the network deviates substantially from a power255

law over its entire domain, then the estimated kmin can become256

very large and may even diverge. In these cases the number257

of nodes n∗ of the (sub-)network with k ≥ kmin becomes very258

small or vanishing, yielding an unstable or undefined collapse.259

We thus use n∗ ≥ lnN as a condition on as the minimum260

number of nodes in each (sub-)network for the feasibility of261

the scaling analysis.262

Results263

To sum up, two independent statistical tests of the scale-free264

attributes of a network explained in subsections A and B are265

the quality of the collapse S (i.e., the reduced χ2 between266

data and master curve) and the compatibility of d and dE267

(measured through their Z-score). Figure S1 in the Supple-268

mentary Information outlines the flow of the analysis. In line269

with Broido & Clauset (19) and Voitalov et al. (20), we use270

these tests to define a classification for the degree distribution271

of empirical networks:272

• SSF (strong scale-free) if S ≤ 1 and ZddE ≤ 1,273

• WSF (weak scale-free) if S ≤ 3 and ZddE ≤ 3,274

• NSF (non scale-free) otherwise or when n∗ < lnN for275

the original network or any of its sub-networks.276

Note the nestedness of the classification, for which a SSF277

network is also WSF.278

Power law and Poisson distribution. We start analyzing the279

reference cases of Barabási-Albert (4) and Erdős-Rényi (34) 280

models whose behavior is known. In the former case p(k) ∼ 281

k−3, whereas, in the latter case p(k) ∼ Poissonk̄(k). Figure 2 282

shows that for a realization of the Barabási-Albert graph the 283

degree distributions of the (sub-)networks result in a collapse of 284

very high quality. The power law exponent γ yielding the best 285

collapse is consistent with the value Γ obtained by maximum- 286

likelihood fitting the degree distribution of the mother network 287

with a power law (18). Additionally, the moments ratio are 288

indeed parallel lines, with compatible slopes d and dE . A more 289

robust statistics is obtained by analysing 1000 realizations of 290

the Barabási-Albert model (Figure 3). Within this sample, 291

98% of the networks are classified as SSF while 2% as WSF. 292

The estimated scaling exponents are all consistent with each 293

others among the different realizations. 294

For the Erdős-Rényi model the estimated kmin for the 295

degree distribution is so large that it is not possible to have 296

(sub-)networks with number of nodes n∗ ≥ lnN (in principle, 297

for this network, the kmin estimated from the KS test should 298

be larger than the largest degree of the network). As such, the 299

Erdős-Rényi graph is classified as NSF. We obtained the same 300

outcome in an ensemble of 1000 realization of this network 301

model. 302

Alternative fat tail distributions. While the power law is the 303

only distribution featuring scale invariance, there are other 304

distributions characterized by a fat right tail that can resemble 305

a power law in finite systems. Hence determining which of 306

these distribution better fits empirical network data is often a 307

nontrivial task. In particular the classical approach based on 308

p-values computed from a Kolmogorov-Smirnov test (see Meth- 309

ods) is able to rule out some competing hypothesis but not to 310

confirm one (18). Moreover, the hypothesis testing approach 311

may fail when applied to regularly varying distributions (20). 312

It is therefore meaningful to put our finite size scaling approach 313

to the test of alternative fat tail distributions. Here we consider 314

the representative cases of the log-normal and Weibull distri- 315

butions. The log-normal distribution p(ln k) = Normal(µ, σ) 316

is characterized by parameters µ and σ, respectively the mean 317

and standard deviation of the variable’s natural logarithm. 318

For large values of σ this distribution is highly skewed and 319

features a fat tail for large k values. The Weibull distribution 320

p(k) = (h/lh)kh−1 exp
[
−(k/l))h

]
is characterized by parame- 321

ters h (shape) and l (scale). The fat tail in this case appears 322

for h→ 0. We use the Viger-Latapy algorithm (35) to generate 323

networks with these degree distributions. 324

Figure 4 shows the scaling analysis for a realization of a 325

network with log-normal p(k) and for another realization with 326

Weibull p(k). In both cases we observe that the quality of the 327

collapse is poor and that the moment ratios are not parallel 328

lines. Therefore both networks are classified as NSF. Moreover, 329

S as a function of γ does not show any minimum in the region 330

around Γ (the minimum does exist, but is located elsewhere). 331

This means that the exponent estimated by finite size scaling 332

γ and that obtained from maximum likelihood power law 333

fitting Γ are substantially different: the outcome of the scaling 334

analysis is not consistent in this case. However, the result 335

depends much on the choices of parameters characterizing 336

the distribution. Indeed Figure 5 shows that the percentage 337

of networks classified NSF decreases by increasing σ in the 338

log-normal case, as well as by decreasing h in the Weibull case 339

– up to a point where the variance of the distributions becomes 340

so large that the scaling analysis can hardly distinguish these341

distributions from power laws at finite N . For these cases, the342
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Barabási-Albert model

(c)

dE = − 0.358
γ = 1.895
S = 0.66

d = − 0.358
γ = 1.895
S = 0.67

(a)

(b)

(d )

(e)

Fig. 2. Scaling analysis on a numerical realization of the Barabási-Albert model. The network has N = 104 nodes and the minimum node degree is kmin = 14. The best
power law fit on this network yields Γ = 1.89± 0.02. Note this value is smaller than Γ = 2 because of deviations from the pure power law at small ks: indeed, the theoretical
P (k) in the Barabási-Albert model goes as [k(k + 1)(k + 2)]−1 (33)). Panels (a), (b), (c) show results of the scaling analysis using the number of nodes as for Eqs. (2)
and (5). Inset (a) reports the dependence of various moment ratios on N ; fitting these slopes yields d = −0.358± 0.035. The main panel (a) shows the collapse of the
cumulative degree distributions when scaled with N . The best collapse is obtained with γ = 1.89 ± 0.06 and yields S = 0.67. Panel (c) shows how the quality of the
collapse reported in (a) varies on moving away from the optimal value of γ. Panels (d), (e) further show results of the scaling analysis using the number of links as for Eqs. (3)
and (7). In this case, the moment ratio test of inset (d) returns dE = −0.351± 0.031 while the best collapse of the cumulative degree distributions reported in the main panel
(e) is obtained with γ = 1.89± 0.05 and yields S = 0.66.

Fig. 3. Empirical distribution of the quality of collapse S obtained from finite size scaling analysis on 1000 realizations of the Barabási-Albert graph (same parameters of Figure
2). The distribution is well fitted by a log-normal with µ = −0.70± 0.1 and σ = 0.414± 0.009.

value of γ that minimizes S is indeed compatible with Γ.343

Real world networks. At last we move to real network data. We344

consider a large set of empirical networks taken from the Index345

of Complex Networks (ICON) as well as from the Koblenz346

Network Collection (KONECT). These are the datasets used347

by Broido & Clauset (19) and Voitalov et al. (20). See the348

Methods section for a discussion on how we built the dataset.349

Overall, we have networks belonging to ten different categories:350

biological (PPI), social (i.e., friendship and communication),351

affiliation, authorship (including co-authorship), citation, text 352

(i.e., lexical), annotation (i.e., feature, folksonomy, rating), 353

hyperlink, computer, infrastructure. Figure 6 shows results of 354

the finite size scaling analysis for selected network instances, 355

whereas, Figure 7 and Table 1 summarize results of the scaling 356

analysis for all the networks considered. The main outcomes 357

of the analysis are the following. 358

• Figure 7(a): the scaling exponents d and dE obtained 359

from the moment ratio test are compatible in most of the 360

cases. 361

• Figure 7(b): the value of γ computed from finite size 362

scaling is often in good agreement with Γ obtained from 363

the maximum likelihood power law fit of the degree dis-364
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Lognormal graph  

! = −0.229, " = 2.407, # = 5.047

Weibull graph  

! = −0.230, " = 1.933, # = 4.324 

(a1)

(b1)

(a2)

(b2)

(c1) (c2)

Fig. 4. Scaling analysis (with N ) on a numerical realization of a log-normal graph with (σ, µ) = (0.8, 1.8) (panels a1, b1, c1) and of a Weibull graph with (h, l) = (0.6, 1.8)
(panels a2, b2, c2). In both cases the network has N = 104 nodes. Log-normal graph: the best power law fit is obtained with Γ = 2.90± 0.12, the moment ratio tests yield
d = −0.209± 0.033 and dE = −0.208± 0.033, and the best collapse is obtained with γ = 2.40± 0.37 and yields S = 5.047. Weibull graph: the best power law fit is
obtained with Γ = 3.43± 0.08, the moment ratio tests yield d = −0.230± 0.037 and dE = −0.219± 0.036, and the best collapse is obtained with γ = 1.933± 1.055
and yields S = 3.271.

Lognormal Weibull

(a1) (a2)

(b1) (c1) (b2) (c2)

Fig. 5. Outcome of the scaling analysis (with N ) on log-normal and Weibull networks as a function of the parameters of the degree distributions, respectively (µ, σ) and
(l, h). Panels (a1) and (a2) show the percentage of networks classified as strong, weak and non scale-free for varying σ at fixed µ = 1, and for varying h at fixed l = 3.5,
respectively. This statistics is computed over ensembles of 2000 networks for each choice of parameters σ and h. Panels (b1) and (b2) show representative instances of the
distribution in the range of parameters analysed, whereas, panels (c1) and (c2) displays the corresponding value of the variance of the distribution. Note that we do not report
results for varying µ at fixed σ nor for varying l at fixed h, because we observe almost no dependency of the classification on these parameters.

tribution (18).365

• Figure 7(c): the exponents γ and d of the scaling func-366

tion are not independent but satisfy a universal relation367

d ' −(γ + 1)−1, which derives from the nature of the368

degree cross-over in scale-free networks – namely the max-369

imum degree for which the power law behaviour holds. 370

According to Eq. (1), this is the value kc for which the 371

scaling function f(x) → 0 (graphically speaking, when 372

the master curve P (k)kγ falls down), corresponding to 373

x & 1 whence kc ∼ N−d. The analysis presented in Fig- 374

ure 7(c) suggests that kc ∼ N1/(γ+1), and in agreement 375

with theoretical results we find that also the maximum376
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Human protein interaction  
! = −0.429, " = 1.331, # = 0.50

Word adjacencies (English)  
! = −0.468, " = 1.193, # = 0.57

(b1) (b2)

(a1) (a2)

(c1) (c2)(d1) (d2)

Internet (autonomous system)  
! = −0.500, " = 1.047, # = 0.57 

Coauthorship (computer science)  
! = −0.278, " = 2.595, # = 2.37 

(b3)

(a3)

(c3) (d3)

(a4)

(b4)

(c4) (d4)

Fig. 6. Scaling analysis (with N ) on four real network instances. Top left panels (1): the 2005 version of the proteome-scale map for Human binary protein-protein interactions
(N = 1706, E = 3155) (36). Top right panels (2): the word adjacency graph extracted from the English text “The Origin of Species” by C. Darwin (N = 7724, E = 46281)
(37). Bottom left panels (3): (symmetrized) snapshot of the Internet structure at the level of Autonomous Systems in 2007 (N = 26475, E = 53381) (38). Bottom right panels
(4): the collaboration graph of authors of scientific papers from DBLP computer science bibliography (N = 1314050, E = 10724828) (39). Panels (a), (b), (c) are analogous
to those reported in Figures 2 and 4, whereas, panels (d) visually show the classical plots of p(k) in double logaritmic scale together with the plot of the estimated slope γ
using FSS analysis.

degree of the network kmax scales in the same way (see377

Supplementary Information). However this scaling behav-378

ior is somehow different from the kc ∼ N1/γ as predicted379

by hand-waving argument (40–42), likely due to inner380

correlations in the networks which modify the value of381

the cross-over (41).382

• No particular relation between quality of collapse S and383

estimated exponent γ is found, nor any clusterization of384

networks amenable to categories within the plane defined385

by these two variables (see Supplementary Information).386

However this result is obtained when the different net-387

work categories are well balanced in the dataset, because388

networks that are very similar tend instead to cluster389

together. This is for instance the case of protein inter- 390

action networks belonging to different species. In order 391

to remove this artificial clustering effect, we have not 392

considered in our dataset these (and other) cases of very 393

similar networks nor repetitions of the same network (see 394

Supplementary Information). This is the main reason 395

why our dataset is apparently smaller than that used by 396

Broido & Clauset (19). 397

• Overall, as shown in Table 1, the 185 networks of our 398

dataset are classified as strong scale-free (SSF) in the 399

27% of cases, weak scale-free (WSF) for the 23% and non- 400

scale-free (NSF) for 50%. This classification however does 401

vary substantially among the different network categories. 402

On the one hand, biological networks are very often clas- 403

sified at least as WSF. The same happens for computer404
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(a) (c)

(b)

Fig. 7. Visual summary of results from the finite size scaling analysis, in which each network dataset is represented as a point in a specific plane. Panel (a) shows the relation
between d and dE resulting from the moment ratio test, with the solid black line representing the identity. The other two panels refer to the scaling analysis with N . Panel (b)
shows the relation between γ computed from finite size scaling and Γ from the maximum likelihood power law fit of the degree distribution (see Methods). The solid line again
represents the identity. Panel (c) shows the relation between the exponents γ and d of the scaling function, with the solid black line representing the curve d = −(γ + 1)−1

(see the main text for details).

TOTAL Affiliation Annotation Authorship Biological Citation Computer Hyperlink Infrastructure Social Text
number 185 8 38 15 30 5 13 14 12 39 11
SSF 27% 63% 21% 27% 40% 40% 39% 22% 0% 13% 55%
WSF 23% 12% 24% 20% 30% 0% 38% 21% 17% 18% 27%
NSF 50% 25% 55% 53% 30% 60% 23% 57% 83% 69% 18%

Table 1. Classification of empirical networks (split into categories). For each category we report the total number of networks and the
percentage of SSF, WSF and NSF instances. For detailed results on each network analyzed, see the Supplementary Dataset Table.

and hyperlink networks, with outliers respectively given405

by the Gnutella peer-to-peer file sharing network (that406

has the same character of a social networks (43)) and by407

some hyperlink networks restricted to specific domains.408

Citation and text networks are few in our analysis, but409

are often scale-free. On the other hand, infrastructure410

networks (i.e., road and flights network) are rarely scale-411

free (with the notable exception of Air traffic control412

systems), possibly because of the heavy cost of establish-413

ing a connection. Between these two extremes, there are414

the social and other kinds of networks (see for instance415

the well-known discussion of the Facebook case presented416

in (44, 45), and that of other information sharing social417

network presented in (46)).418

Discussion419

Since the onset of network science, scale invariance of complex420

networks has been regarded as a universal feature present in421

real data (18, 47–51) as well as reproduced in models (4, 33, 52–422

55). Thus the recent claim by Broido & Clauset (19) that scale-423

free networks are rare created a stir, strengthening previous 424

claims along the same direction (16, 18, 56). Voitalov et al. 425

(20) replied to these arguments fitting data to generalized 426

power laws, that is, regularly varying distributions p(k) = 427

l(k)k−λ (where l(k) is a function that varies slowly at infinity 428

and thus does not affect the power law tail). By allowing 429

deviations from the pure power law distribution at low k, they 430

argued that scale-free networks are definitely not rare. Gerlach 431

& Altmann (21) very recently touched on this issue, showing 432

that correlations present in the data can lead to false rejections 433

of statistical laws when using standard maximum-likelihood 434

recipes (in the case of networks, this can be important in the 435

presence of degree-degree correlations). 436

In this work we go beyond statistical arguments and apply 437

powerful tools from the study of critical phenomena in physics 438

to analyse a wide range of model and empirical networks. Here 439

we have showed that many of these networks spontaneously, 440

without fine-tuning, satisfy the finite size scaling hypothesis, 441

which, in turn, supports the claim that complex networks are 442

inherently scale-free. 443

While a direct comparison with the results previously dis- 444

cussed would be interesting, the final results would not be 445

meaningful, given the differences in the underlying hypotheses446

8 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Serafino et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

of the different models. We have shown how different hypothe-447

ses can lead to distinct results. The hypothesis underlying448

our approach, which came from results previously obtained in449

the field of statistical mechanics and critical phenomena, goes450

beyond the applications they were initially designed for and451

does not require the existence of a critical point. Together with452

previous work, our methodology fits in the bag of tools that a453

researcher can use in order to assess the scale free character454

of a network.455

Our scaling analysis is based on the extraction of small456

representations of the networks using a random node selection457

scheme. Of course, an intrinsic limitation of any rescaling458

method applied to network data is the impossibility to con-459

sider system sizes spanning orders of magnitude. As a further460

general remark, finding a robust method to rescale (or coarse461

grain (57, 58)) a network is still an open issue in the literature462

since networks are not embedded in any Euclidean space. Com-463

monly used approaches lack generality since they are based on464

the choice of the embedding geometric space (59) or on the465

average path length (60). In order to avoid ad hoc assumptions,466

we decided to follow the simplest (although not necessarily the467

most accurate) scheme. As shown in the Supplementary Infor-468

mation, by averaging over many extraction of the sub-network469

we are able to preserve the degree distribution of the original470

network, that is what we are interested in. Finally note our471

claims regards the self-similarity of the degree distribution,472

but we restrain ourselves in making general conclusions about473

the overall self-similarity of networks – this would involve474

the study of other quantities such as clustering, average path475

length and so on (61).476

Materials and Methods477

Here we report the steps to test the finite size scaling hy-478

pothesis of Eq. (2) together with the moments ratio test of479

Eq. (5). Note that in order to test Eqs. (3) and (7), one uses480

the number of edges E (e) associated with each (sub-)network481

of size N (n), and replaces d with dE .482

Finite Size Scaling analysis. Given an undirected network of483

size N , our analysis is based on the following steps.484

1. We compute the degree distribution p(k,N) and use the485

method of Clauset, Shalizi and Newman (18, 32) to es-486

timate the best fitting power law parameters Γ + 1 and487

kmin.488

2. We generate an ensemble of 100 sub-networks for each489

size n ∈ {N4 ,
N
2 ,

3N
4 }. Each sub-sample is obtained by490

picking n nodes at random from the original network and491

by deleting all the other nodes and the links incident to492

them. We then compute the mean degree distribution493

p(k, n) over each sub-network ensemble.494

3. Both for the original network and for each sub-network,495

we check whether the (average) number of nodes n∗ with496

k ≥ kmin is larger than lnN . If this condition is not497

met, we classify the network as non scale-free and the498

analysis ends. Otherwise, we proceed by removing the499

region below kmin in both p(k,N) and each p(k, n), and500

renormalize them afterwards. As explained in the main501

text, this allows us to get rid of deviations at low degrees,502

including those induced by the sub-sampling (see also the 503

Supplementary Information). 504

4. Using the moment ratio test, we determine d (and its 505

associated error) as follows. We compute a given moment 506

ratio
〈
ki
〉
/
〈
ki−1〉 on each (sub-)network of size n, and 507

use least-squares to fit ln(
〈
ki
〉
/
〈
ki−1〉) versus lnn. We 508

then average the resulting fit slope over different choices 509

of the moments (indexed by i) to obtain −d. Note that 510

since this test is computationally less expensive than the 511

collapse analysis (see below), we use more than four sub- 512

network sizes. In particular we use 20 equally spaced 513

values of n ∈ [N4 , N ], for each of which we compute the 514

moments ratio (and associated error used as fit weight) 515

over an ensemble of 100 n-sized sub-network built as 516

described above. 517

5. For each (sub-)network size n ∈ {N4 ,
N
2 ,

3N
4 , N} we obtain 518

the cumulative degree distribution P (k, n). We then 519

determine the exponents γ and d (and their associated 520

errors) that maximizes the quality of the collapse plot (see 521

below). Notably, the scaling exponent d obtained from 522

the collapse is always compatible with that obtained from 523

the moment ratio test. Hence in order to decrease the 524

computational cost of the method, one can in principle 525

vary only γ while keeping d fixed at the value obtained 526

from the moment ratios fit. 527

Quality of collapse. We now describe the procedure for deriv- 528

ing the master curve of the scaling function from the cumula- 529

tive degree distributions of the various sub-networks, following 530

the steps described in (29, 62). The key premise is that when 531

these distributions are properly rescaled they can be fitted 532

by a single (master) curve. The quality of the collapse plot 533

is then measured as the distance of the data from the master 534

curve, and the collapse is good if all the rescaled distributions 535

overlap onto each other. 536

In practice for each (sub-)network size n ∈ {N4 ,
N
2 ,

3N
4 , N} 537

we have the set {j} of ordered points for the cumulative degree 538

distribution in the form {(kj , P (kj , n))}j . After applying the 539

scaling laws we have: 540{
xnj = kj n

d

ynj = P (kj , n) kγj
541

so that xnj is the rescaled jth degree in the distribution of 542

the n-sized sub-network, and ynj is the rescaled value of such 543

distribution relative to the jth degree. We also assign an 544

error on the latter quantity as dynj = dP (kj , n) kγj , where 545

dP (kj , n) is the Poisson error on the count P (kj , n) — see the 546

Supplementary Information. 547

The master curve Y is the function best fitting all these 548

points. We define the quality of the collapse as 549

S =
1

3|M |
∑

(n,j)∈M

(ynj − Ynj)2

dy2
nj + dY 2

nj

, [8] 550

where Ynj and dYnj are the estimated position and standard 551

error of the master curve at xnj , while M is the set of terms 552

of the sum (roughly, the set of points for which the curves for 553

the various n overlap). 554

For each xnj , in order to define Ynj and dYnj we first need 555

to select a set of points mnj as follows. In each of the other 556

sets n′ 6= n, we select (and put in mnj) the two points j′557

and j′ + 1 that best approximate xnj from below and above,558
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i.e., the two points such that xn′j′ ≤ xnj ≤ xn′(j′+1). If this559

procedure fails to select two points for each n′ 6= n, then Ynj560

and dYnj are undefined at xnj which thus does not contribute561

to S (this happens if set n is alone in this region of x and is the562

master curve by itself). Otherwise, we compute Ynj and dYnj563

using a linear fit through the selected points in (n′, l) ∈ mnj ,564

so that Ynj is the value of that straight line at xnj and dYnj565

is the associated standard error:566

Ynj =
WxxWy −WxWxy

η
+ xnj

WWxy −WxWy

η
[9]567

568

dY 2
nj =

1
η
(Wxx − 2xnjWx + x2

njW ) [10]569

where wn′l = 1/dy2
n′l for the fit weights and W =570 ∑

(n′l)∈mnj
wn′l, Wx =

∑
(n′l)∈mnj

wn′lxn′l, Wy =571 ∑
(n′l)∈mnj

wn′lyn′l, Wxx =
∑

(n′l)∈mnj
wn′lx

2
n′l, Wxy =572 ∑

(n′l)∈mnj
wn′lxn′lyn′l, η = WWxx −W 2

x for the fit parame-573

ters.574

The quality of the collapse S measures the mean square575

distance of the sets to the master curve in units of standard576

errors, analogously to a χ2 test (29). The number of degrees577

of freedom can be estimated by noting that each of the |M |578

points of the sum of S has in turn 3 intrinsic degrees of579

freedom: |m| points as described above (6 in our case) minus580

2 from computing mean and variance of Y , minus 1. Hence by581

using 3|M | as normalization factor, S should be around one582

if the data really collapse to a single curve and much larger583

otherwise.584

We optimize the quality S of the collapse by varying the585

scaling exponents γ in the interval Γ − 0.5 ≤ γ ≤ Γ + 0.5586

and d in the interval d − 0.1 ≤ γ ≤ d + 0.1. The errors587

associated with γ and d are estimated with a S + 1 analysis:588

∆γ is such that S(γ + ∆γ) = S(γ) + 1 and ∆d is such that589

S(d+ ∆d) = S(d) + 1.590

Dataset591

We extract a collection of real network data from the Index592

of Complex Networks (ICON) at https://icon.colorado.edu/593

as well as the Koblenz Network Collection (KONECT) at594

http://konect.uni-koblenz.de/. The full list of networks we595

consider together with detailed results of the finite size scaling596

analysis are reported in the Supplementary Dataset Table. To597

define the dataset we select networks (removing duplicates598

appearing in both ICON and KONECT) according to the599

following criteria.600

First, to allow for a reliable scaling analysis, we only use601

networks with N > 1000 and E > 1000 (for computational602

reasons, we did not consider networks with more than 50603

million links). We then include undirected networks, as well as604

the undirected version of both directed and bipartite networks.605

Similarly, we consider binary networks as well as the binarized606

version of weighted and multi-edge networks. We however607

ignore networks that are marked as incomplete in the database.608

Importantly, among database entries that possibly represent609

the same real-world network we select only one (or at most610

a few) entry, and consistently we do the same for temporal611

networks (when there is only one snapshot, we ignore the time612

stamp of links).613

In practice, in KONECT we select only the Wikipedia- 614

related networks in English language. For ICON the impli- 615

cations are more profound. We ignore interactomes of the 616

same species extracted from different experiments, the (almost 617

100) fungal growth networks, the (more than 100) Norwe- 618

gian boards of directors graphs, the (more than 100) CAIDA 619

snapshots denoting autonomous system relationships on the 620

Internet, networks of software function for Callgraphs and 621

digital circuits ITC99 and ISCAS89. We consider only one in- 622

stance of Gnutella peer-to-peer file sharing network, as well as 623

a few instances of the (more than 50) within-college Facebook 624

social networks and of the (about 50) US States road networks. 625

Among the (more than 100) KEGG metabolic networks, we 626

select 17 species trying to balance the different taxonomies. 627

Thus, in our analysis, we do employ the same data source 628

used by Broido & Clauset (19), but we avoid over-represented 629

network instances. As explained in the main text, this pro- 630

cedure removes the clustering of similar networks shown in 631

Figure 6, and leads to less biased conclusions on the scale-free 632

nature of networks belonging to different categories. 633
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