
THE QUEST TO PROVE 
MATHEMATICS’ GRAND 
UNIFIED THEORY 
The Langlands programme has inspired and befuddled 
mathematicians for more than 50 years. A breakthrough now opens 
up new worlds for them to explore. By Ananyo Bhattacharya
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O
ne of the biggest stories in science 
is quietly playing out in the world 
of abstract mathematics. Over 
the course of last year, research-
ers fulfilled a decades-old dream 
when they unveiled a proof of 
the geometric Langlands conjec-
ture  —  a key piece of a group of 

interconnected problems called the Langlands 
programme. The proof  —  a gargantuan 
effort — validates the intricate and far-reaching 
Langlands programme, which is often hailed as 
the grand unified theory of mathematics but 
remains largely unproven. Yet the work’s true 
impact might lie not in what it settles, but in 
the new avenues of inquiry it reveals.

“It’s a huge triumph. But rather than closing 
a door, this proof throws open a dozen others,” 
says David Ben-Zvi at the University of Texas 
at Austin, who was not involved with the work. 

Proving the geometric Langlands 
conjecture has long been considered one 
of the deepest and most enigmatic pursuits 
in modern mathematics. Ultimately, it took 
a team of nine mathematicians to crack the 
problem, in a series of five papers spanning 
almost 1,000 pages1–5. The group was led by 
Dennis Gaitsgory at the Max Planck Institute 
for Mathematics in Bonn, Germany, and 
Sam Raskin at Yale University in New Haven, 
Connecticut, who completed his PhD with 
Gaitsgory in 2014. 

The magnitude of their accomplishment 
was quickly recognized by the mathematical 
community: in April, Gaitsgory received 
the US$3-million Breakthrough Prize in 
Mathematics, and Raskin was awarded a New 
Horizons prize for promising early-career 
mathematicians. Like many landmark results 
in mathematics, the proof promises to forge 
bridges between different areas, allowing the 
tools of one domain to tackle intractable prob-
lems in another. All told, it’s a heady time for 
researchers in these fields. 

“It gives us the strongest evidence yet that 
something we’ve believed in for decades is 
true,” says Ben-Zvi. “Now we can finally ask: 
what does it really mean?”

The hole story
The Langlands programme traces its origins 
back 60 years, to the work of a young Canadian 
mathematician named Robert Langlands, who 
set out his vision in a handwritten letter to the 
leading mathematician André Weil. Over the 
decades, the programme attracted increas-
ing attention from mathematicians, who 
marvelled at how all-encompassing it was. It 
was that feature that led Edward Frenkel at 
the University of California, Berkeley, who 
has made key contributions to the geomet-
ric side, to call it the grand unified theory of 
mathematics. 

Langlands’ aim was to connect two very sepa-
rate major branches of mathematics — number 

theory (the study of integers) and harmonic 
analysis (the study of how complicated signals 
or functions break down into simple waves). 
A special case of the Langlands programme is 
the epic proof that Andrew Wiles published, in 
1995, of Fermat’s last theorem — that no three 
positive integers a, b and c satisfy the equation 
an + bn = cn if n is an integer greater than 2.

The geometric Langlands conjecture was 
first developed in the 1980s by Vladimir 
Drinfeld, then at the B. Verkin Institute for 
Low Temperature Physics and Engineering in 
Kharkiv, Ukraine. Like the original or arithmetic 
form of the Langlands conjecture, the geomet-
ric conjecture also makes a type of connection: 
it suggests a correspondence between two dif-
ferent sets of mathematical objects. Although 
the fields linked by the arithmetic form of 
Langlands are separate mathematical ‘worlds’, 
the differences between the two sides of the 
geometric conjecture are not so pronounced. 
Both concern properties of Riemann surfaces, 
which are ‘complex manifolds’ — structures 
with coordinates that are complex numbers 
(with real and imaginary parts). These mani-

folds can take the form of spheres, doughnuts 
or pretzel-like shapes with two or more holes.

Many mathematicians strongly suspect 
that the ‘closeness’ of the two sides means the 
proof of the geometric Langlands conjecture 
could eventually offer some traction for fur-
thering the arithmetic version, in which the 
relationships are more mysterious. “To truly 
understand the Langlands correspondence, 
we have to realize that the ‘two worlds’ in it 
are not that different — rather, they are two 
facets of one and the same world,” says Frenkel. 
“Seeing this unity requires a new vision, a new 
understanding. We are still far from it in the 
original formulation. But the fact that, for 
Riemann surfaces, the two worlds sort of 
coalesce means that we are getting closer to 
finding this secret unity underlying the whole 
programme,” he adds.

One side of the geometric Langlands 
conjecture concerns a characteristic called a 
fundamental group. In basic terms, the funda-
mental group of a Riemann surface describes 
all the distinct ways in which loops can be tied 
around it. With a doughnut, for example, a 
loop can run horizontally around the outer 
edge or vertically through the hole and around 

the outside. The geometric Langlands deals 
with the ‘representation’ of a surface’s funda-
mental group, which expresses the group’s 
properties as matrices (grids of numbers).

The other side of the geometric Langlands 
programme has to do with special kinds of 
‘sheaves’. These tools of algebraic geometry 
are rules that allot ‘vector spaces’ (where vec-
tors — arrows — can be added and multiplied) 
to points on a manifold in much the same way 
as a function describing a gravitational field, 
say, can assign numbers for the strength of the 
field to points in standard 3D space.

Bridgework in progress
Work on bridging this divide began back in the 
1990s. Using earlier work on Kac–Moody alge-
bras, which ‘translate’ between representations 
and sheaves, Drinfeld and Alexander Beilinson, 
both now at the University of Chicago, Illinois, 
described how to build the right kind of sheaves 
to make the connection. Their paper (see 
go.nature.com/4ndp5ev), nearly 400 pages 
long, has never been formally published. 
Gaitsgory, together with Dima Arinkin at the 
University of Wisconsin–Madison, made this 
relationship more precise in 2012 (ref. 6); then, 
working alone, Gaitsgory followed up with a 
step-by-step outline of how the geometric 
Langlands might be proved7.

“The conjecture as such sounds pretty 
baroque — and not just to outsiders,” says 
Ben-Zvi. “I think people are much more excited 
about the proof of geometric Langlands now 
than they would have been a decade ago, 
because we understand better why it’s the 
right kind of question to ask, and why it might 
be useful for things in number theory.”

One of the most immediate consequences 
of the new proof is the boost it provides to 
research on ‘local’ versions of the different 
Langlands conjectures, which ‘zoom in’ on 
particular objects in the ‘global’ settings. In the 
case of the geometric Langlands programme, 
for example, the local version is concerned 
with the properties of objects associated 
with discs around points on a Riemann sur-
face — rather than the whole manifold, which 
is the domain of the ‘global’ version.

Peter Scholze, at the Max Planck Institute 
for Mathematics, has been instrumental in 
forging connections between the local and 
global Langlands programmes. But initially, 
even he was daunted by the geometric side. 

“To tell the truth,” Scholze says, “until 
around 2014, the geometric Langlands 
programme looked incomprehensible to 
me.” That changed when Laurent Fargues at 
the Institute of Mathematics of Jussieu in Paris 
proposed a reimagining of the local arithmetic 
Langlands conjectures in geometrical terms8. 
Working together, Scholze and Fargues spent 
seven years showing that this strategy could 
help to make progress on proving a version 
of the local arithmetic Langlands conjecture9 
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concerning the p-adic numbers, which involve 
the primes and their powers. They connected 
it to the global geometric version that the team 
led by Gaitsgory and Raskin later proved.

The papers by Scholze and Fargues built what 
Scholze describes as a “wormhole” between 
the two areas, allowing methods and struc-
tures from the global geometric Langlands 
programme to be imported into the local arith-
metic context. “So I’m really happy about the 
proof,” Scholze says. “I think it’s a tremendous 
achievement and am mining it for parts.”

Quantum connection
According to some researchers, one of the 
most surprising bridges that the geometric 
Langlands programme has built is to theoret-
ical physics. Since the 1970s, physicists have 
explored a quantum analogue of a classical 
symmetry: that swapping electric and mag-
netic fields in Maxwell’s equations, which 
describe how the two fields interact, leaves 
the equations unchanged. This elegant sym-
metry underpins a broader idea in quantum 
field theory, known as S-duality.

In 2007, Edward Witten at the Institute for 
Advanced Study (IAS) in Princeton, New Jersey, 
and Anton Kapustin at the California Institute 
of Technology in Pasadena were able to show10 
that S-duality in certain four-dimensional 
gauge theories  —  a class of theories that 
includes the standard model of particle 
physics — possesses the same symmetry that 
appears in the geometric Langlands corres-
pondence. “Seemingly esoteric notions of the 
geometric Langlands program,” the pair wrote, 
“arise naturally from the physics.”

Although their theories include hypothetical 
particles, called superpartners, that have never 
been observed, their insight suggests that 
geometric Langlands is not just a rarefied idea 
in pure mathematics; instead, it can be seen 
as a shadow of a deep symmetry in quantum 
physics. “I do think it is fascinating that the 
Langlands programme has this counterpart 
in quantum field theory,” says Witten. “And I 
think this might eventually be important in the 
mathematical development of the Langlands 
programme.”

Among the first to take that possibility 
seriously was Minhyong Kim, director of the 
International Centre for Mathematical Sciences 
in Edinburgh, UK. “Even simple-sounding prob-
lems in number theory — like Fermat’s last 
theorem — are hard,” he says. One way to make 
headway is by using ideas from physics, like 
those in Witten and Kapustin’s work, as a sort 
of metaphor for number-theoretic problems, 
such as the arithmetic Langlands conjecture. 
Kim is working on making these metaphors 
more rigorous. “I take various constructions 
in quantum field theory and try to cook up 
precise number-theoretic analogues,” he says.

Ben-Zvi, together with Yiannis Sakellaridis 
at Johns Hopkins University in Baltimore, 

Maryland, and Akshay Venkatesh at the IAS, is 
similarly seeking inspiration from theoretical 
physics, with a sweeping project that seeks to 
reimagine the whole Langlands programme 
from the perspective of gauge theory. 

Witten and Kapustin studied two gauge 
theories connected by S-duality, meaning that, 
although they look very different mathemati-
cally, the theories are equivalent descriptions 
of reality. Building on this, Ben-Zvi and his 
colleagues are investigating how charged 
materials behave in each theory, translating 
their dual descriptions into a network of inter-
linked mathematical conjectures.

“Their work really stimulated a lot of 
research, especially in the number-theory 
world,” says Raskin. “There’s a lot of people 
who are working in that circle of ideas now.”

One of their most striking results concerns 
a two-way relationship between quite differ-
ent mathematical objects called periods and 
L-functions11. (The Riemann hypothesis, con-
sidered perhaps the most important unsolved 
problem in mathematics, is focused on the 
behaviour of a type of L-function.) Periods are a 
part of harmonic analysis, whereas L-functions 
are from the realm of number theory — the 
two sides of Langlands’ original conjectures. 
However, through the lens of physics, Ben-Zvi 
and his colleagues showed that the relation-
ship between periods and L-functions also 
mirrors that of the geometric programme.

Hunting deeper truth
Many mathematicians are confident that the 
proof of the geometric conjecture will stand, 
but it will take years to peer review the papers 
setting it out, which have all been submitted 
to journals. Gaitsgory, however, is already 
pushing forward on several fronts.

For instance, the existing proof addresses 
the ‘unramified’ case, in which the terrain 
around points on the Riemann surface is well 

behaved. Gaitsgory and his collaborators 
are now hoping to extend their results to the 
more intricate, ramified case by accounting for 
more-complex behaviour around points as well 
as for singularities or ‘punctures’ in the surface.

To that end, they are extending their work 
to the local geometric Langlands conjecture 
to understand in more detail what happens 
around a single point — and collaborating with, 
among others, Jessica Fintzen at the University 
of Bonn.

“This result opens the door to a whole new 
range of investigations — and that’s where our 
interests start to converge, even though we 
come from very different worlds,” she says. 
“Now they’re looking to generalize the proof, 
and that’s what’s drawing me deeper into the 
geometric Langlands. Somehow, the proof’s 
the beginning and not the end.”

Fintzen studies the representations of 
p-adic groups — groups of matrices where 
the entries are p-adic numbers. She constructs 
the matrices explicitly — essentially, deriving a 
recipe for writing them down — and this seems 
to be the kind of local information that must 
be incorporated into the global geometric case 
to ramify it, Gaitsgory says. 

What began as a set of deep conjectures 
linking abstract branches of mathematics 
has evolved into a thriving, multidisciplinary 
effort that stretches from the foundations 
of number theory to the edges of quantum 
physics. The Langlands correspondence 
might not yet be the grand unified theory of 
mathematics, but the proof of its geometric 
arm is a nexus of ideas that will probably shape 
the field for years to come.

“The Langlands correspondence points to 
much deeper structures in mathematics that 
we’re only scratching the surface of,” says 
Frenkel. “We don’t really understand what they 
are. They’re still behind the curtains.”

Ananyo Bhattacharya is chief science writer 
at the London Institute for Mathematical 
Sciences and the author of The Man from 
the Future: The Visionary Ideas of John von 
Neumann. 
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Robert Langlands in 2016.
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