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Abstract

Identifying hierarchies and rankings of nodes in directed graphs is fundamental in many

applications such as social network analysis, biology, economics, and finance. A recently

proposed method identifies the hierarchy by finding the ordered partition of nodes which

minimises a score function, termed agony. This function penalises the links violating the

hierarchy in a way depending on the strength of the violation. To investigate the resolution of

ranking hierarchies we introduce an ensemble of random graphs, the Ranked Stochastic

Block Model. We find that agony may fail to identify hierarchies when the structure is not

strong enough and the size of the classes is small with respect to the whole network. We

analytically characterise the resolution threshold and we show that an iterated version of

agony can partly overcome this resolution limit.

Introduction

Identifying ranking hierarchies in complex networks is of paramount importance in many dis-

ciplines and applications. An exact hierarchical organisation in a directed network means that

the set of nodes can be divided in an ordered collection of classes such that links exist only

from a node of a low rank class to a node of a higher rank class. Clearly it is equivalent to define

exact hierarchical structures when links exist only from upper to lower classes.

Recently the relevance of measuring ranking hierarchy was pointed out in the context of

ecosystems [1], in which it was shown how species exhibit a property of trophic coherence,

measuring how consistently a species falls into a distinct level of hierarchy within a food web.

Other major applications include social network analysis [2, 3], the study of funds flow in

financial networks [4, 5], and of corporate cross-ownerships in economics [6].

Since real networks are not necessarily exactly hierarchical, the problem considered here is

to find an optimal ordered partition of nodes into classes such that the structure has a maximal

level of hierarchy.

Framed in this way, the procedure is to choose a suitable hierarchy metric and to devise fea-

sible algorithms which find the ordered partition of nodes in such a way that the hierarchy

metric is maximised. In [7], this maximisation was recognised to be a dual problem of circula-

tion, known to be related to the cost max-flow minimisation [8]. The problem is analogous to
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the more explored problem of community detection in graphs [9]. In such case a common

approach is to choose a metric, for example the modularity, and to look for partitions that

maximizes it. It is well known that modularity has resolution limits [10, 11], and the

associated optimisation problem might be a hard computational task, even if successful heuris-

tics exist [12].

It is important to stress that the concept of ranking hierarchy we employ in this paper, intro-

duced in [13], and further developed in [7, 14–17], models graphs, representing for example

social organisations, as command structure or influential communities.

Related literature sharing a similar definition of hierarchy includes [18–22]. This concept is

therefore very different from the more common definition of nested hierarchy in networks,

studied for example in [23–26], where low-level communities of nodes are nested into bigger

ones, in a way directly associated with hierarchical clustering. The former concept of hierarchy

is defined in directed networks and look for rankings of nodes into classes, while the latter

makes sense also for undirected networks and look for nested clusters of nodes. Still different,

but closer it is the concept of ranking used in [27, 28] and related literature, where the ranking

to be inferred is a complete order on a undirected network, not an ordered partition.

In this paper we consider the problem of the inference of hierarchies in directed net-

works via a class of metrics recently introduced and termed agony. Given a ranking of

nodes into classes (i.e. an ordered partition), agony is a metric which penalises those links

which are against the ranking, i.e. from a high rank to a low rank node. Different forms of

penalisation lead to different types of agony. Once the agony function is chosen, one looks

for the ranking of nodes which minimises it. Thus optimisation of agony is a non-paramet-

ric approach of hierarchy detection. Similarly to community detection with modularity,

agony minimisation might be a challenging computational task, even if for some forms of

the agony function exact or heuristic algorithms have been recently proposed (see the next

Section for more details).

Here we focus our attention on the problem of resolution limiti when detecting ranking

hierarchies with agony minimisation. Specifically, we ask when a given hierarchical structure

in a network can be identified with agonies. To investigate the possible resolution limits we

proceed in a way similar to what has been done for community detection [29–31]. We intro-

duce a class of random graphs, termed Ranked Stochastic Block Models (RSBM) which is a spe-

cific subclass of Stochastic Block Models [32] with a tunable hierarchical structure and we

study the resolution limit of hierarchy detection with agony in RSBM. Following the comment

above, we stress again that our RSBM are different from those recently proposed in [26],

where the nested concept of hierarchy is adopted.

We find, both analytically and empirically, that agony succeeds in identifying hierarchies

when the structure is strong. However we prove the existence of resolution thresholds in the

model parameters such that beyond these thresholds agony minimisation identifies hierar-

chical structures which are different from the planted one. Using symmetry arguments we

explore analytically alternative rankings, showing that they can have a smaller agony (higher

hierarchy) than the planted one. These rankings are obtained by merging, splitting, or

inverting the classes of the planted ranking. It is important to notice that, as we show

numerically, the resolution limits are not due to the RSBM, but to the method. Once more,

this is analogous to what observed in community detection with modularity maximisation.

Finally we show that in some cases, iterating the optimisation on each class found in the

first run of the agony minimisation, it is possible to improve significantly the recovery of

the planted structure.
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Methods

Agony

Let G = (V, E) be a binary directed graph of N� |V| nodes and m� |E| links. A rank function

r: V! {1, . . ., R} associates each node to an integer number which indicates the position of the

subset (or class) containing the node in the hierarchy. Thus a rank function generates an

ordered partition of the nodes into R subsets Ci (i 2 {1, . . ., R}) of size ni ¼ jCij. From this

point, we will refer to the ordered partition induced by the rank function with the term rank-

ing. Once a ranking has been assigned to the graph G, a link between two nodes is classified as

forward if it goes from a node in a class to one in a class with a strictly higher rank and back-
ward otherwise. Identifying the optimal hierarchical structure in a directed graph means to

find a ranking where the presence of backward links is suitably penalised. The penalisation

will in general depend on the number of backward links as well as on the distance in rank

between the connected nodes. The penalisation is of course arbitrary and it is interesting to

investigate the ability of different forms of penalisation in identifying hierarchies.

The concept of agony in graphs was first introduced in [16] and it is the weighted cost of all

the backward links in a ranking. More specifically, given a graph G and a ranking r the value of

agony with respect to r is given by:

Af ðG; rÞ ¼
X

ðu;vÞ2E

f ðrðuÞ � rðvÞÞ ; ð1Þ

where f is a penalty function such that it is zero for negative argument and non decreasing oth-

erwise. We will consider here f of the form

fdðxÞ ¼

(
ðx þ 1Þ

d x � 0

0 x < 0

d � 0 ;

and we will denote the value of agony of the ranking r on graph G with Ad(G, r). The agony of

the graph is defined as the minimum value of agony with respect to all possible rankings on

the nodes, i.e.

A�dðGÞ ¼ min
r2R

AdðG; rÞ ; ð2Þ

where R denotes the set of all rankings. Fig 1 shows two examples of optimal rankings for sim-

ple graphs and illustrates the difference between backward and forward links.

Remarks 1

1. When the graph is a Directed Acyclical Graph (DAG), one can always find a ranking of the
nodes such that there are no backward links (see [33] for a simple routine to solve this prob-
lem), hence the value of agony of a DAG is 0, and we say the graph has a perfect hierarchy.

2. The presence of +1 in the cost function f makes sure that same same class links are penalised.
Without this, the optimal partition would always be the trivial one, with all the nodes in the
same class.

3. Thanks to the minimisation, for the value of (generalised) agony for the optimal partition it
holds 0 � A�d � m. For the trivial partition rT, i.e. the one with all the nodes in the same class,

Resolution of ranking hierarchies in directed networks
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it holds

AdðG; rTÞ ¼
X

ðu;vÞ2E

ð0þ 1Þ
d
¼ m

which gives the indicated upper bound for the optimum.

4. The exponent d acts as a tuning parameter: when it increases, only rankings with stronger
hierarchies are privileged over the trivial one.

5. The optimal ranking may be not unique, however there exists a routine to choose the ranking
with the smallest number of classes among those with the optimal value of agony (see [34] for
more details).

Fig 1. Optimal rank and agony (d = 1) for simple graphs. On the top, the graphs are represented without any ordering, on the bottom nodes are divided according to

their ranks. The red links are the backward ones, those contributing to agony, and the black links are the forward ones.

https://doi.org/10.1371/journal.pone.0191604.g001
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Finally, one can define the hierarchy of a directed graph as

h�dðGÞ ¼ 1 �
A�dðGÞ
m

: ð3Þ

From the previous remark (ii) it follows that 0 � h�d � 1 where h�d ¼ 1 indicates a perfect

hierarchy.

Once the penalisation has been chosen, the problem of finding the optimal ranking is quite

complex. In its original version, agony was defined with the piecewise linear cost function, i.e

d = 1 in our notation. With this choice few exact algorithms to identify the optimal ranking of

a graph are known [16, 34]. Ref. [34] considered the computational complexity of algorithms

for generic d. The case d = 1 is proven to be solved by an algorithm of polynomial complexity,

while the case d = 0 can be reformulated into the minimum Feedback Arc Set problem (FAS,

or equivalently into the dual problem: Maximum Acyclic Subgraph) [35] which is known to be

NP-hard, but for which some heuristics exist [36]. The intermediate cases, 0< d< 1, have

concave cost functions, which also lead to a NP-hard problem according to [34]. The case

d> 1, instead, have a convex cost function which gives a problem of polynomial complexity.

However, to the best of our knowledge, no algorithm is available at the moment for these latter

cases. One of the objectives of this paper is to investigate how the detected optimal ranking

depends on the choice of the penalty function. For this reason we need to introduce a class of

graphs which have a hierarchical structure and whose strength can be tuned by a suitable

choice of parameters. This is what we do in the next Subsection.

Ranked stochastic block model

Our ensemble of graphs belongs to the class of Stochastic Block Models (SBMs). In this ensem-

ble of graphs, nodes are partitioned into R disjointed subsets and the probability of having a

link between two nodes depends on the classes they belong to and it is independent of all the

other pairs of nodes, i.e.

P½ðu; vÞ 2 E j u 2 Ci; v 2 Cj� ¼ cij :

The R × R matrix C = {cij}ij is called the affinity matrix. For our purpose we consider the

directed version of SBMs, and C is not symmetric. We choose a parametrisation of C in order

to keep the number of parameters small, which allows to have both analytical tractability, and

enough flexibility to model different types of hierarchies.

The ranking r(p), which we will refer to as planted ranking, is defined so that it is consistent

with the labelling in the affinity matrix, i.e.

rðpÞðCiÞ ¼ i i ¼ 1; � � � ;R :

This notion of planted ranking is slightly different from the one used in another stream of

literature, as for example in [27]. In the latter case, it refers to the latent fully connected graph

(clique) underlying the observed one (which is instead sparse). The former graph should be

estimated in order to recover the latent ranking. This can indeed be related to the definition of

the Stochastic Block Model: in this case the latent fully connected directed and weighted graph

is obtained from the affinity matrix, by using as weights for each edge the probability to

observe that specific link in one realisation of the ensemble, i.e the entry of the affinity matrix

for the corresponding blocks. Moreover, the term ranking is used here as synonym of ordered

partition, which implies that in general the order is not complete.

Note that, given the collection of subsets of nodes, any rank function with a range of values

larger than R − 1 would have a larger value of Ad.

Resolution of ranking hierarchies in directed networks
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Consider

p ¼ Pðforward link towards a node in the nearest upper classÞ ;

q ¼ Pðforward link towards more distant classesÞ ;

s ¼ Pðbackward linkÞ :

This gives the affinity matrix

C ¼

s p

. .
. . .

.
q

. .
. . .

.

. .
. . .

.

s . .
.

p

s

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

that correspond to the schematic representation in Fig 2.

In order to have a true hierarchical structure we require that the parameters p, q, s are such

that

E½#fbackward linksg� � E½#fforward linksg� : ð4Þ

Define 8k 2 1, ‥, R,

bk ¼
XR� k

i¼1

niniþk :

For any pair (i, j) (i, j = 1, . . ..R), the number of links between subset i and j mi, j follows a bino-

mial distribution, mi,j * Binom(ni nj, (C)i,j), therefore the constraint (4) is equivalent to

s
XR� 1

k¼0

bk � pb1 þ q
XR� 1

k¼2

bk :

In the case of uniform cardinality of the subsets, ni = n8i, which we will consider in the follow-

ing, the inequality further simplifies to

s � smax :¼
2ðR � 1Þ

RðRþ 1Þ
pþ
ðR � 2ÞðR � 1Þ

RðRþ 1Þ
q ð5Þ

A SBM having the above structure and satisfying the constraint (4) will be termed Ranked Sto-

chastic Block Models RSBM(p, q, s, R, {ni}). In the case of uniform cardinality, we denote

briefly RSBM(p, q, s, R).

Remarks 2

1. A possible interpretation of the RSBM is that p, q give the backbone of the hierarchical struc-
ture, while s represents the noise.

2. As mentioned in Remarks 1.2, the definition of the cost function implies that links between
nodes of the same rank have a positive cost. This means that those links are classified as

Resolution of ranking hierarchies in directed networks
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backward, and for this reason they are assigned a probability s as the other backward links in
the model.

Since RSBMs are random graphs, different realisations of the model give different values of

agony and hierarchy. We will compute below the expected value of these quantities.

We estimate the expected value of hd(G, r(p)), the hierarchy of the planted ranking of RSBM

graphs. Note that we make a little abuse of notation indicating with hd the value 1 − Ad/m, i.e.

we do not consider the minimisation of agony. For this reason h is not necessarily bounded

between 0 and 1 as h�d.

Fig 2. Schematic representation of the structure of a RSBM graph.

https://doi.org/10.1371/journal.pone.0191604.g002

Resolution of ranking hierarchies in directed networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0191604 February 2, 2018 7 / 25

https://doi.org/10.1371/journal.pone.0191604.g002
https://doi.org/10.1371/journal.pone.0191604


Indicating with �hðpÞd the ensemble average of hd(G, r(p)), we obtain

�hðpÞd ¼ E 1 �
1

m
AdðG; r

ðpÞÞ

� �

¼ 1 �
X

i�j

ði � jþ 1Þ
deij ;

where eij ¼ E
mij
m

� �
: In order to have closed form expressions we need to estimate the terms eij.

We consider a second order Taylor expansion:

E
mij

m

h i
�
E½mij�

E½m�
�

covðmij;mÞ
E½m�2

þ
varðmÞE½mij�

E½m�3
: ð6Þ

If we assume that ni = O(N)8i, then the last two terms in Eq (6) vanish when N!1, hence

eij !
E½mij�

E½m�
as N !1 :

This gives the first order estimate for �hðpÞd

�hðpÞd ¼ 1 �
E½AdðG; rðpÞÞ�
E½m�

þ oðN � 1Þ

¼ 1 �
s
PR� 1

k¼0
ðkþ 1Þ

dbk

pb1 þ q
PR� 1

k¼2
bk þ s

PR� 1

k¼0
bk

þ oðN � 1Þ :

It is possible to compute higher order estimates or estimates based on exact expected values.

The expressions are however less transparent and we find in simulations that first order esti-

mates are quite accurate, thus in the following we use them.

Results

Looking for optimal hierarchies in RSBM

RSBMs are constructed with a specific ranking, the planted one, which is determined by the

choice of the classes and the model parameters. When minimising a generalised agony Ad on

realisations of such graphs, it is not a priori obvious that the optimal ranking is the planted

one. We therefore ask the following question:

Given a RSBM(p, q, s, R, {ni}), find the ranking r which minimises the generalised agony Ad.

In particular check when the planted ranking r(p) is optimal.
This is in general a complicated problem and we do not have a complete answer to this

question, despite the fact that it is possible, at least for d = 1, to find numerically the optimal

ranking of a specific realisation of a RSBM. In order to simplify the problem, in this paper we

will restrict our attention to the homogeneous case ni = N/R, 8i. Given the form of the affinity

matrix and the homogeneity assumption, we expect that the optimal solution, when different

from the planted one, preserves the homogeneity of the planted ranking. Possible boundary

effects (for example the first and last class have different size from the other ones) are not con-

sidered and we expect to play a minor role when the number of planted classes is large. In any

case in the subsection Simulation we use numerical simulations to test our intuition.

For this reason we shall compute the generalised agony of the following alternative

rankings:

1. the number of classes changes either by merging adjacent classes or by splitting each class;

due to homogeneity, merged or split classes have all the same size;

Resolution of ranking hierarchies in directed networks
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2. the rank is inverted, rðiÞj ¼ rðpÞR� jþ1, 8j = 1, ‥, R, i.e. nodes in highest ranks of the planted rank-

ing are given lowest ranks in the alternative. Moreover we consider also the case when the

number of classes is arbitrary, but again their size is assumed to be uniform.

To distinguish between the two families of ranking, we will denote the former as direct, in

contrast with inverted for the latter. For each of these alternative rankings we compute the

value of �hd as a function of the number of classes and we look for the optimal one among these

alternatives and the planted ranking. Clearly there is no guarantee that this will be the global

optimum over all the possible rankings. To maintain this distinction, we will denote optimal
the ranking with highest value of �hd within the subset of alternatives just described, while we

will always refer to the best among all the rankings, i.e. that which gives h�d, as the global opti-
mum. We will see for example that numerical simulations of some RSBM indicate that the

globally optimal ranking is a partial inversion of the planted hierarchy. However this analysis

serves to show that planted ranking might not be globally optimal for some generalised agony

and to provide an upper bound for the resolution threshold as well as getting intuition on the

characteristics of the optimal ranking in a RSBM.

In the following we will focus on two regions of the parameter space of RSBMs:

• p� q> s, termed a twitter-like hierarchy;

• q = 0, p 6¼ 0 termed a military-like hierarchy.

In the former hierarchy forward links can connect low rank nodes with nodes of any higher

rank, while in the latter the forward links can connect a node only with nodes in a direct supe-

rior class. In both cases backward links can exists with a probability s. As we will see the global

optimal ranking of the two hierarchies is quite different.

Finally we consider the case

R ¼ 2a; ~R ¼ 2a� b ;

where ~R is the number of classes after splitting (b< 0) or merging (b> 0). The parameters

a> 1 and b< a are such that 2a; 2a� b 2 N. We denote the direct and inverted rankings with

2a−b classes as r(b) and r(i,b) respectively.

We will focus our attention on the case d = 1, d = 0, and d = 2. Results for other values of d
are left for a future paper.

Agony with d = 1. In this case exact algorithms for its optimisation are known, allowing

the comparison of calculations with numerical simulations.

Provided that the constraints in (5) are satisfied, one can easily verify that 8b< 0

E½A1ðG; rðbÞÞ� > E½A1ðG; rðpÞÞ�

E½A1ðG; rði;bÞÞ� > E½A1ðG; rðpÞÞ�

i.e. splitting is never optimal, neither in the direct nor in the inverted ranking.

As for merging (b> 0), the first order estimate of �h1 is given by

�h1ðb; p; q; s; aÞ ¼
2� bð2a � 2bÞð6pþ 3ð� 2þ 2aþbÞq � 2að2a þ 2bÞsÞ

3ð2að2p � 3qþ sÞ þ 4aðqþ sÞ � 2pþ 2qÞ
: ð7Þ

Similarly, one can write the estimate for the value of hierarchy of the inverted ranking

�hðiÞ1 ðb; p; q; s; aÞ ¼
2� bð2b � 2aÞð2aþbðq � 3sÞ þ ð4a � 6Þqþ 6pÞ
3ð2að2p � 3qþ sÞ þ 4aðqþ sÞ � 2pþ 2qÞ

:
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In this notation p, q, s, a are the parameters of the RSBM, while b refers to the modified rank-

ing r(b) or r(i,b). Moreover it is clearly �h1ðb ¼ 0Þ ¼ �hðpÞ1 .

In the twitter-like hierarchy (p� q> s) it is �hðpÞ1 > �hðiÞ1 ðb; p; q; s; aÞ, i.e. the inverted ranking

is never optimal. Merging, instead, can give rankings with higher hierarchy than the planted

ranking.

To show this, in the left panel of Fig 3 we plot the behaviour of �h1ðbÞ as a function of the

number of classes, ~R ¼ 2a� b, after merging. Each line is associated to a RSBM(p, q, s, R). The

parameters p = q = 0.5, R = 32 are fixed, while different curves refer to different values of s. We

plot the variable ~R as a continuous variable to help the interpretation of the observed behav-

iour. When s is small the maximum value of �h1 is correctly identified at ~R ¼ R. Above a critical

value sm of the parameter describing the probability of a backward link, the planted ranking is

no longer optimal and merging classes gives a ranking with higher hierarchy. Notice that for

s > s�hðpÞ
1
¼0

, the hierarchy �hðpÞ1 of the planted ranking becomes negative. This might seem coun-

terintuitive since we showed before that h� 2 [0, 1]. The condition �hðpÞ1 < 0 simply means that

putting all the nodes in the same class has a higher hierarchy than the one of the planted rank-

ing when s > s�hðpÞ¼0.

The right panel of Fig 3 shows the optimal number of classes ~R� as a function of s. As

explained, when s< sm it is ~R� ¼ R, while after this value the optimal number of classes

decreases and in the limit s = smax it is ~R� ¼ 2. Therefore the value sm sets a resolution threshold,

since twitter-like graphs with a probability of backward links larger than sm will not be cor-

rectly identified by agony with d = 1. More precisely sm is an upper bound of the resolution

threshold, since other rankings, not considered here, could have higher hierarchy than the

planted and the merged ones when s< sm.

Interestingly for large number of classes R, as we prove in the following Proposition 1, the

resolution threshold scales as sm * (6p − 3q)/R2, i.e. the more communities are present the

more it is difficult to detect them. The same happens for large networks (N! +1). Taking

the number of classes constant and letting p and q scale as 1/N to keep the connectivity fixed,

one immediately sees that sm = O(N−1), i.e. for large networks and fixed number of classes the

Fig 3. Panel (a) shows the value of the estimate of h1 for different values of s as a function of the number of classes, ~R,

for twitter-like graphs with parameters p = q = 0.5, R = 32. Panel (b) gives a schematic representation of the estimated

optimal number of classes ~R� as s varies.

https://doi.org/10.1371/journal.pone.0191604.g003
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detectable structures are those with very strong hierarchical structure. Thus agony with d = 1

has strong resolution limits for large graphs, similarly to what happens with modularity and

community detection.

The situation is more complex in the military-like hierarchy (q = 0) because for large s
inverted rankings become better than direct ones. To show this, we refer to the left panel of

Fig 4, which is the analogous of left panel of Fig 3. In this case, alongside �h1ðbÞ we also plot

�hðiÞ1 ðbÞ, with matching line colours to distinguish those associated to the same values of s, and

circles to identify �hðiÞ1 . In all cases we chose p = 0.5 and R = 32. For small values of s (solid blue

lines), �h1 is convex in ~R and has its maximum at ~R ¼ R, whereas �hðiÞ1 is negative for inverted

rankings different from the trivial one. Thus in this regime the planted ranking is optimal.

When s reaches the critical value si (dashed red lines), the optimal choices for both the direct

and inverted rankings give the same value of hierarchy. For higher s (dotted green lines) the

only direct ranking with non negative hierarchy is the trivial one, i.e ~R ¼ 1, while the inverted

rankings are (strictly) positive for a suitable choice of b. Therefore in this regime inverted

rankings outperfom the planted one.

The right panel of Fig 4 shows the optimal number of classes ~R� as a function of s together

with an indication of the sign of the hierarchy of the optimal direct and inverted ranking. For

s < si
2

the hierarchy of the optimal direct ranking is positive and the one of the optimal nega-

tive ranking is negative, for si
2
< s < s1 they are both positive, while for s1 < s< smax the

inverted optimal hierarchy is positive and the optimal direct one is negative. Thus for s< si the

optimal ranking is direct and coincides with the planted one, while after this value the inverted

ranking with two classes becomes optimal. This is true in the region si < s < si
3

after which the

inverted ranking with three classes becomes optimal. By increasing s further, the optimal rank-

ing is always inverted with an increasing number of classes up to a value smaller or equal to
ffiffiffi
R
p

for s = smax. Therefore for the military-like hierarchy the resolution threshold is si which

for large R scales as 6p/R2, displaying a resolution limit similar to the twitter-like hierarchy,

both for large number of classes R and for large graphs (N!1).

We summarise the results for d = 1 in the following proposition.

Fig 4. Panel (a) shows how depending on the value of s the inverted rank can give a higher value of �h than the planted

rank in military-like graph with parameters p = 0.5, q = 0, R = 32. Panel (b) gives a schematic representation of the

estimated optimal number of classes ~R� as s varies, dashed lines are associated to the inverted rank.

https://doi.org/10.1371/journal.pone.0191604.g004
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Proposition 1 When d = 1 and p� q> s, (Twitter hierarchy) the first order estimate for the
optimal value of h

�h�
1
¼

�hðpÞ1 s � sm

�h1ðb ¼ b�Þ sm < s < s2

�h1ðb ¼ 2Þ s � s2 ;

ð8Þ

8
>>><

>>>:

where

sm ¼
6ð2a � 1Þp � 3ð2a � 2Þq

2a � 4a þ 8a ; s2 ¼
3

7

ð4a � 12Þqþ 12p
4a ;

b� ¼
1

2
log 2

22asþ 6ðq � pÞ
3q � s

:

Furthermore, when q = 0, (Military hierarchy)

�h�
1
¼

�hðpÞ1 s � si

�hðiÞ1 ðb ¼ a � 1; q ¼ 0Þ si < si
3

�hðiÞ1 ðb ¼ bi;�; q ¼ 0Þ s > si
3
;

8
>>>><

>>>>:

where

si
3
¼

12

22a p ; si ¼
12p

3 2a þ 22aþ1 � 2
; bi;� ¼

1

2
log2

2p
s
:

The proof and the extended expression for �h�
1

are given in S1 Appendix.

In conclusion, we explicitly showed that for RSBMs there exist alternative rankings with a

smaller agony (d = 1) than the planted one. The merging of the classes for the twitter hierarchy

is due to fact that for a large number of classes it might be more convenient to aggregate classes

paying a penalty equal to one than to leave them separate but paying a higher penalty for the

distant backward links. Similarly, for the military hierarchy, when the number of backward

links is relatively large, it is more convenient (in terms of agony) to invert the ranking because

forward links do not enter the cost minimisation. Thus even if p is much larger than s and the

number of forward links is much larger than the number of the backward links, it is more con-

venient to invert the ranking to avoid to pay large penalties of backward links between very

distant classes.

Thus our results depend on the choice of the penalisation function and on the choice of the

affinity matrix. In the next Subsection we show indeed that a very different result is obtained

for d = 0. Changing the affinity matrix, for example introducing a probability of backward

links which depends on the distance between classes, and changing the penalty function by

including the negative cost of forward links is left for a future study.

Agony with d = 0. This case corresponds to the FAS problem. The optimal ranking is

obtained when each node is in a different class, ~R ¼ N, and the inverted ranking is never opti-

mal as stated by the following:

Proposition 2 When d = 0, 8RSBM(p, q, s, R = 2a) the optimal value for the first order esti-
mate of h is given by (for both Twitter and Military hierarchy)

�h�
0
¼ �h0 b ¼ � log 2

N
R

� �

�
1

2
:
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See S1 Appendix for the proof. The reason for this result is that backward links are weighted in

the same way irrespectively from the distance between the ranks of the nodes connected by the

link. Thus, for example, the naive ranking with all nodes in one class has a agony equal to the

number of links, while the ranking where each node is in one class has an agony equal to the

number of backward links, which is smaller than the total number of links.

Finally we note that the value of �h0 increases very slowly when ~R approaches N, so in spe-

cific realisations of the RSBM the optimal ranking can have a number of classes smaller than

N.

Agony with d = 2. Finally, we consider the case of d = 2. Similarly to the case d = 1, split-

ting is never optimal, both for the direct and inverted rankings, while merging can give rank-

ings with higher value of �h2 than the planted one. One can proceed as before, considering the

expressions for the alternative rankings when b> 0:

�h2ðb; p; q; s; aÞ ¼ �
2� 2b� 1ð2a � 2bÞð2aþ2bþ1ð2s � 3qÞ þ 5s22aþb þ 8as � 3 2bþ2ðp � qÞÞ

3ð2að2p � 3qþ sÞ þ 4aðqþ sÞ � 2pþ 2qÞ
;

and

�hðiÞ2 ðb; p; q; s; aÞ ¼
2� 2b� 1ð2b � 2aÞð2aþ2bþ1ð2q � 3sÞ þ ð5 4a � 36Þ2bqþ 8aqþ 9 2bþ2pÞ

3ð2að2p � 3qþ sÞ þ 4aðqþ sÞ � 2pþ 2qÞ
:

As before we describe the behaviour for the two considered hierarchies and then we state

the proposition summarising our results. For the twitter-like hierarchy (p� q> s), the behav-

iour is similar to the d = 1 case. Since �hðpÞ2 > �hðiÞ2 ðbÞ, 8b, inverted rankings are never optimal.

The planted ranking is optimal up to the critical value s2,m for the probability of backward

links. After that, merged rankings outperform the planted one, and the number of classes

decreases with s. When s2,1 < s� smax the optimal choice is the trivial ranking, i.e.

~R ¼ 1; h2 ¼ 0. Despite the similarity with the d = 1 case, the resolution threshold is now

higher, since it can be shown that s2,m� sm. Moreover, while, as noted before, in the d = 1 case

sm = O(R−2), in the d = 2 case the resolution threshold is not only stricter but also it decreases

faster as the number of classes increases, since it scales as s2;m �
2p� q
2R3 ¼ OðR� 3Þ. Finally, when

d = 2 the large s case has the trivial ranking as the optimal one, whereas in the d = 1 case the

optimal ranking has two classes.

For the military-like hierarchy (q = 0), the planted ranking is proven to be optimal with

respect to the direct rankings up to the critical value s0
2;1

. After this value the optimal choice is

the trivial ranking. Then when s > si
2;2

it becomes optimal to merge inverted rankings and the

optimal number of classes increases with s, starting from ~R ¼ 2. Differently from the case

d = 1, in this case it holds s0
2;1
< si

2;2
, hence for s 2 ðs0

2;1
; si

2;2
Þ the optimal rank is the trivial one,

and the resolution threshold is given by s0
2;1

, which scales as 12p/R3, while inverted rankings

are to be preferred for any s > si
2;2

.

We summarise the results for d = 2 in the following proposition.

Proposition 3 When d = 2 and p� q> s (Twitter hierarchy), the first order estimate for the
optimal value of h

�h�
2
¼

�hðpÞ2 s � s2;m

�h2ðb ¼ b�
2
Þ s2;m � s � s2;1

0 s > s2;1 ;

8
>>>><

>>>>:
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where

s2;m ¼
6ð21� aðq � pÞ þ 2p � qÞ
� 3 2a þ 23aþ1 þ 4a þ 4

; s2;1 ¼
22aqþ 4p � 4q

3 22a

and b�
2
is given S1 Appendix.

Furthermore, when q = 0 (Military hierarchy),

�h�
2
¼

�hðpÞ2 s < s0
2;1

0 s0
2;1
� s � si

2;2

�hðiÞ2 ðb ¼ a � 1; q ¼ 0Þ si
2;2
< s < si

2;3

�hðiÞ2 ðb ¼ bi;�
2 ; q ¼ 0Þ s � si

2;3
;

8
>>>>>>>><

>>>>>>>>:

where

s0
2;1
¼

3 22p
2að5 2a þ 4a þ 4Þ

; si
2;2
¼

12

22a p ; s
i
2;3
¼ 3si

2;2
; bi;�

2
¼

1

2
log 2

6p
s

� �

:

With this last proposition we showed that hierarchy detection with quadratic cost function

has a behaviour very similar to the linear case. However the resolution limits we highlighted

before escalates in this case, and, as a result, only very strong hierarchies are detected correctly

when the number of class is large. The same computations can be done also for greater integers

d, for which the sums in the estimates of agony have a closed formula. Intuitively as d 2 N
increases, backward links to distant classes are given a larger penalisation, hence rankings with

merged classes become more convenient than the planted one even for smaller values of s. In

other words agonies with d> 1 are strongly suboptimal and are able to identify very strong

structures.

Following this remark, better candidates as penalty functions are likely those with 0<

d< 1. For at least some of those d one can expect to soften the resolution limits associated to

integer d. However the approach to study the regime cannot rely on analytical formulae.

Numerical simulations

In this Subsection we show the results of numerical simulations to test the propositions we pre-

sented before. This is important for two reasons. First, to show that the guessed rankings,

obtained by merging, splitting, or inverting the planted one, are indeed the optimal ones or

have a hierarchy close to the optimal one. Second, to prove that the first order approximation

and other simplifying assumptions give analytic expressions close to numerical simulations.

We use igraph [37] to sample a graph from the RSBM ensemble. For computing agony we

use the algorithm described in [34], which we will refer to it as agony (in italics) for brevity,

and which gives the exact solution for the optimisation problem when d = 1. Finally, we use

the MCMC algorithm in the GraphTool [38] package for the inference of the SBM (without

constraint on the structure of the affinity matrix).

We perform the same analysis with different choices for the parameters p, q, s, R, N and the

results are consistent, thus in the following we present only representative cases. We use the

adjusted Rand Index (RI) [39] to measure the similarity between the planted and the inferred

ranking. The RI is 0 between independent rankings and 1 when each pair of elements that are

in the same class in one ranking are also in the same class in the other. Ordering of classes

Resolution of ranking hierarchies in directed networks
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does not matter in computing RI, thus the RI between a ranking and its inverted version is 1.

Nevertheless we checked that high values of RI do not correspond to inverted rankings.

Twitter-like hierarchy. We generate RSBM with parameters p ¼ 0:5; q ¼ 0:5; R ¼
32; N

R ¼ 128; N = 212 = 4096, and we vary the value of s. Fig 5 shows the heat maps of the clas-

ses found by agony for different values of s. The heat-maps are constructed as follow: a square

in position (i, j) refers to the number of nodes that belong to class i in the planted rank and are

Fig 5. Heat maps comparing the planted ranking with the ranking inferred with agony for twitter-like hierarchy. In each panel a square in position (i, j)
contains the number of nodes that belong to class i in the planted rank and are placed in class j by agony: the darker the colour, the higher the number. The

parameters are p = q = 0.5, R = 32 and 9 values of s. Each plot refers to a single realisation from the ensemble.

https://doi.org/10.1371/journal.pone.0191604.g005
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placed in class j by agony: the darker the colour, the higher the number. For small s (almost

DAG structures) the algorithm recovers faithfully the planted ranking and the RI is high.

When the hierarchical structure becomes weaker, the ranking obtained by agony is the merg-

ing of contiguous classes in the hierarchy, as postulated in the theoretical part above. For this

choice of p, q, R the resolution threshold for s is sm = 0.00151 consistently with our simulations.

As we predicted, classes merge more and more when s increases. The inferred rankings are

close to uniform, and the main exception is the first and last class which are smaller than the

other ones.

We show numerically that the ranking we proposed as optimal in the previous Section has

indeed a value of hierarchy very close to the one obtained from simulations. In Fig 6 we show

a scatter plot of the true value of h�
1

computed with agony on the simulated graphs against the

hierarchy of the planted rank hðpÞ1 (circles), and against �h�
1
, the hierarchy computed with Eq (8)

(stars). To evaluate the latter we use the coefficients of the RSBM estimated from the sample

graph with GraphTool. We estimate p = q and s as the average elements of the inferred affinity

matrix on the corresponding classes and we leave free the number of classes. For s< sm (red

symbols) the two methods agree and give a value of hierarchy consistent with the real one.

When s> sm (green and blue symbols depending on whether s is smaller or larger of s�hðpÞ¼0)

the hierarchy of the planted ranking is significantly smaller than h�
1
, showing that another

Fig 6. Comparison of hierarchies for twitter-like RSBMs. The parameters are p = q = 0.5, R = 32, s varies in [0, smax],

with smax = 0.448. Each point refers to a single realisation of the ensemble. The circles represent the pairs ðh�
1
; hðpÞ1 Þ, i.e. the

optimal hierarchy h�
1

computed with agony and the one of the planted hierarchy hðpÞ1 . The stars represent ðh�
1
; �h�

1
Þ where �h�

1

is the theoretical hierarchy of Eq (8) with the parameters of the SBM estimated via GraphTool. Finally, sm is the theoretical

resolution threshold and s�h ðpÞ¼0 is the theoretical value of s for which the estimate for the planted hierarchy is zero.

https://doi.org/10.1371/journal.pone.0191604.g006
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ranking is optimal. This has a value of hierarchy which is very close to the one computed from

Eq (8), even when the coefficients of the RSBM are estimated from data. It is interesting to

note that this is true also for s very close to smax where the number of classes detected by Graph-
Tool is significantly smaller than R. This is due to the fact that the analytical expression in

Eq (8) of the value of hierarchy of the merged ranking depends weakly on the number of clas-

ses. This is a strong indication that the ranking we suggested, and obtained by merging the

classes, has a value of hierarchy which is indeed very close to the globally optimal one. In con-

clusion, the planted hierarchy is optimal for a very small range of values of s and, as we

expected, it gives negative values of h1 when s is large enough. On the other side, our estimate

for optimal h1 is accurate for all the value of s considered.

Finally in Fig 7 we show that the resolution problem is due to the choice of the method

(agony with d = 1) and not necessarily to the model itself. In fact it is well known that SBM

have a resolution threshold both when inference is done using Maximum Likelihood methods

[40] and spectral methods [41]. To this end we infer a SBM on the adjacency matrix, keeping

free the number of classes (see [38] for the model selection adopted by GraphTool) and we

compute the RI of the planted ranking versus the one obtained with agony and the SBM fit.

The result is shown in Fig 7 for different values of s. We see that the SBM fit outperforms

agony. It is clear that, since we are using SBM for generating the graphs, its fitting will be

Fig 7. The figure shows the value of the Rand Index between the planted ranking and the inferred ones. The blue

squares considers the ranking obtained with agony (hence d = 1), while the red triangles considers the ranking obtained

with a RSBM fit via GraphToo l. The parameters of the twitter-like hierarchy are p = q = 0.5, R = 32, s varies in [0, smax],

with smax = 0.448, and each point refers to a single realisation of the ensemble.

https://doi.org/10.1371/journal.pone.0191604.g007
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better. However what we want to stress is that there is remarkably wide interval of values of s
for which agony is not able to detect a hierarchical structure even if it is strong enough to be

detected by another method. Hence the limit in resolution is not embedded in the RSBM but

in the objective function associated to agony.

Military-like hierarchy. For the military-like hierarchy things are more complicated.

Fig 8 shows the heat map of the classes for p = 0.5 and nine values of s. With these parameters

our formulas give si = 0.00280 and s1 = 0.00284. We see that for strong hierarchical structures

(small s) agony recovers well the classes. However when s increases a partial inversion of the

hierarchy is observed and only for large s we recover the fully inverted ranking we studied in

the previous Section. Thus simulations show that the latter is not always the optimal ranking

but rather there are partially inverted rankings with a larger hierarchy. The purpose of the

above analysis on the military-like hierarchy is to show that there exist values of the parameters

for which the planted ranking is not optimal and to demonstrate that partial inversion can out-

perform the planted one. Moreover the partial inversion is observed for s = 0.002< s1, hence

our computations provide a upper bound of the true resolution threshold.

Fig 9 shows, similarly to Fig 6, the scatter plot of the true value of h�
1

computed via agony on

the simulated graphs against the hierarchy of the planted rank hðpÞ1 (circles), and against �h�
1
, the

hierarchy computed with Eq (8) using the coefficients of the SBM estimated from the sample

graph with GraphTool. The main message of the Fig is that, despite the fact the symmetrically

inverted ranking is not the optimal one according to numerical simulations, its value of hierar-

chy is very close to the one of the optimal ranking, while the planted one strongly mis-esti-

mates the value of h. Thus our computation in the previous Section can be used to reliably

estimate the hierarchy of a military-like ranking. This is obviously a partial answer and analyti-

cal calculations of the hierarchy of partially inverted rankings are left for a future study.

Beyond the resolution limit: Iterated agony. In the previous Sections we have shown

theoretically and numerically that inference of ranking hierarchies based on agony suffers

from significant resolution limit. In twitter-like hierarchies, the identified classes are merging

of adjacent classes and thus small classes are not identified. In military-like hierarchies inver-

sions start to play a significant role.

An heuristic method to overcome this problem is to iterate the application of agony. As

done with modularity, one can apply agony to each class found in the first iteration of the algo-

rithm, in order to find subclasses. In principle one could continue to iterate, even if the fact

that agony finds two classes in an Erdös-Renyi graph suggests a careful design of the stopping

criterion. The purpose of this Section is not to propose a full criterion for the improvement of

agony via iteration, but to show that indeed improvement is possible, both considering model

graphs and real networks.

We first consider the model graphs with twitter-like hierarchy we presented in the previous

Section. Fig 10 shows the RI between the planted ranking and the one inferred with one (as in

the previous Section) and two iterations of agony with d = 1. For small values of s the second

iteration does not improve the inference because one iteration already recovers the planted

structure. For larger values of s, i.e. weaker structures, the second iteration dramatically out-

performs the result of the first one, indicating that iterated applications of agony can signifi-

cantly improve the hierarchies detection. Table 1 shows some details of the obtained results. It

is worth noticing that the value of h after the second run is actually smaller than the one from

the first run, despite the fact that the RI follows the opposite pattern. This is expected since

agony finds the optimal value of h, while the RI looks at the similarity with the planted ranking.

A closer look to the results of the two iterations (see S1 Table) highlights that high number of

classes after the second iteration and high hierarchy in each subclass are associated to the cases

Resolution of ranking hierarchies in directed networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0191604 February 2, 2018 18 / 25

https://doi.org/10.1371/journal.pone.0191604


Fig 8. Heat maps comparing the ranking inferred using agony with the planted ranking for military-like hierarchy. In each panel a square in position

(i, j) contains the number of nodes that belong to class i in the planted rank and are placed in class j by agony: the darker the color, the higher the number.

The parameters are p = 0.5, q = 0, R = 32, s varies in [0, smax], with smax = 0.0294, and each plot refers to a single realisation of the ensemble.

https://doi.org/10.1371/journal.pone.0191604.g008
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for which there is no significant improvement in the RI, hence a successful routine would rely

on the control of these two quantities to stop the iterations.

We now show that the same phenomenon is relevant also for real networks. We investigate

four datasets from SNAP, Stanford Network Analysis Platform [42], which were also used in

[34]. Note that these datasets have been updated since they have been used in [34] so our

results are slightly different.

The networks are quite different in size (from a minimum of 7K nodes to almost 400K

nodes) but they are all quite sparse.

• Wiki vote. The network contains all the Wikipedia voting data from the inception of Wiki-

pedia till January 2008. Nodes in the network represent Wikipedia users and a directed edge

from node i to node j represents that user i voted for user j.

• Higgs Reply. The network contains replies to existing tweets: nodes are users and i is linked

to j if i replied to a j’s tweet.

• Higgs mention. Similar to the previous case, here links represent mentions: a link from i to j
means that user i mentioned user j.

Fig 9. Comparison of hierarchies of military-like RSBMs. The parameters are p = 0.5, q = 0, R = 32, s varies in [0,

smax], with smax = 0.0294, and each point refers to a single realisation of the ensemble. The circles represent the pairs

ðh�
1
; hðpÞ1 Þ, i.e. the optimal hierarchy h�

1
computed with agony and the one of the planted hierarchy hðpÞ1 . The stars

represent ðh�
1
; �h�

1
Þ where �h�

1
is the theoretical hierarchy with the parameters of the SBM estimated via GraphToo l.

https://doi.org/10.1371/journal.pone.0191604.g009
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• Amazon. Network was collected by crawling the Amazon website. It is based on Customers

Who Bought This Item Also Bought feature of the Amazon website. If a product i is fre-

quently co-purchased with product j, the graph contains a directed edge from i to j.

Table 2 reports some properties of the networks alongside the output of one and two itera-

tions of the agony algorithm. Specifically, for each network the table contains: the number of

nodes N, the density ( m
NðNþ1Þ

, where m is the number of edges), the percentage of nodes in the

Fig 10. Comparison of the Rand Index between the planted ranking and one (blue squares) or two (orange triangles)

iterations of agony. Data refers to simulation of twitter-like HSBM with parameters p = q = 0.5, R = 32, s 2 [0, smax], with

smax = 0.448, and each point refers to a single realisation of the ensemble.

https://doi.org/10.1371/journal.pone.0191604.g010

Table 1. Simulated graphs, output of the two runs of agony.

1st run 2nd run

s h� RI R h RI R0

0 1 1 32 >0.99 >0.99 32

0.001 0.98 >0.99 34 0.93 0.87 97

0.002 0.95 0.89 29 0.81 0.74 128

0.005 0.91 0.71 20 0.51 0.60 160

0.01 0.85 0.54 14 0.51 0.83 102

0.048 0.62 0.26 7 -0.14 0.90 40

0.112 0.41 0.15 4 -0.16 0.54 17

0.224 0.20 0.10 3 -0.20 0.31 9

0.448 0.03 0.05 2 -0.19 0.11 4

https://doi.org/10.1371/journal.pone.0191604.t001
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largest strongly connected component (SCC), the value of h�
1
, the number of classes inferred in

the first run (R) and the total number of classes after the second run (R0) of agony.

It is clear that the second application the algorithm to the classes detected in the first itera-

tion increases significantly the number of classes, suggesting that the classes identified in the

first iteration could be aggregation of smaller classes. In S2 Table we report more details on the

classes identified in the iteration and on the subclasses identified by the second iteration.

Since agony penalises links among nodes in the same class, the subgraphs in some cases

have no links (those with � in S2 Table. Notice this would be the case for any class in a DAG.

Thus, a low value of h in each class and a number of sub classes larger than 2 indicate a non

trivial and not completely resolved structure of the class.

Conclusion

In this paper we have studied the inference of hierarchical structures in directed networks by

introducing an ensemble of random graphs, termed the Hierarchical Stochastic Block Model,

and studying how agonies, penalising links contrary to the hierarchy, are able to identify the

planted ranking.

Using symmetry arguments we have explored ranking alternative to the planted one and

obtained from it by merging, splitting or inverting its classes. We have shown that when the

hierarchy is not strong enough some of these alternative rankings of nodes have a value of the

hierarchy larger than the planted one. This demonstrates that (generalised) agonies have a res-

olution limit, being unable to detect small classes in large networks. This is somewhat similar

to the well known resolution limit of modularity in community detection. In some cases we

have strong numerical indications that the proposed alternative rankings, are actually close to

the global optimal one. Finally we have shown that in these cases the iterated application of

agony can lead to significant improvement of the hierarchy detection.

There are several directions along which our work can be extended. First, we have investi-

gated in detail the case of uniform cardinality of the classes, even if our formulae can be used

to study more complex structures, such as a pyramidal hierarchy with a small top class and

larger bottom classes. With a careful choice of the sizes one might be able to maintain analyti-

cal tractability, however the study of these structures are left for future investigation. The sec-

ond direction is to consider, at least theoretically, other values of d (or other agony functions).

We have shown some results indicating that the resolution threshold depends on d, however

numerical simulations cannot be performed because of the lack of heuristic methods for opti-

misation of agony with d 6¼ 0, 1. Finally, other methods to identify ranking hierarchies could

be investigated, for example suitably modifying the agony function or by considering optimi-

sations for a set of functions.

We leave these extensions for future work and we are confident that the results will be of

interest in the general problem of hierarchy detection in networks.

Table 2. Networks summary. SCC is the percentage of nodes in the largest strongly connected component, h�
1

is the hierarchy of the ranking obtained with one iteration

of agony, R is the number of classes in the globally optimal ranking, and R0 is the number of classes after two iterations of agony.

network nodes density SCC h�
1

R R0

Wikivote 7,115 2 � 10−3 18% 0.83 12 49

HiggsReply 38,918 2 � 10−5 0.8% 0.82 13 27

HiggsMention 116,408 1 � 10−5 1% 0.89 20 59

Amazon 403,394 2 � 10−5 98% 0.42 17 69

https://doi.org/10.1371/journal.pone.0191604.t002
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