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SUBCRITICAL U-BOOTSTRAP PERCOLATION MODELS

HAVE NON-TRIVIAL PHASE TRANSITIONS

PAUL BALISTER, BÉLA BOLLOBÁS, MICHA!L PRZYKUCKI, AND PAUL SMITH

Abstract. We prove that there exist natural generalizations of the classical
bootstrap percolation model on Z2 that have non-trivial critical probabilities,
and moreover we characterize all homogeneous, local, monotone models with
this property.

Van Enter (1987) (in the case d = r = 2) and Schonmann (1992) (for all
d ! r ! 2) proved that r-neighbour bootstrap percolation models have trivial
critical probabilities on Zd for every choice of the parameters d ! r ! 2: that
is, an initial set of density p almost surely percolates Zd for every p > 0. These
results effectively ended the study of bootstrap percolation on infinite lattices.

Recently Bollobás, Smith and Uzzell introduced a broad class of percolation
models called U-bootstrap percolation, which includes r-neighbour bootstrap
percolation as a special case. They divided two-dimensional U-bootstrap per-
colation models into three classes – subcritical, critical and supercritical – and
they proved that, like classical 2-neighbour bootstrap percolation, critical and
supercritical U-bootstrap percolation models have trivial critical probabilities
on Z2. They left open the question as to what happens in the case of subcritical
families. In this paper we answer that question: we show that every subcriti-
cal U-bootstrap percolation model has a non-trivial critical probability on Z2.
This is new except for a certain ‘degenerate’ subclass of symmetric models that
can be coupled from below with oriented site percolation. Our results re-open
the study of critical probabilities in bootstrap percolation on infinite lattices,
and they allow one to ask many questions of subcritical bootstrap percolation
models that are typically asked of site or bond percolation.

1. Introduction

1.1. Bootstrap percolation on infinite lattices. The classical r-neighbour
bootstrap percolation model was introduced by Chalupa, Leath and Reich [12]
in order to model certain physical interacting particle systems. Given a graph
G = (V, E), usually taken to be Zd or [n]d, a subset A ⊂ V of the set of vertices of
G is chosen by including vertices independently at random with probability p. We
write A ∼ Bin(V, p) to denote that the set A has this distribution and Pp for the
product probability measure. The vertices in A are said to be infected. Set A0 = A
and then, for t = 0, 1, 2, . . ., let

At+1 = At ∪
{
v ∈ V : |N(v) ∩ At| ! r

}
,
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where N(v) is the set of neighbours of v in G. Thus, infected vertices remain
infected forever, and uninfected vertices become infected when at least r of their
neighbours in G are infected. The closure of A is the set [A] =

⋃∞
t=0 At of all

vertices that are eventually infected. When [A] = V we say that A percolates G,
or simply that A percolates. Note that in the context of bootstrap percolation,
unlike in the classical percolation, A percolates if it infects all sites of G (not just
an infinite cluster). Finally, we say that A is closed under percolation if [A] = A.

One would like to know under what conditions on G and p it is likely that A
percolates G, so it is natural to define the critical probability pc(G, r) by

(1) pc(G, r) = inf{p : Pp([A] = V (G)) ! 1/2}.

In the case G = Zd, by ergodicity (since the event that A percolates G is translation
invariant), the probability that A percolates G is either 0 or 1. Hence, on G =
Zd, in equation (1) it is more natural to consider Pp([A] = Zd) = 1 instead of
Pp([A] = Zd) ! 1/2.

The first result in the field of bootstrap percolation was due to van Enter [28],
who proved in the case d = r = 2 that for every positive initial density p there
is percolation almost surely, and hence that pc(Z2, 2) = 0. This was later greatly
generalized by Schonmann [25], who showed that

pc(Zd, r) =

{
0 if 1 " r " d,

1 if d + 1 " r " 2d.

(The cases r = 1 and d + 1 " r " 2d are trivial; the content of the theorem is the
assertion when 2 " r " d.)

The results of van Enter and Schonmann to a large extent ended the study of
bootstrap percolation on infinite lattices. However, Aizenman and Lebowitz [1] rec-
ognized that bootstrap percolation exhibited interesting finite-size effects: on finite
grids [n]d, there is a certain metastability threshold for the initial density p, below
which with high probability there is no percolation, and above which with high
probability there is percolation. More precisely, Aizenman and Lebowitz showed
that pc([n]d, 2) = Θ

(
(log n)−(d−1)

)
. Holroyd [18] later proved that pc([n]2, 2) =

(1 + o(1))π2/18 log n, and Gravner, Holroyd and Morris [16] and Morris [22] ob-
tained bounds on the second order term. Cerf and Cirillo [10] (d = r = 3) and
Cerf and Manzo [11] (d ! r ! 3) determined pc([n]d, r) up to a constant for all
r ! 3, and Balogh, Bollobás and Morris [4] (d = r = 3) and Balogh, Bollobás,
Duminil-Copin and Morris [3] (d ! r ! 3) determined the constant for all r ! 3.

Returning to infinite lattices, except for a small number of degenerate examples,
which we discuss in Section 1.4, all of the bootstrap percolation models on Zd and
other lattices that have so far been studied have been shown to have critical prob-
abilities on the appropriate infinite lattice equal to either 0 or 1. These include the
r-neighbour model on Zd, the r-neighbour model on general lattices embedded in
Zd studied by Gravner and Griffeath [15], the Duarte model studied by Schonmann
[24] and Mountford [23], and numerous other models (see, for example, [9, 19, 29]).
In a recent paper, Bollobás, Smith and Uzzell [8] introduced a new class of perco-
lation models, called U-bootstrap percolation, which contains bootstrap percolation
as a special case. They showed that many U-bootstrap percolation models on Z2

(those which they termed supercritical or critical) also have critical probabilities
equal to zero. They also conjectured that the remaining models (those which they
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termed subcritical) have strictly positive critical probabilities. In this paper we
prove this conjecture. Together with the results in [8], this gives a complete charac-
terization of bootstrap-like models on Z2 that have non-trivial critical probabilities,
under some natural assumptions listed in the next subsection.

1.2. U-bootstrap percolation. Under U-bootstrap percolation, new infections
are made according to any rule that is local (the rule depends on a bounded neigh-
bourhood of the vertex), homogeneous (the same rule applies to every vertex) and
monotone (the set of neighbourhoods that infect a given site is an up-set). The
formal definition is as follows. Let U = {X1, . . . , Xm} be a finite collection of finite,
non-empty subsets of Zd \ {0} and let A = A0 ⊂ Zd. Then for each t ! 0, let

At+1 = At ∪
{
x ∈ Zd : there exists i ∈ [m] such that Xi + x ⊂ At

}
.

The set U is called an update family and the sets Xi update rules. The r-neighbour
model on Zd is clearly an example of a U-bootstrap percolation model: it consists
of

(2d
r

)
update rules, one for each r-subset of the neighbours of the origin. We again

write [A] for the set of all vertices that eventually become infected, and say that A
is closed under U if we have [A] = A.

For the rest of the paper we shall restrict our attention to the case d = 2. The
rough behaviour of two-dimensional U-bootstrap percolation is determined by the
action of the dynamics on discrete half planes. We use the notation S1 for the
unit circle in R2 and for each u ∈ S1 we let Hu denote the discrete half plane
{x ∈ Z2 : ⟨x, u⟩ < 0}. An element u ∈ S1 is said to be a stable direction for the
update family U if [Hu] = Hu; that is, if no new sites become infected when the
initial set is equal to the half plane Hu. Otherwise u is said to be an unstable
direction for U . For every update family U and every u ∈ S1, the closure of Hu is
either Hu or the whole plane Z2. The stable set S for U is the set

S = S(U) = {u ∈ S1 : u is stable for U}.

We say that an update rule X destabilizes a direction u ∈ S1 if for U = {X} we
have u /∈ S(U). One can easily show (see Theorem 1.10 of [8]) that a subset S
of the circle S1 is the stable set of some update family U if and only if S can be
expressed as a finite union of closed intervals in S1 whose end-points have rational
or infinite slope relative to the standard basis vectors.

Let T = R/2πZ. We shall frequently need to change between elements of S1

and elements of T ; in order to do this we define the natural bijection u : T → S1

by u(θ) = (cos θ, sin θ), and we set θ = u−1 to be its inverse function.
We define the strongly stable set Int S(U) for U to be the interior of S, i.e.,

Int S = Int S(U) = {u ∈ S1 : ∃ ε > 0 such that if |θ(u) − θ(v)| < ε, then v ∈ S}.

If u ∈ Int S, then we say that u is a strongly stable direction. Clearly, any strongly
stable direction is also a stable direction.

Bollobás, Smith and Uzzell divided U-bootstrap percolation models into three
classes according to the structure of the stable set. They defined the update family
U to be:

(i) supercritical if there exists an open semicircle in S1 that is disjoint from
S; that is, if there do not exist three stable directions u1, u2 and u3 such
that the origin belongs to the interior of the triangle with vertices at u1,
u2 and u3;
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(ii) critical if every open semicircle in S1 has non-empty intersection with
S, but there exists a semicircle in S1 that is disjoint from Int S; that is,
if there exist three stable directions u1, u2 and u3 such that the origin
belongs to the interior of the triangle with vertices at u1, u2 and u3, but
no such three strongly stable directions exist;

(iii) subcritical if every open semicircle in S1 has non-empty intersection with
Int S; that is, if there exist three strongly stable directions u1, u2 and u3

such that the origin belongs to the interior of the triangle with vertices at
u1, u2 and u3.

Analogously to r-neighbour bootstrap percolation, we define pc(Z2, U) to be the
infimum of those values of p for which percolation occurs almost surely under update
family U . In [8] the authors show that if U is either supercritical or critical, then
pc(Z2, U) = 0. In fact, they show considerably more: letting

pc(Z2, U , t) = inf
{
p : Pp(0 ∈ At) ! 1/2

}
,

they show that pc(Z2, U , t) = t−Θ(1) when U is supercritical and pc(Z2, U , t) =
(log t)−Θ(1) when U is critical. (Considerably stronger results for critical models
have since been proved by Bollobás, Duminil-Copin, Morris and Smith [6].) They
also conjecture that pc(Z2, U) > 0 when U is subcritical. Here we prove that
conjecture. The following is the main theorem of this paper.

Theorem 1. Let U be a subcritical update family and let A ∼ Bin(Z2, p). Then

Pp

(
0 ∈ [A]

)
→ 0 as p → 0.

In particular, pc(Z2, U) > 0. Furthermore, pc(Z2, U) = 1 if and only if S = S1.

The strength of Theorem 1 lies in its generality: we prove that the critical
probability is strictly positive for every two-dimensional bootstrap-like model for
which the critical probability has not already been shown to be equal to zero.

As previously remarked, Theorem 1 was previously only known in a small number
of exceptional cases, all of which we consider to be degenerate because they exhibit
a certain symmetry property which trivializes the proof. We discuss these models
further in Section 1.4.

Combined with the results of [8], Theorem 1 has the following corollary.

Corollary 2. Let U be an update family. Then pc(Z2, U) > 0 if and only if U is
subcritical.

Thus, our main theorem allows us to characterize all update families with non-
trivial critical probabilities.

1.3. The archetypal example: Bootstrap percolation on the directed tri-
angular lattice. Let T⃗ denote the triangular lattice embedded in C, oriented and
scaled so that 0 and 1 are neighbouring vertices. Let the edges of the lattice be
directed, for k = 0, 1, 2, in the direction e(2k+1)πi/3. In the resulting directed graph
T⃗ = (V, E), edges around any given vertex alternate in-out. (See Figure 1.)

Let A0 = A ∼ Bin
(
V (T⃗), p

)
, and for each integer t ! 0, define the set of infected

sites at time t + 1 to be

At+1 = At ∪
{
v ∈ V : |N−(v) ∩ At| ! 2

}
,

where N−(v) is the set of in-neighbours of v (that is, the set of vertices u neigh-
bouring v such that −→uv is an edge). Note that r = 2 is the only interesting value of
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Figure 1. Directed triangular lattice T⃗.

the infection threshold for this model. We shall refer to this model as Directed Tri-
angular Bootstrap Percolation (DTBP). It is easy to see by coupling that pc(T⃗, 2) is
at most the critical probability for site percolation on T, the undirected triangular
lattice, which is ps

c(T) = 1/2. (See Theorem 17 in [7].) Indeed, by the uniqueness
of the infinite cluster in percolation on T, if we initially infect the vertices of T⃗ with
probability p ! ps

c(T), then almost surely all initially healthy clusters of sites will
be finite, and any such region is eventually infected by the dynamics. However, it is
not obvious whether pc(T⃗, 2) is strictly positive. It is known that pc(T, 3) = 0 (see,
e.g., [15]) but there is no apparent coupling between the two models that we could
use to deduce anything about the critical probability in the 2-neighbour bootstrap
process on T⃗.

However, by skewing the lattice T⃗, one can see that DTBP is equivalent to
U-bootstrap percolation with update family U1 = {X1, X2, X3}, where X1 =
{(1, 0), (0, 1)}, X2 = {(−1,−1), (0, 1)} and X3 = {(−1,−1), (1, 0)}. (See Figure
2.) Since U1 is subcritical, Theorem 1 implies that

0 < pc(T⃗, 2) < 1.

Figure 2. The equivalence of the update family U1 and the DTBP
model; the dark grey site becomes infected when at least two of
the light grey ones are.
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Figure 3. The stable set S1 for the update family U1 (thick line);
note that indeed every semicircle in S1 intersects Int S1.

By analyzing carefully the proof of Theorem 1, one can in fact prove the following
bounds for pc(T⃗, 2).

Corollary 3. Under the DTBP subcritical U-bootstrap percolation model we have

10−101 < pc(T⃗, 2) = pc(Z2, U1) ! 0.3118.

The upper bound in Corollary 3 is obtained by noting that DTBP can be coupled
with oriented site percolation (see, for example, [2,17]). Indeed, U-bootstrap perco-
lation with update family U2 = {X1} is precisely oriented site percolation: a site v
remains healthy forever if and only if there exists an infinite up/right path starting
at v of initially healthy sites. The coupling with U2 gives pc(T⃗, 2) ! 1 − ps

c(Z⃗2) !
0.3118, where ps

c(Z⃗2) is the critical probability for oriented site percolation on Z2,
and the final inequality is due to Gray, Wierman and Smythe. For more information
about percolation, see the book by Bollobás and Riordan, [7].

Computer experiments suggest that the true value of pc(T⃗, 2) is far from both
the upper and lower bound in Corollary 3, indicating that in fact pc(T⃗, 2) ∼ 0.118.
However, numerical predictions in bootstrap percolation have a long history of poor
accuracy (see, e.g., [18]), so this estimate should be taken with care.

1.4. Symmetric models. Apart from oriented site percolation, other previously
studied subcritical U-bootstrap percolation models include the model

U =
{
{(1, 0), (0, 1)}, {(−1, 0), (0,−1)}

}
,

studied by Schonmann [24]; the knights, spiral and sandwich models, studied by
Biroli and Toninelli [27] and by Jeng and Schwarz [20]; and the force-balance models,
studied by Jeng and Schwarz [21]. We would like to emphasize that none of these
models is ‘typical’ of the general model we study in this paper, in the following
specific sense.

Let us say that a (necessarily subcritical) model U is symmetric if the following
property holds: there exists u ∈ S1 such that {u,−u} ⊂ Int S(U). It is easy to
verify that all of the examples in the previous paragraph are symmetric. Now if U is
symmetric, then one can couple U-bootstrap percolation from below with oriented
site percolation, which gives an essentially trivial proof of Theorem 1 in the case of
such models. We present this short and elementary proof in Section 6.

In general, however, subcritical models need not be symmetric (DTBP is not
symmetric, for example), and in these cases there does not seem to be a useful
coupling with oriented site percolation. For such models, the lack of symmetry
makes it considerably harder to control the growth of infected regions of sites, and
the proof of Theorem 1 is correspondingly more complex. Thus, the non-symmetric
models are the ones that we consider to be ‘typical’.
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1.5. Organization of the paper. The rest of this paper is organized as follows.
In the next section we give an outline of the proof of Theorem 1, and we explain
heuristically why one might expect the definition of a subcritical family to be the
correct one. Following that, in Section 3, we set out the standard notation we
shall use, and we formalize some of the definitions relating to our construction. In
Section 4 we define and establish certain properties of “barriers” and “triangular
covers”, which will form the backbone of the coupled process we use in the proof of
Theorem 1. In Section 5 we assemble the various tools from the previous sections
in order to prove Theorem 6, which is a certain statement about the existence of
the “triangular covers”, and which should be thought of as the heart of Theorem 1.
We then deduce Theorem 1 from Theorem 6. We end the paper first with Section 6,
in which we point out that Theorem 1 is trivial if the update family U is assumed
to be symmetric, and second with Section 7, in which we discuss a range of open
problems and conjectures.

2. Outline of the proof

We know that supercritical and critical families have critical probability in Z2

equal to 0, so what is special about subcritical families that makes them behave
differently? Let A be an initial set consisting of a rectangle of width m and arbitrary
height, and a density p of sites above the rectangle. Under the classical 2-neighbour
bootstrap process on Z2 (which in a certain sense is representative of the behaviour
of all critical processes), the infection spreads upwards from the rectangle, filling
every line completely until it meets a fully healthy double line. The expected
number of full new rows infected in the process is about (1 − p)−2m. The key
property here is that a single site just above a full row will infect all other sites on
the same row. In other words, if R is the rectangle and x a site next to its upper
edge, then under the 2-neighbour process there is no upper bound on |[R∪{x}]|−|R|
that is uniform in m.

Now consider the behaviour of the bootstrap process under an update family U
for which u(π/2) is a strongly stable direction, that is, there is an interval of stable
directions around u(π/2). With the same A as in the previous paragraph, how
many new sites do we expect the process to infect? The key is that new sites create
only localized infection: the set of additionally infected sites in the closure of the
union of the rectangle and a small set B of infected sites just above the top edge
necessarily has “small” size, which depends on the size of B, on the stable set and
on some additional characteristics of U , but not on the size of the rectangle. Given
B we can find a small circumscribed triangle T of B, with sides of T perpendicular
to some stable directions within the interval of stable directions around u(π/2).
Assuming that u(0), u(π) and u(3π/2) are also stable directions, if the slopes of
T are chosen appropriately to avoid the complications arising from the forbidden
directions which we define in Section 3.2, we have [R ∪ B] ⊂ [R ∪ T ] = R ∪ T .

The definition of a subcritical family is as follows: there exist three strongly
stable directions u1, u2 and u3 such that the origin belongs to the interior of the
triangle with vertices at u1, u2 and u3. Let Hu,a denote the shifted half plane
{x ∈ Z2 : ⟨x − a, u⟩ < 0}. Then the condition that the origin lies inside the
triangle with vertices at u1, u2 and u3 implies that the triangular sets of the form⋂3

i=1 Hui,ai , where the ai are arbitrary points in R2, are necessarily finite. Also, we

have [
⋂3

i=1 Hui,ai ] =
⋂3

i=1 Hui,ai . In Section 3.2 we show how to choose u1, u2 and
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u3 so that these triangular sets are “robust” in the sense that they are still closed
under U if we slightly perturb their edges, making them a little bit “wiggly”. This
is quite unlike the 2-neighbour process, where the only finite connected stable sets
are rectangles, and new sites on their edges cause entire new rows or columns of
infection.

In our proof of Theorem 1 we exploit the above property of subcritical update
families. We show that if every site in Z2 is initially infected independently with
some probability p > 0, then, if p is small enough, almost surely one can find a
collection of slightly perturbed triangles (as above) with the following properties:

• every eventually infected site is contained in at least one triangle,
• if two triangles have a non-empty intersection or, in fact, if they are not

well separated, then one of them is contained in the other,
• any site in Z2 belongs to at least one triangle with probability tending to

0 as p → 0.

For sufficiently small p, the existence of a collection of triangular sets with these
properties proves that the initial set does not percolate the plane, and this implies
the lower bound on pc(Z2, U) in Theorem 1.

We find our collection of perturbed triangles using a renormalization argument.
Our method is motivated by the techniques introduced by Gács [13] in the context
of clairvoyant scheduling and a certain equivalent dependent oriented percolation
model. We partition the plane using successively coarser tilings into squares of side
lengths ∆1 ≪ ∆2 ≪ . . . . At each scale ∆i we will have a notion of an (i)-good
∆i-square, where “good” will roughly correlate with “being sparsely infected”, and
there will be a corresponding notion of an (i)-bad ∆i-square. A little more precisely,
a ∆i-square will be (i)-good if all (i − 1)-bad ∆i−1-squares contained in it and in
its close neighbourhood are quite strongly isolated.

Inductively we show that an (i)-bad ∆i-square contained in an (i+1)-good ∆i+1-
square can be enclosed in a perturbed triangle which is not too large and is well
separated, for all j ! i, from all (j)-bad ∆j-squares which are not fully contained in
it. Additionally, this perturbed triangle has sides essentially perpendicular to stable
directions u1, u2 and u3, i.e., is on its own closed under U . We do this by showing
simultaneously by induction that, for any i, one can always find a “thick” healthy
barrier through (i)-good ∆i-squares, disjoint from (j)-bad squares for all j < i.
Since an (i)-bad ∆i-square contained in an (i + 1)-good ∆i+1-square is necessarily
surrounded by (i)-good ∆i-squares, this allows us to construct the triangular sets
which enclose our eventually infected area.

The main task is the second part of the induction: to show that one can construct
barriers through (i)-good ∆i-squares. The idea is that, since all (i − 1)-bad ∆i−1-
squares contained in an (i)-good ∆i-squares are quite strongly isolated, it is possible
to “navigate around” these (i− 1)-bad ∆i−1-squares without straying too far from
a straight line, and to use the induction hypothesis to construct the barrier through
the (i)-good ∆i-squares out of consecutive sub-barriers through (i− 1)-good ∆i−1-
squares.

In order to be a little more precise, suppose we are trying to construct a healthy
barrier between sites x and y, where these are such that the line ℓ joining them is
roughly perpendicular to u1 and only passes through (i)-good ∆i-squares. We shall
show that there exist certain “(i)-clean sites” c1, . . . , ck, all of which lie close to ℓ,
such that the union of the lines joining x to c1, c1 to c2, and so forth, up to ck to y,
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only passes through (i − 1)-good ∆i−1-squares. By induction, it follows that there
exists a healthy barrier joining x to c1, etc., and one can show that it is possible
to control these sufficiently such that their union is again a healthy barrier, but at
the next scale. Thus, the edges of the perturbed triangles that we construct are in
fact perturbed at all scales.

This is the only part of the proof where we use the subcriticality of the update
family and for that reason it is the most important part of our argument. The
assertion that one can always find these perturbed triangles is Theorem 6, and the
(key) sub-assertion that one can always find these healthy barriers is Lemma 7:
these two results should be regarded as the heart of Theorem 1.

3. Additional notation and definitions

3.1. Notation. Given two sites a, b ∈ Z2 we define dist(a, b) = ∥a − b∥2. For any
two sets A, B ⊂ Z2 we then take

dist(A, B) = min
a∈A, b∈B

dist(a, b).

For an update family U we define

∇(U) = max
i∈[m]

max
a,b∈Xi

dist(a, b).

Hence, in particular, if for all i ∈ [m] we have |Xi| ! 2 and A is a set of initially
infected sites such that any two distinct sites in A are at distance larger than ∇(U),
then under update family U we have [A] = A.

Given two sites a, b ∈ Z2, a ̸= b, let

ua,b =
b − a

dist(a, b)
∈ S1.

Subcritical update families are those for which there exist three strongly stable
directions u1, u2 and u3 such that the origin belongs to the interior of the triangle
with vertices at u1, u2 and u3. This can be rephrased as: there exist three distinct
stable directions u1, u2, u3 and positive numbers λ1,λ2,λ3, ε > 0 such that

(i) we have

(2) λ1u1 + λ2u2 + λ3u3 = 0,

(ii) for t = 1, 2, 3,

(3) {u : |θ(ut) − θ(u)| < ε} ⊂ S.

To simplify our proof we will, somewhat counterintuitively, take the ε in (3) to be
very small (which we are of course free to do).

3.2. Choice of strongly stable directions and the first bound on ε. In this
section we choose our strongly stable directions u1, u2 and u3, and we give a first
upper bound on ε in (3). The reason why we impose these particular conditions on
our parameters will become clear in the proof of Lemma 4 in Section 4. Note that
if u0 is a strongly stable direction such that Nε(u0) = {u : |θ(u0)− θ(u)| < ε} ⊂ S,
then clearly also Nε(u0) ⊂ Int S, i.e., all directions in Nε(u0) are strongly stable.
This means that the existence of one triple of strongly stable directions satisfying
(2) implies the existence of infinitely many such triples.

Given an update family U = {X1, . . . , Xm}, we say that a direction u ∈ S1 is
forbidden for U if it is perpendicular to at least one side of the convex hull of at least
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7394 P. BALISTER, B. BOLLOBÁS, M. PRZYKUCKI, AND P. SMITH

one of the update rules Xi (note that every side of any convex hull forbids 2 opposite
directions). Let F (U) = {u : u is forbidden for U} be the set of directions forbidden
for U . For example, for the update family U1 equivalent to DTBP introduced in
Section 1.3 we have

F (U1) =

{(√
2

2
,

√
2

2

)
,

(
−
√

2

2
,−

√
2

2

)
,

(
−2

√
5

5
,

√
5

5

)
,

(
2
√

5

5
,−

√
5

5

)
,

(
−
√

5

5
,
2
√

5

5

)
,

(√
5

5
,−2

√
5

5

)}
.

Since F (U) is a finite set, we can choose our strongly stable directions u1, u2, u3 ∈
IntS(U) \F (U) and let ε(u1, u2, u3) be small enough so that for i = 1, 2, 3, we have

(4) Nε(u1,u2,u3)(ui) ⊂ Int S \ F (U).

To simplify our proof, from now on we assume that in (3) we have ε ! ε(u1, u2, u3).

3.3. Good squares. Let us now define more precisely the tilings of Z2 we will
work with in this paper, as well as the concepts of good and bad squares. The
coarseness of our tilings and the definitions of good and bad squares will depend
on the following parameters. Let

(5) 1 < 1 + γ < β < α < 2 and δ = (2α + 2β − 3)/(2 − α).

Let {∆i}∞i=1 be an increasing sequence of natural numbers with

∆i+1 = min{n ∈ N : n " ∆α
i and n is a multiple of ∆i},

with ∆1 " ∇(U) to be defined later. For i " 1 let

qi = ∆−δ
i , gi = ∆β

i , and σi = ε/2 + ε∆−γ
i .

Note that, since α > β > 1, we have ∆i+1 > gi > ∆i.
For each i " 1 let us consider an (i)-tiling of Z2 with ∆i × ∆i squares, i.e., a

partition of Z2 into sets of the form

{a∆i + 1, a∆i + 2, . . . , (a + 1)∆i} × {b∆i + 1, b∆i + 2, . . . , (b + 1)∆i}

for all a, b ∈ Z. Note that our (i)-tilings are nested, i.e., that every ∆i+1 × ∆i+1

square consists of ⌈∆α−1
i ⌉2 squares of side length ∆i.

We shall define squares of side length ∆i in our (i)-tiling of Z2 to be either
(i)-good or (i)-bad. A ∆1-square is (1)-good if all its sites are initially healthy,
otherwise it is (1)-bad. For i " 1 we declare a square S of side length ∆i+1

to be (i + 1)-bad if there exist two distinct non-adjacent squares (we consider
squares that only touch corners as adjacent) S′, S′′ of side length ∆i in our (i)-
tiling (where S′ and S′′ might be disjoint from S) which are (i)-bad and such that
max{dist(S, S′), dist(S, S′′), dist(S′, S′′)} ! gi.

For i " 1 and an (i)-good square S we say that a site v ∈ S is (i)-clean if, for
all j < i, v is at distance at least gj/3 from any (j)-bad square.
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4. Barriers and triangular covers

In this section we define barriers and triangular covers. We shall use these
concepts in our proof to show that for p > 0 small enough the infection does not
spread through the whole Z2, by showing that the closure of the initial infection
can be enclosed in a collection of separated, finite sets of a special triangular shape.

Recall that we assume that for our update family U we have

(6)
3⋃

t=1

{u : |θ(ut) − θ(u)| < ε} ⊂ S.

If for some t ∈ {1, 2, 3} we have
∣∣(θ(ux,y) − θ(ut)

)
(mod 2π) − π/2

∣∣ < σ1,

(roughly speaking, if ux,y is “nearly” perpendicular to the stable direction ut), then
a (1, t)-barrier joining x to y is the set of all sites v ∈ Z2 such that for some λ ∈ [0, 1]
we have

dist(v,λx + (1 − λ)y) ! ∇(U).

Let i " 2 and x, y ∈ Z be such that
∣∣(θ(ux,y) − θ(ut)

)
(mod 2π) − π/2

∣∣ < σi.

Let, for some m " 1, the sequence (zj)m
j=0 with z0 = x, zm = y and zj ∈ Z2 for all

j = 1, 2, . . . , m − 1, be such that for all j = 1, 2, . . . , m we have
∣∣(θ(uzj−1,zj ) − θ(ut)

)
(mod 2π) − π/2

∣∣ < σi−1.

Then any union of (i − 1, t)-barriers joining zj−1 to zj for j = 1, 2, . . . , m, is an
(i, t)-barrier joining x to y (see Figure 4). The sequence (zj)m

j=0 is called the anchor
of the (i, t)-barrier. Note that for i " 2, an (i, t)-barrier consists of m " 1 segments
each of which is itself an (i−1, t)-barrier. This compound structure will allow (i, t)-
barriers to avoid infected regions in Z2. We shall later use such infection-avoiding
barriers and, exploiting the fact that they are essentially perpendicular to stable
directions, enclose infected regions in hulls from which they cannot break out.

We may assume that 0 ! θ(u1) < θ(u2) < θ(u3) < 2π. Let K ⊂ Z2 be finite, let
i " 1, and suppose x, y, z ∈ Z2 are distinct points such that:

• an (i, 1)-barrier joining x to y, an (i, 2)-barrier joining y to z and an (i, 3)-
barrier joining z to x exist, and

• K lies inside the area bounded by these barriers and is disjoint from them.

Then we call the union B of the three barriers an (i)-barrier cover of K, and we
call the union T of B and the sites in the area bounded by B an (i)-triangular cover
of K. Note that there exist infinitely many (i)-barrier covers and infinitely many
(i)-triangular covers of any given finite set K for every i " 1.

The (i, t)-barriers are perpendicular to strongly stable directions. In the next
lemma we use this fact to show that for any finite set K, any i " 1, and any
(i)-barrier cover B and associated (i)-triangular cover T of K, the closure [K] is a
subset of T \ B and is therefore isolated from Z2 \ T by a barrier of thickness at
least ∇(U).

Note that for any subcritical update family U = {X1, . . . , Xm}, for all 1 ! i !
m we have |Xi| " 2. Indeed if, without loss of generality, X1 = {(x, y)}, then
every direction u ∈ S1 such that ⟨(x, y), u⟩ < 0 is an unstable direction. This
set of directions constitutes an open semicircle in S1 and hence the family U is
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ut

z0 = x

z1

z2

z3
z4

z5 = y

Figure 4. An example of an (i, t)-barrier joining x to y with
∇(U) = 2.

supercritical. Also, we then trivially have pc(Z2, U) = 0: every site (u, v) ∈ Z2 will
become infected if for some t ! 1 the site (u, v) + t · (x, y) is initially infected and
this happens almost surely for any p > 0.

Lemma 4. Let K ⊂ Z2 be finite, let i ! 1, and let B be an (i)-barrier cover of K
and T its associated (i)-triangular cover. Then

[K] ⊂ [T \ B] = T \ B.

Proof. The first containment [K] ⊂ [T \ B] is obvious because K ⊂ T \B. Therefore
we only need to prove that [T \ B] = T \ B, i.e., that T \ B is closed under U .

Assume that the initial set of infected sites is T \ B. Recall that we have u1,
u2, u3 and ε " ε(u1, u2, u3) in Section 3.2 such that for t ∈ {1, 2, 3} we have
Nε(u1,u2,u3)(ut) ⊂ IntS \ F (U).

A site v ∈ Z2\(T \B) can become infected for three, essentially different, reasons.
These are schematically shown in Figure 5, where we assume that T \ B lies below
the solid curve. Cases (1) and (2) in Figure 5 correspond to v being infected using
update rules X ′ and X ′′, which destabilize directions u′ and u′′ respectively. For
simplicity we assume |X ′| = |X ′′| = 2. Case (3) corresponds to v being infected
using an update rule X ′′′ that does not destabilize any directions. Rules of this
type necessarily contain the origin in their (closed) convex hull; in the figure, for
simplicity, we assume |X ′′′| = 3.

The site v cannot be infected for the reason shown in case (1) of Figure 5, because
the existence of such a rule X ′ ∈ U would contradict the fact that for t ∈ {1, 2, 3}
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×

×
v

u′

(1)

×
×

v
u′′

(2)

×
×

×
v

(3)

Figure 5. Three ways to infect a site v ∈ Z2 \ (T \ B). The sites
in v + X ′, v + X ′′ and v + X ′′′ are denoted by ×.

we have Nε(u1,u2,u3)(ut) ⊂ S. It cannot be infected for the reason shown in cases
(2) or (3) of Figure 5, because now the existence of such a rule would contradict
the fact that Nε(u1,u2,u3)(ut) ∩ F (U) = ∅. Hence T \ B is closed under U , which
completes the proof. !

In the next lemma we show that there exists a constant c = c(U) such that for
all i " 1 and all sufficiently large ∆, we can find an (i)-triangular cover of a square
of side length ∆ in a “small” neighbourhood of that square, i.e., in a larger square
of side length at most c∆.

Lemma 5. There exists ℓ0 ∈ N and ε0 > 0 depending only on U such that the
following hold. Let ε # ε0, ℓ " ℓ0, i " 1, and ∆ " ∇(U). Consider the tiling of
[c∆]2 consisting of (2ℓ + 1)2 squares of side length ∆, where c = 2ℓ + 1. Then this
tiling contains three distinct ∆×∆ squares Y1, Y2 and Y3 such that for all y1 ∈ Y1,
y2 ∈ Y2 and y3 ∈ Y3, and for each t = 1, 2, 3, we have

(7)
∣∣(θ(uyt,yt+1) − θ(ut)

)
(mod 2π) − π/2

∣∣ < ε/2,

where y4 = y1.
Additionally, every (i, 1)-barrier joining y1 to y2, every (i, 2)-barrier joining y2

to y3 and every (i, 3)-barrier joining y3 to y1, is contained within the tiling and is
disjoint from its middle square, i.e., from

Y0 = [∆ℓ + 1,∆(ℓ + 1)] × [∆ℓ + 1,∆(ℓ + 1)].

Proof. Let i " 1 and ∆ " ∇(U), and let ℓ " 1 be sufficiently large. Let

v = (∆ℓ + (∆ + 1)/2,∆ℓ + (∆ + 1)/2)
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be the midpoint of Y0. The whole of Y0 is clearly contained in a circle of radius ∆
centered at v. For r > 1 to be specified later, let S1 and S2 be the circles centered
at v of radius r∆ and (r + 3)∆ respectively. Also, let T1 and T2 be the triangles
circumscribed on S1 and S2 respectively, tangent to these circles, for t = 1, 2, 3, at
points v + r∆ut and v + (r + 3)∆ut respectively. (See Figure 6.) Independently
of the values of uj and r, the three grey corner regions in Figure 6 are each large
enough to contain a disc of diameter 3∆, each of which itself contains a ∆ × ∆
square of the tiling of [c∆]2. Fix any such three squares Y1, Y2 and Y3. We claim
that if r is large enough and ε > 0 is small enough (both independently of i), then
Y1, Y2 and Y3 satisfy the conclusions of the lemma.

u1
u2

u3

(r + 3)∆

r∆
v

y2

Figure 6. Finding (i, t)-barriers in the neighbourhood of v.

For t = 1, 2, 3, let θt = θ(ut). Without loss of generality we may assume that,
modulo 2π, we have θ3 − θ2 ! θ2 − θ1 ! θ1 − θ3, and we may also assume that
r ! 3. The longest side of T2 has length

amax = (r + 3)∆

(
tan

(
θ3 − θ2

2

)
+ tan

(
θ2 − θ1

2

))

" 2r∆

(
tan

(
θ3 − θ2

2

)
+ tan

(
θ2 − θ1

2

))
,

while the shortest side of T1 has length

amin = r∆

(
tan

(
θ2 − θ1

2

)
+ tan

(
θ1 − θ3

2

))
.

First we verify that (7) holds. Let y1 ∈ Y1, y2 ∈ Y2 and y3 ∈ Y3. For t = 1, 2, 3,
we must show that θ(uyt,yt+1) is at most ε/2 away from the angle of the vector
perpendicular to ut (where again y4 = y1). This holds if

(8) amin tan
(ε

2

)
! 3∆,

because this condition guarantees that the whole grey corner region containing
Yt+1 is contained inside the angle with its vertex at yt and of measure ε, lying

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



SUBCRITICAL U-BOOTSTRAP PERCOLATION 7399

symmetrically around the line perpendicular to ut which goes through yt. (See
Figure 6 with t = 2.) Inequality (8) is satisfied whenever

r ! 3
(
tan

(ε
2

))−1
(

tan

(
θ2 − θ1

2

)
+ tan

(
θ1 − θ3

2

))−1

= rε.

Thus, (7) holds provided r ! rε.
Finally we must show that the condition in the last paragraph of the lemma

holds. Given any two sites u and w in Z2, and t ∈ {1, 2, 3}, the sequence (zj)m
j=0

of points forming the anchor of an (i, t)-barrier joining u to w is, by the definition
of an (i, t)-barrier, contained in a rhombus with two of its vertices at u and w and
the interior angles at these two vertices equal to 2ε. Now, if u and w are contained
in different grey corner regions in Figure 6, then one can easily verify that this
rhombus is at distance at least r∆/6 from the circle of radius ∆ centered at v,
provided amax tan ε " r∆/2, which holds if

ε " arctan

⎛

⎝1

4

(
tan

(
θ3 − θ2

2

)
+ tan

(
θ2 − θ1

2

))−1
⎞

⎠ = ε0.

Note that ε0 depends on the values of θt only. Thus, to ensure that every (i, t)-
barrier joining u and w is disjoint from the small circle centered at v, it is enough
to have r∆/6 ! ∇(U), which is true whenever r ! 6 (recall that we assume ∆ !
∇(U)).

The assertion that the barriers are entirely contained within [c∆]2 if c is suffi-
ciently large follows immediately from the fact that by the choice of ε every point
of every (i, t)-barrier is at distance at most

amax + r∆/2 + ∇(U) " ∆

(
2r

(
tan

(
θ3 − θ2

2

)
+ tan

(
θ2 − θ1

2

))
+

r

2
+ 1

)

from v. Therefore, for ε " ε0 and r = max{6, rε} the lemma holds with

ℓ0 =

⌈
2r

(
tan

(
θ3 − θ2

2

)
+ tan

(
θ2 − θ1

2

))
+

r

2
+ 1

⌉
. #

Given a set of stable directions S and our choice of strongly stable and not
forbidden directions u1, u2 and u3 in Section 3.2, let c(S) be the smallest c = 2ℓ+1
for which Lemma 5 holds for ε = min{ε0, ε(u1, u2, u3)}.

Now let K ⊂ Z2 be finite and let ∆ > 0 be minimal such that K is contained in
a square of side length ∆. We say that an (i)-triangular cover for a finite set K is
tight if it is completely contained in the

(
c(S)∆

)
×
(
c(S)∆

)
square centered at any

minimal square (necessarily of side length ∆) containing K.

5. Positive critical probability: The proof of Theorem 1

The aim of the first part of this section is to state and prove the theorem that
will be our main tool in proving Theorem 1. We described the outline of the proof
of this theorem in Section 2. Before stating the theorem, we need a few preliminary
definitions and remarks.
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For each k ! 1, we say that the measure Pp is (k, 2)-independent if, for every
pair of non-adjacent squares S and T of side length ∆k in the (k)-tiling, the events

{S is (k)-good} and {T is (k)-good}
are independent.

Recall that, for i ! 1, a site v in an (i)-good square is said to be clean if, for all
j < i, v is at distance at least gj/3 from any (j)-bad square.

In the statement of the theorem we refer to unions of pairwise adjacent (i)-bad
∆i-squares. Note that at most four such squares can be all pairwise adjacent and
that a union of such squares is always contained in a 2∆i × 2∆i-square.

After the initial infection is seeded, bootstrap percolation is a fully deterministic
process. Hence, given a set of initially infected sites A ⊂ Z2, for each k ! 1 let Xk

be the collection of all sets X ⊂ Z2 such that X is a union of pairwise adjacent
(k)-bad squares and X intersects a (k + 1)-good square.

Theorem 6. Let U be a subcritical update family with three strongly stable direc-
tions u1, u2, u3 ∈ Int S \ F (U) such that for some positive numbers λ1,λ2,λ3 we
have λ1u1 + λ2u2 + λ3u3 = 0. Then, if p > 0 is small enough, for each k ! 1 the
following three conditions hold:

(i) The measure Pp is (k, 2)-independent, and for any ∆k × ∆k square S in the
(k)-tiling we have

Pp(S is (k)-bad) " qk.

(ii) Every (k)-good square S contains a (k)-clean site.
(iii) For every X ∈ Xk−1 there exists a tight (k−1)-triangular cover Tk−1(X) such

that, for distinct Y, Z ∈ Xk−1, the sets Tk−1(Y ) and Tk−1(Z) are disjoint, and
for each i < k − 1, if Y ∈ Xk−1 and Z ∈ Xi, then either Tk−1(Y ) and Ti(Z)
are disjoint or Ti(Z) ⊂ Tk−1(Y ).

Since all (k)-triangular covers we consider henceforth will be tight, we shall
always assume that this extra condition is understood, and make no further mention
of it.

Proof. Given a choice of α,β, γ and δ satisfying (5), and ε = min{ε0, ε(u1, u2, u3)}
where ε0 is taken as in the proof of Lemma 5 and ε(u1, u2, u3) as in Section 3.2, let
∆1 be large enough to satisfy the following five conditions:

• ∆1 ! max{2δ+5,∇(U)},
• ∆α−1

1 ! 12c(S),

• ∆β−1
1 ! max{30, 3c(S)},

• ∆α−β
1 ! 3,

• ∆β−1−γ
1 ! 68c(S)/ε.

Let sites in Z2 be initially infected independently with probability p = (∆1)−δ−2.
We shall prove Theorem 6 by induction on k ! 1. First we check the case k = 1.

(i) Any ∆1-square A is (1)-good if it is initially fully healthy. Thus we immediately
see that states of all ∆1-squares are mutually independent. We also have

Pp(A is (1)-bad) < (∆1)
2p = (∆1)

2(∆1)
−δ−2 = (∆1)

−δ = q1.

(ii) Every site in a (1)-good ∆1-square is (1)-clean (the condition of a (1)-clean
site is empty) and therefore Condition (ii) is trivially satisfied by any (1)-good
∆1-square.
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(iii) For k = 1 Condition (iii) is empty and is therefore trivially satisfied by any
(1)-good ∆1-square.

Assume now that the three conditions of Theorem 6 are satisfied by our (i)-tilings
for all 1 ! i ! k. Let us consider the (k + 1)-tiling of Z2.

(i) The state of any square X in our (k+1)-tiling (either “(k+1)-good” or “(k+1)-
bad”) depends only on the states of squares in the (k)-tiling within distance
gk = ∆β

k of X. If ∆α−β
1 " 3, then for all k we have gk ! ∆k+1/3 and the states

of any non-adjacent ∆k+1-squares Y and Z depend on states of non-adjacent
sets of ∆k-squares. By induction, the states of squares in these non-adjacent
sets are independent. Therefore the states of Y and Z are independent. Hence
the states of all non-adjacent ∆k+1-squares are independent.

If a ∆k+1 ×∆k+1 square S is (k + 1)-bad, then it contains or is at distance
at most gk from two non-adjacent (k)-bad squares X, Y in our (k)-tiling such
that dist(X, Y ) ! gk. Hence, given S, there are at most

(
∆k+1 + ∆k + 2gk

∆k

)2

ways of choosing X and then, assuming that Y is contained in the semicircle
of radius gk below X, we have 2(gk/∆k)2 ways of choosing Y . Recall that
∆k+1 < ∆α

k + ∆k and that for all k " 1 we have ∆k " ∆1 " 2δ+5. Since
qk = ∆−δ

k , where δ = (2α + 2β − 3)/(2 − α), and the states of non-adjacent
squares are independent, we have

Pp(A is (k + 1)-bad) <

(
∆k+1 + ∆k + 2gk

∆k

)2

2

(
gk

∆k

)2

q2
k

< 2

(
4∆k+1

∆k

)2 (
∆β−1

k

)2
∆−2δ

k

< 2
(
4∆α−1

k

)2
∆2β−2−2δ

k

= 25+δ∆−1
k 2−δ∆2α+2β−3−2δ

k

! 2−δ∆2α+2β−3−2δ
k

= (2∆α
k )−δ

! qk+1.

(ii) If a (k + 1)-good square S does not contain any (k)-bad subsquare, then, in
particular, any square Y in our (k)-tiling contained in the middle ∆k+1/3 ×
∆k+1/3 subsquare of S is (k)-good and lies at distance at least ∆k+1/3 > gk/3
from any (k)-bad square. Since Y is (k)-good it contains a (k)-clean site v.
Since v is at distance at least gk/3 from any (k)-bad square, v is also (k + 1)-
clean.

Hence assume that S contains a (k)-bad square X. Since S is (k +1)-good,
any other (k)-bad square within distance gk of X (not necessarily contained
in S) must be adjacent to X. It follows that, since ∆β−1

1 " 30, every site at
distance between 2gk/5 and 3gk/5 from X is at distance at least gk/3 from
any (k)-bad square. At least a quarter of the ring of sites at distance between
2gk/5 and 3gk/5 from X lies inside S. Additionally, this ring is thick enough
to contain a 3∆k × 3∆k square, which itself contains a (k)-good square with
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a (k)-clean site v. By the same argument as in the previous paragraph, v is
also (k + 1)-clean.

(iii) Consider a (k + 1)-good square S and a union X of pairwise adjacent (k)-bad
squares intersecting S (as usual, X is contained within a 2∆k × 2∆k square).
By Lemma 5, the definition of a (k +1)-good square, and since ∆β−1

1 ! 3c(S),
the 2c(S)∆k × 2c(S)∆k square C centered at X does not intersect with the
2c(S)∆k × 2c(S)∆k square centered at any other union of adjacent (k)-bad
squares. Additionally, C contains three (k)-good squares C1, C2 and C3 with
(k)-clean sites c1 ∈ C1, c2 ∈ C2 and c3 ∈ C3 such that all (k, 1)-barriers joining
c1 to c2, all (k, 2)-barriers joining c2 to c3 and all (k, 3)-barriers joining c3 to
c1 are contained within C. Also, these barriers are disjoint from X, which lies
inside the area bounded by them.

Therefore we need to prove that between any two of c1, c2 and c3 we can
find appropriate barriers avoiding Ti(Y ) for any union Y of adjacent (i)-bad
squares for all i < k. Then the union of these three barriers and the area inside
them will be our desired Tk(X), the (k)-triangular cover of X. To do this we
shall prove the following crucial lemma. We would like to emphasize that this
lemma is the key to the third and most important part of Theorem 6. The
theorem follows from the lemma in an essentially straightforward way.

Lemma 7. Let j ! 1. Let x0 and y0 be two (j)-clean sites in different (j)-good
squares such that for some t ∈ {1, 2, 3} we have

∣∣(θ(ux0,y0) − θ(ut)
)
(mod 2π) − π/2

∣∣ < σj = ε/2 + ε/∆γ
j .

Suppose also that all ∆j ×∆j squares in our (j)-tiling within distance ∆j of
the segment with x0 and y0 as endpoints are (j)-good. Then there exists a
(j, t)-barrier joining x0 to y0 that does not intersect the (i)-triangular cover
Ti(X) of any union X of neighbouring (i)-bad squares for any i < j.

Proof. For j = 1 the assertion is empty and so the lemma is trivial. Thus
assume that the lemma holds for j " m. Let x0 and y0 be two (m + 1)-clean
sites in different (m + 1)-good squares such that, for some t ∈ {1, 2, 3},

∣∣(θ(ux0,y0) − θ(ut)
)
(mod 2π) − π/2

∣∣ < σm+1

holds. Recall that every (m + 1)-clean site is also (m)-clean.
Let

x1 = x0 + 8c(S)∆mu
(
θ(ux,y) + π/2

)
,

y1 = y0 + 8c(S)∆mu
(
θ(ux,y) + π/2

)
,

x2 = x0 + 8c(S)∆mu
(
θ(ux,y) − π/2

)
,

y2 = y0 + 8c(S)∆mu
(
θ(ux,y) − π/2

)
,

and for ℓ = 0, 1, 2 let

Zℓ = {v ∈ Z2 : dist(v,λxℓ + (1 − λ)yℓ) " 4c(S)∆m for some λ ∈ [0, 1]}

(see Figure 7).
If ∆m+1 ! 12c(S)∆m, which is true since ∆α−1

1 ! 12c(S), then
⋃3

ℓ=1 Zℓ is
contained in a union of (m+1)-good squares. This implies that every union of
pairwise adjacent (m)-bad squares intersecting

⋃3
ℓ=1 Zℓ is at distance at least

gm from any other (m)-bad square. Additionally, the (m)-triangular cover
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of any union X of pairwise adjacent (m)-bad squares, being contained in the
2c(S)∆m × 2c(S)∆m square centered at X, intersects at most two of the sets
Zℓ.

Assume that
⋃3

ℓ=1 Zℓ intersects d such 2c(S)∆m × 2c(S)∆m squares con-
taining unions of adjacent (m)-bad squares: Y1, Y2, . . . , Yd, ordered according
to their distance from x0. For every s ∈ [d], let ys ∈ R2 be the center of Ys

and let ℓs ∈ {1, 2} be an index of a set Zℓ that is avoided by Ys. Then in
Zℓs we can find an (m)-good square Cs at distance at least 4c(S)∆m and at
most 6c(S)∆m from Z0, with an (m)-clean site zs ∈ Cs, such that the distance
between zs and the line going through x0, x1 and x2 differs from the distance
between ys and that line by at most ∆m. Note that the conditions on the
location of Cs imply that Cs is at distance at least 3c(S)∆m/2 from Z2 \ Zℓs .
See Figure 7 for a graphical interpretation of this description.

x0

y0

Z0

x1

y1

Z1

x2

y2

Z2

Y1

Y2

z1

z2

Figure 7. The (m)-clean sites z1 and z2 used to bypass unions of
adjacent (m)-bad squares Y1 and Y2 and to inductively construct
an (m + 1, t)-barrier joining x0 to y0.

Set z0 = x0 and zd+1 = y0. Note that if the segment joining zs to zs+1 is at
distance at least ∆m from any (m)-triangular cover of any union of adjacent
(m)-bad squares (this clearly implies that the segment is at distance at least
∆m from any (m)-bad square) and if

∣∣(θ(uzs,zs+1) − θ(ut)
)
(mod 2π) − π/2

∣∣ < σm,

then by the induction hypothesis there exists an (m, t)-barrier joining zs to
zs+1 satisfying the lemma. If this holds for all pairs of consecutive zss then
these (m, t)-barriers together constitute an (m + 1, t)-barrier joining x0 to y0

which avoids, for all i ! m, (i)-triangular covers of all unions of neighbouring
(i)-bad squares.

Since ∆β−1
1 " 30, using the bound arcsinφ ! πφ/2 for φ ∈ [0, 1], the

difference between θ(uzs,zs+1) and θ(ux0,y0) modulo 2π is bounded from above

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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by

arcsin

(
20c(S)∆m

gm − 2∆m

)
<

75πc(S)∆m

7gm
<

ε

2∆γ
m

for all m ! 1 since ∆β−1−γ
1 ! 68c(S)/ε. Since

σm − σm+1 =
ε

∆γ
m

− ε

∆γ
m+1

>
ε

2∆γ
m

,

we see that for ∆1 ! (68c(S)/ε)1/(β−1−γ) the angles between consecutive zss
allow us to find (m, t)-barriers between these sites.

Let us then show that the segment joining zs to zs+1 is at distance at least
∆m from any (m)-triangular cover of any union of adjacent (m)-bad squares.
First, we observe that zs and zs+1 are at distance at least 3c(S)∆m/2 from
Z2 \

⋃3
ℓ=1 Zℓ, so we do not need to consider (m)-bad squares lying outside⋃3

ℓ=1 Zℓ.
We chose zs to be at distance at least 4c(S)∆m from Z0, and consequently

also from Ys. Let w′ be a site in an (m)-triangular cover of Ys. Then, by
Lemma 5, the distance between w and the line going through x0, x1 and x2 is
not larger than the distance between zs and this line by more than 2c(S)∆m.
Let w′′ be a point in the segment joining zs to zs+1 at distance at most
2c(S)∆m from Z0. If ε/(2∆γ

m) " π/8, which is true whenever ε " π/4, then
w′′ is at distance from the line going through x0, x1 and x2 larger by at least
4c(S)∆m than zs is. Therefore, the segment joining zs to zs+1 is at distance
at least 2c(S)∆m from Ys and so at distance at least ∆m from Tm(Ys). In a
similar way we show that it is at distance at least ∆m from Tm(Ys+1). By the
choice of the ordering of the squares Ys we know that no other (m)-triangular
cover of any union of adjacent (m)-bad squares is near the segment joining zs

to zs+1 and the lemma is proved. #
From Lemma 5 and Lemma 7 it follows immediately that for any union X

of adjacent (k)-bad squares inside a (k + 1)-good square we can find a (k)-
triangular cover Tk(X) of X inside the 2c(S)∆k × 2c(S)∆k square centered at
X, satisfying the requirements of Theorem 6.

This completes the proof of the theorem. #
In the next lemma we show that the collection of triangular covers, which by

Theorem 6 almost surely exists if p > 0 is sufficiently small, contains every site of
Z2 that ever becomes infected.

Recall that Xk is the collection of all sets X ⊂ Z2 such that X is a union of
pairwise adjacent (k)-bad squares and X intersects a (k + 1)-good square.

Lemma 8. Given a subcritical family U , let p = (∆1)−δ−2 > 0 be small enough so
that Theorem 6 holds. Let A ∼ Bin(Z2, p). Then, almost surely,

[A] ⊂ Z =
⋃

i!1

⋃

X∈Xi

Ti(X).

Proof. By the definition of the closure, the set [A] is the smallest set that contains
A and is closed under U .

We show first that A ⊂ Z. Note that since we define qi = ∆−δ
i " ∆−αi−1δ

1 , we
have

∑
i!1 qi < ∞. Every ∆1-square that contains at least one initially infected

site is (1)-bad and, by the Borel-Cantelli lemma,
∑

i!1 qi < ∞ implies that every
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site in Z2 is contained in infinitely many good squares almost surely. In particular,
every initially infected site will be contained in the triangular cover of a union of
adjacent (i)-bad squares intersecting an (i + 1)-good square, for some i ! 1. Thus
to prove the lemma we just need to show that Z is closed under U .

As shown in Lemma 4, for any i ! 1 the (i)-triangular cover of any union X of
adjacent (i)-bad squares is closed under U . Moreover, the infected interior of the
cover is separated from Z2 \ Ti(X) by a healthy barrier of thickness at least ∇(U).
By condition (iii) in Theorem 6, for all i ! j ! 1, any union X of adjacent (i)-bad
squares and any union Y of adjacent (j)-bad squares satisfy either Tj(Y ) ⊂ Ti(X)
or Tj(Y )∩Ti(X) = ∅. Hence, by the definition of ∇(U), any collection of triangular
covers is closed under U and, in particular, so is Z. This means that [A] ⊂ Z and
the proof of the lemma is complete. "

Equipped with Theorem 6 and Lemma 8, we are now in a position to prove
Theorem 1.

Proof of Theorem 1. Having proved Theorem 6 and Lemma 8, to prove the inequal-
ity pc(Z2, U) > 0 in Theorem 1 it is enough to show that for p > 0 small enough
the probability that there exists i ! 1 and a union X of adjacent (i)-bad squares
such that the site (0, 0) belongs to the 2c(S)∆i × 2c(S)∆i square centered at X is
strictly less than 1. This clearly implies that the probability that the origin belongs
to some (i)-triangular cover of adjacent (i)-bad squares is strictly less than 1.

Given α, β, γ and δ satisfying (5), let ∆1 be large enough to satisfy all conditions
imposed on it at the beginning of the proof of Theorem 6. Since in the proof of
Theorem 6 we take p = (∆1)−δ−2, this implies an appropriate condition on p.

The probability that there exists i ! 1 and a union X of adjacent (i)-bad squares
such that the site (0, 0) belongs to the 2c(S)∆i×2c(S)∆i square centered at X can
be bounded from above by the expected number of such squares, which is at most

∑

i!1

(2c(S) + 2)2qi # 5(c(S))2
∑

i!1

∆−δ
i # 5(c(S))2

∑

i!0

∆−δαi

1 .

We have δ = 2α+2β−3
2−α > 1 and so, in the proof of Theorem 6,

p = (∆1)
−δ−2 > ∆−3δ

1 .

Therefore we obtain

Pp([A] = Z2) # 5(c(S))2
∑

i!0

pα
i/3

# 5(c(S))2

⎛

⎝p1/3 +
∑

i!1

p(α logαi+α(1−logα))/3

⎞

⎠ ,

where in the second inequality we use the convexity of the function f(x) = αx,
which implies f(x) ! f(1) + f ′(1)(x − 1). With p < 2−3/(α logα) it follows that

(9) Pp([A] = Z2) # 5(c(S))2
(
p1/3 + 2pα/3

)
.

Thus if 5(c(S))2
(
p1/3 + 2pα/3

)
< 1, then p # pc(Z2, U) and the proof of the in-

equality pc(Z2, U) > 0 in Theorem 1 is complete.
We finally prove that pc(Z2, U) = 1 if and only if S = S1. To show that

S ̸= S1 implies pc(Z2, U) < 1 we couple bootstrap percolation with site percolation,
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using a standard argument. If we initially infect all sites in Z2 independently with
probability p < 1 large enough, then almost surely every initially healthy cluster in
Z2 is not only finite, but is also surrounded by an annulus of initially infected sites
of thickness at least ∇(U). Then, if u ∈ S1 \ S, we must have an Xi ∈ U such that
Xi ⊂ Hu and every finite cluster of healthy sites is infected by the dynamics with
the use of update rule Xi.

To show the converse we use the following simple argument. Assume that S =
S1, so that all update rules in U do not destabilize any direction, i.e., for all i ∈ [m]
the origin belongs to the convex hull of Xi. For any r > 0 and p < 1, if we initially
infect all sites in Z2 with probability p, then almost surely somewhere in Z2 we
obtain an initially healthy disc Dr of radius r. If r is large enough, then every
rule Xi can only infect sites in disjoint circular segments “cut off” from Dr using
chords of length at most ∇(U) and parallel to the sides of the convex hull of Xi, and
these segments are all either disjoint or contained in each other for different rules
(that again follows from the fact that we take r large; see Figure 8). Because no
additional infection takes place in Dr, we do not have percolation. That completes
the proof of Theorem 1. !

Figure 8. Set of disjoint circular segments cut off from Dr using
chords perpendicular to directions u(θ) for θ ∈ {π/4,π/2, 8π/9}.

We finally prove the lower bound on pc(T⃗, 2) in Corollary 3. We emphasize that
because our proof is very general, the bounds it gives in specific cases are likely to
be far from optimal.

Proof of the lower bound in Corollary 3. For the update family U1 equivalent to
DTBP we have ∇(U1) = dist((−1,−1), (0, 1)) =

√
5 < 2.24. Since in (2) we are

free to take any u1, u2 and u3 that satisfy this equation for some positive values
of the λi and lie inside open intervals of stable directions that do not intersect the
forbidden set, we choose θ(u1) = 7π/24, θ(u2) = 23π/24 and θ(u3) = 39π/24. This
implies that θ(u3) − θ(u2) = θ(u2) − θ(u1) = θ(u1) − θ(u3) = 2π/3. Also, for
t = 1, 2, 3 and |θ(u) − θ(ut)| < π/24, direction u is stable and not forbidden.

From these values of θ(ut) we get ε0 > 0.02293π and rε0 < 24.04. This gives
c(S) = 361. We choose α = 1.5 and simplifying in (9) we obtain Pp([A] = Z2) "
15(c(S))2p1/3, which is less than 1 when p < 10−19. This implies the condition
∆1 > 1019/(δ+2). Taking β = 1.45 and γ = 0.01, this condition and the ones at
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the beginning of the proof of Theorem 6 are satisfied for ∆1 ! 1013. Since we have
δ = 5.8 this implies that pc(T⃗, 2) > 2.5 · 10−101 and the proof of Corollary 3 is
complete. "

6. Update families with two opposite strongly stable directions

In this section we present an elementary proof of the fact that the critical prob-
ability is strictly positive for all update families with two opposite strongly stable
directions, i.e., for families U such that for some u ∈ S1 we have u,−u ∈ IntS(U).
The following theorem is of course only a particular subcase of Theorem 1 but it cov-
ers all previously analyzed subcritical bootstrap percolation models [20, 21, 24, 27].
(Of course, the point of those papers was not, as here, to prove that the critical
probability is positive, but rather to determine quite precise information about its
location and to address problems related to, e.g., Questions 10 and 11 that we pose
in the next section.)

Theorem 9. For every update family U such that {u,−u} ⊂ Int S(U) for some
u ∈ S1, we have pc(Z2, U) > 0.

Proof. Choose u′ ∈ S and ε > 0 such that Nε(u′), Nε(−u′) ⊂ Int S \ F (U). Tile
Z2 with identical rhombi, whose sides are perpendicular to the four directions
u(θ(±u′)±ε/2), and which are large enough to contain a circle of radius r ! ∇(U).
If p > 0 is small enough, then every rhombus is initially fully healthy with probabil-
ity larger than the critical probability for oriented site percolation, independently
of all other rhombi. Hence in the tiling we almost surely have a doubly infinite “in-
creasing” path of fully healthy rhombi which, by the choice of u′, ε and r, remains
healthy forever. "

7. Open problems

When p > pc, the sorts of questions one typically asks of critical bootstrap and
U-bootstrap percolation become relevant to subcritical U-bootstrap percolation.
For example, one would like to know about the distribution of the occupation time
T of the origin, and in particular, to what extent this time is concentrated, and how
its expectation behaves as p ↘ pc. These questions have been extensively studied
in the case of the r-neighbour model on Zd and are the subject of a number of
recent results for critical update families in U-bootstrap percolation. It is natural
to ask whether similar behaviour occurs in the subcritical setting. Some of the
following questions (e.g., Questions 10 and 11) have already been addressed in
[27] for models that can be coupled with oriented site percolation. However, the
methods used in [27] strongly depend on the coupling idea and cannot be applied
to “typical” subcritical update families. It is therefore unclear whether the models
with no two opposite strongly stable directions share similar behaviour.

Question 10 (Scaling limit of T ). What is the behaviour of T as p ↘ pc? In
particular, does T tend to infinity, and if so, what is the limiting dependence of T
on p − pc?

The non-triviality of the critical probabilities of subcritical U-bootstrap perco-
lation models also opens up the area to the sorts of questions one typically asks of
traditional Bernoulli (site or bond) percolation. The difficulty of answering these
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questions is likely to be correlated with the difficulty of answering the correspond-
ing questions in Bernoulli percolation: for example, determining the exact value
of pc, or even obtaining good bounds on pc, for any non-trivial subcritical update
family, is likely to be a hard problem. Similarly, properties conjectured to have crit-
ical exponent behaviour in Bernoulli percolation, such as the distribution of cluster
sizes, are likely to be hard to analyze in the subcritical U-bootstrap percolation
setting. However, there are many properties of site and bond percolation that are
now well-understood, at least in two dimensions, and these may also be accessible
in the subcritical U-bootstrap percolation setting. We give three examples: the
behaviour at criticality, exponential decay of cluster sizes, and noise sensitivity.

Question 11 (Behaviour at criticality). Is there percolation almost surely when
p = pc? If so, do we have ET < ∞?

Let Pp(0 ↔ r) denote the probability that the origin is contained in a connected
component of radius at least r (according to an arbitrary norm) in the closure of
A.

Question 12 (Exponential decay). For p < pc, does Pp(0 ↔ r) decay exponentially
in r?

Here we mean ‘connected’ in the site percolation sense, although other notions of
connectedness are also interesting. It is not clear that one should expect a positive
answer to Question 12: the droplet-like geometry of the closure of a random initial
set suggests that perhaps the distribution may be much flatter.

In the context of random discrete structures, roughly speaking noise sensitivity
measures whether small perturbations of a system asymptotically cause all infor-
mation to be lost. The theory of noise sensitivity was introduced by Benjamini,
Kalai and Schramm [5], who were motivated by applications to exceptional times in
dynamical percolation, and it was later developed by Garban, Pete, and Schramm
[14], and by Schramm and Steif [26]. Rather than giving the precise definitions we
refer the reader to the articles above for an overview, and we mention that in the
subcritical U-bootstrap percolation setting one can define a corresponding notion.

Question 13 (Noise sensitivity). Are subcritical U-bootstrap percolation models
noise sensitive at p = pc?

We end with a number of questions of a different flavour, which cannot be asked
of critical U-bootstrap percolation or of Bernoulli percolation, but which are in-
teresting in their own right. First, let C∞ denote the event that there exists an
infinite connected component in the closure of A. Observe that C∞ is translation
invariant, so by ergodicity it has probability either 0 or 1. Combining this with
monotonicity, it follows that there is a critical probability p∞c = p∞c (U) such that

Pp(C
∞) =

{
0 if p < p∞c ,

1 if p > p∞c .

It is natural to ask about the relationship between pc and p∞c : trivially the inequal-
ity p∞c ! pc always holds, but is it possible to have strict inequality? Even if not,
could it be that Ppc(C

∞) = 1 but Ppc([A] = Z2) = 0?

Question 14 (Infinite component without percolation). For which subcritical U-
bootstrap percolation models do we have p∞c = pc?
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This question does not seem to have been studied even in the case of oriented
site percolation.

Define the random variable

D(n) =

∣∣[−n, n]2 ∩ [A]
∣∣

∣∣[−n, n]2
∣∣ .

Thus, D(n) is the density of the closure [A] inside the square [−n, n]2. Analogous
to numerous phenomena, we conjecture the following.

Conjecture 15 (Density of the closure). For every p ∈ [0, 1] there exists a constant
δ(p) such that D(n) converges in probability to a constant δ(p) as n → ∞.

This conjecture is one formulation of the assertion that sites in the closure of
A should be reasonably well scattered. If Conjecture 15 is true, one would like to
know if δ(p) is continuous at p = pc, and whether we have δ(p)−p = o(p) as p → 0.

At present, essentially nothing is known about U-bootstrap percolation in higher
dimensions. Let d ! 2 be an integer and let U be a d-dimensional update family.
We define the stable set in d dimensions completely analogously to in 2 dimensions.
First, given (d − 1)-sphere Sd−1 ⊂ Rd, for each u ∈ Sd−1, let Hd

u := {x ∈ Zd :
⟨x, u⟩ < 0} be a half space normal to u. Then the stable set is

S = S(U) =
{
u ∈ Sd−1 : [Hd

u] = Hd
u

}
.

Let µ : L(Sd−1) → R be the Lebesgue measure on the collection of Lebesgue-
measurable subsets of Sd−1. We define the d-dimensional family U to be subcritical
if µ(H ∩S) > 0 for every hemisphere H ⊂ Sd−1. Note that this corresponds to the
definition given at the start of the paper in the special case d = 2. We conjecture
the following.

Conjecture 16. Fix an integer d ! 2 and let U be a d-dimensional update family.
Then pc(Zd, U) > 0 if and only if U is subcritical.

We believe that Conjecture 16 should follow from similar methods to those used
in the present paper, but with significant technical complications.

Our final question concerns directed triangular bootstrap percolation, which was
the example subcritical U-bootstrap percolation process given in the introduction.
The lower bound in Corollary 3 obtained by analyzing our proof is likely to be far
from the truth. What is the correct value of pc(T⃗, 2)?

Question 17. Can one obtain better bounds on the critical probability pc(T⃗, 2)
for DTBP than those given in Corollary 3?

Finally we remark that there are many other interesting questions that one could
and should ask about subcritical U-bootstrap percolation – too many to list here
individually.
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[13] Peter Gács, Clairvoyant scheduling of random walks, Random Structures Algorithms 39
(2011), no. 4, 413–485, DOI 10.1002/rsa.20368. MR2846299 (2012j:60271)
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