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Abstract
In the present paper we study the evolution of the modes of a scalar field in a
cyclic cosmology. In order to keep the discussion clear, we study the features
of a scalar field in a toy model, a Friedman–Robertson–Walker Universe with
a periodic scale factor, in which the Universe expands, contracts and bounces
infinite times, in the approximation in which the dynamic features of this
Universe are driven by some external factor, without the backreaction of the
scalar field under study. In particular, we show that particle production
exhibits features of the cyclic cosmology. Also, by studying the Berry phase of
the scalar field, we show that contrary to what is commonly believed, the
scalar field carries information from one bounce to another in the form of a
global phase which occurs as generically non-zero. The Berry phase is then
evaluated numerically in the case of the effective loop quantum cosmology
closed Universe. We observe that Berry’s phase is non-zero, but that in the
quantum regime the particle content is non-negligible.

Keywords: scalar field, cyclic cosmology, geometric phase

(Some figures may appear in colour only in the online journal)

1. Introduction

Our current understanding of the Universe and of its history relies on several puzzling
observational features. In fact, soon after the discovery of the cosmological microwave
background, theoretical physicists realized that the early Universe had to follow a rapid
expanding phase. Inflation was the first candidate for generating such expansion, and a more
refined version of inflation is still at the basis of the current standard cosmological model.
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There is compelling evidence for a rapid expanding phase, which has culminated in the recent
results of the BICEP and PLANCK collaborations [1–3]. The current standard model of the
Universe involves an inflation field, but current experimental results, meanwhile ruling out
many proposed models, seem not to exclude several other proposals alternative to inflation
[4]. Inflation has the advantage of the Occam’s razor, as it accounts for all the puzzles
involved with our current understanding of the Universe, such as its flatness and acceleration,
its entropy and the horizon problem in one shot.

However, an alternative and interesting proposal relies on the idea of cyclicality of the
Universe, a concept almost as old as General Relativity. Cosmological bounce models have a
long history, with its first proposal put forward by Tolman [5], and have been proposed in
several different contexts [6]. In particular, it has been shown that oscillating cosmological
Universes can provide a solution to both flatness and horizon problems, as long as maximum
of the expansion in each cycle is increased in the next cycle.

Quantum gravitational phenomena play a role only in the extremely early Universe. In
this scenario, quantum gravity is the force that makes the bounce occur. In fact, a big bounce
has been observed in several quantum gravitational cosmological theories, as for instance
loop quantum cosmology (LQC) [7–9], Epkyrotic strings [10–12], Asymptotically safe non-
local gravity [13] and in General Relativity with matter-torsion interaction [14] just to name
a few.

In the present paper, we ask ourselves whether such bouncing phenomena have some
physical, long-term effects at the quantum level. At the classical level, we find this unlikely to
occur. However, one could argue that considering the Universe conformal factor as an
external parameter, in a bouncing cosmology a Berry phase might emerge at the quantum
level. This is the scenario we are interested in: does a scalar field maintain a quantum memory
from previous bounces? We answer this question in the modest nonphysical scenario of a
scalar field in a bouncing cosmology, in which the scalar field does not lead to any back-
reaction on the underlying metric; yet, this toy model features many of the stylized char-
acteristics of bouncing cosmologies [15, 16]. The Berry phase has been already considered in
the cosmological setting, by for the case of inflationary models [17].

In general, the Berry phase is not a measurable quantity if the scalar field is isolated.
However, if the scalar field is entangled with other fields as considered for instance in [18],
then a Berry phase is measurable. To see this, let us consider a scalar field f, in the state f n,∣ ⟩
at the beginning of the nth cycle and let n be the propagator which maps  +n n 1∣ ⟩ ∣ ⟩. If
the scalar field’s state does not change from one cycle to the other, i.e.  f f= +n n, , 1n∣ ⟩ ∣ ⟩,
then the bounce produces no observable effects. However, even though the field is unchanged
after one cycle, its state can pick a geometric phase  f f= +an n, e , 1n

i∣ ⟩ ∣ ⟩ which in
principle can be measured as in interferometry. For instance, for the sake of argument, we
consider the simplest case of two scalar fields f and ξ which are in the entangled state
f r f x r f x= +n n n, , , , ,Universe 1 2∣ ⟩ ∣ ⟩ ∣ ˜ ˜ ⟩, although our argument can be extended to more
complicated cases. After a cycle, because of the Berry’s phase, the state is a different one
r f x r f x+ + +a an ne , , 1 e , , 11

i
2

i∣ ⟩ ∣ ˜ ˜ ⟩˜ . We argue that this phenomenon is poorly described
by analyzing, for instance, the particle content coefficients only, in particular if these are
calculated perturbatively and can vanish identically, and that a nonperturbative approach is
more appropriate for calculating these phases. We will describe how to define a simple
observable in section 4, and we will provide an exact formula for the operator n. We will
provide both explicit formulae for specific scale factor functions and provide general results
for smooth scale factors which are periodic.

The paper is organized as follows. In section 2 we introduce the scalar field in curved
spacetime, the settings and the notation, assuming that the Universe is cyclic. In section 3 we
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study particle production in the toy model we introduce, both in a Kronig–Penney approx-
imation and solving numerically the mode equation. In section 4 we study the Berry Phase.
Conclusions follow.

2. Scalar field in a cyclic toy Universe

We are interested in the quantum features of a scalar field in a Friedman–Robertson–Walker
space time defined by the metric

= - + +s t a t x y zd d d d d , 12 2 2 2 2 2( )( ) ( )

which describes an evolving isotropic flatspace with a dynamic scale factor a(t). In order to
simplify many of the calculations, we introduce the conformal time òh = ¢

¢

t t

a t

d

( )
coordinate. In

these coordinates, the metric reads:

h h= - + +s a x y zd d d d d , 22 2 2 2 2 2( ) [ ( )] ( )

where h hºa a t( ) ( ( )) is the scale factor in the new coordinate.
As a simplifying assumption, we consider a scale factor a(t) which oscillates according to

a local time and that >a t 0( ) as considered in many nonsingular bouncing cosmology
models [7, 10, 13], and that can be expanded in Fourier series. We assume that space is
locally flat, i.e. that the curvature of space is zero. In addition to this, we assume that the
expansion and contracting phases of the Universe last an equal amount of conformal time,
which is a scenario ruled out from the physical viewpoint.

In modeling the Universe with these features, we were inspired by the two major current
theories of bouncing cosmologies: the ekpyrotic scenario [10–12] and LQC [7–9, 19, 20].
Meanwhile the former has been affected with the recent results from the Planck collaboration
[1], the latter has shown to be a long-living toy model. In general, the ekpyrotic scenario relies
on an asymmetric expanding and contracting phases, differently from our case, meanwhile the
LQC approach is symmetric in its expanding and contracting phases. It has been argued
however that the ekpyrotic scenario suffers of singularities [21]. Although violating the
Tolman principle [5], one could claim that a bounce occurring in a quantum gravity scenario
might require an extension of the principles of thermodynamics, similarly to what happens for
black holes. Thus, in this respect, we are more interested in understanding some of the
features of a quantum field when the Universe is cyclical. This simple approach has the
advantage that one can carry on several calculations analytically.

The action for a scalar field on a curved background is

* *ò= - ¶ F¶ F - FFmn
m nS x g g V gd , 34 [ ( ) ] ( )

where we consider the curvature dependent potential x= +V g m R2( ) , being = h
h
R 6 a

a 3

( )
( )

for
the metric (2) The equations of motion for a scalar field of this form are given by:

-
¶ - ¶ F + F =m

mn
n

g
g g V g

1
0. 4( ) ( ) ( )

It is convenient to work with a field re-definition useful in the conformal time coordinates,
c hF =

p h
-
 

x e
a

k x1

2
i

3 2
( ) ( )

( ) ( )
· , in which the equations of motion for the scalar field are given

by: ⎡⎣ ⎤⎦w h c h+ =
h

0k
d

d
22

2 ( ) ( ) , with w h h x h= + + -k m a Rak
2 2 2 2 1

6
2( )( ) ( ) ( ). If one works
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with conformally coupled fields, x = 1 6, then the dependence of the curvature on the modes
disappears. Moreover, we assume space isotropy, so all the quantities only depend on =


k k∣ ∣.

The classical field can be quantized by introducing bosonic creation and annihilation
operators (  a a,

k kˆ ˆ† ) [22]: the expansion

*òh
p h

f h f hF = + -


  
 

x
k

a
a a,

d

2 2
e e , 5k x

k k
k x

k k

3

3 2
i iˆ ( )

( ) ( )
[ ( ) ˆ ( ) ˆ ] ( )· · †

defines the mode operators from the quantum field hF

x ,ˆ ( ) and the mode functions satisfy the

equation

⎡
⎣⎢

⎤
⎦⎥h

w h f h+ =
d

d
0. 6k k

2

2
2 ( ) ( ) ( )

Once the mode operators are determined, the vacuum state W∣ ⟩ can be defined as the
eigenstate of the annihilation operators with eigenvalue 0, i.e. W =a 0kˆ ∣ ⟩ . However, different
solutions of (6) define different mode operators and thus different vacua. The physical
vacuum hW 0∣ ( )⟩ at a certain conformal time h0 corresponds to the (instantaneous) lowest
energy state and it is given by the solution of (6) with initial conditions

f h
w h

f h w h f h= ¢ =
1

, i . 7k
k

k k k0
0

0 0 0( )
( )

( ) ( ) ( ) ( )

From now on we call f h h,k 0( ) the solution of (6) and (7). At another conformal time h1, since
the vacuum satisfies different initial conditions, the theory has a different particle content
described by new creation and annihilation operators  b b,k k

ˆ ˆ†
. The mode operators at akˆ and bk

ˆ
are related by the Bogoliubov transformation

*a b= +  b a a , 8k k k k k
ˆ ˆ ˆ ( )†

where ak and bk are independent on η and defined by

*
a

f h h f h h
=

W , , ,

2i
, 9k

k k1 0[ ( ) ( ) ]
( )

*b
f h h f h h

=
W , , ,

2i
, 10k

k k1 0[ ( ) ( )]
( )

being = ¶ - ¶h hW x y x y x y,[ ] ( ) ( ) the Wronskian. The new vacuum is related to the old one
via

⎛
⎝⎜

⎞
⎠⎟

*
h

a
b
a

hW = - W-
a a

1
exp

2
. 11

k k

k

k
k k1 1 2 0∣ ( )⟩

∣ ∣
ˆ ˆ ∣ ( )⟩ ( )† †

When h = Pn0 and h = + Pn 11 ( ) the above transformation defines the operator n which
maps the state of the nth cycle to the next one. In the following sections we study the vacuum
in a bouncing Universe, discussing the possible creation of particles and the occurrence of a
geometric phase after one or more periods.

3. Particle production

In a bouncing Universe the scale factor of the Universe oscillates. If one assumes a con-
formally coupled scalar field, the effect of gravity is included in the η-dependent frequency
w hk ( ) through the mass of the scalar field, which is periodic with a certain conformal period
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Π. As can be expected, in general the particle content at conformal times η and h + P is the
not the same. In this section we show that the low-energy vacua at different periods are not
the same in general, i.e. h hW + P ¹ W∣ ( )⟩ ∣ ( )⟩, even though the functions f h h,k 0( ) and
f h h + P,k 0( ) satisfies the same differential equation (6).

We consider the Universe in its ground state at conformal time h0. As discussed before,
an observer at a different conformal time h1 sees different particles which are related to the
original ones by the Bogoliubov transformation (8). For instance let us call a-particles the
particles created by the operators akˆ† at conformal time h0 and b-particles the ones created by

bk
ˆ†

at conformal time h1. The vacuum state at h1 is the one annihilated by bk
ˆ so, by definition,

the number of b-particles in hW 1∣ ( )⟩ is exactly zero. Nonetheless, hW 1∣ ( )⟩ contains many pairs
of a-particles and the average density of a-particles in hW 1∣ ( )⟩ is [22]:

b b
f w f

w
= = -

¢ -
n ,

i

2i
, 12k k k

k k k

k

2∣ ∣ ( )

where in the second equality we used (10). For instance, for sudden transitions between two
instantaneous vacua, the Bogoliubov coefficients are given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟a

w h
w h

w h
w h

= +
1

2
, 13k

k

k

k

k

1

0

0

1

( )
( )

( )
( )

( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟b

w h
w h

w h
w h

= -
1

2
. 14k

k

k

k

k

1

0

0

1

( )
( )

( )
( )

( )

Therefore if the Universe is cyclic and performs a sudden transition from h0 to h h= + P1 0 ,
then b = 0k so the particle content is not changed. On the other hand, when the Universe
evolves smoothly the Bogoliubov coefficients are obtained by means of (10) from the solution
of the differential equation (6).

The equation (6) is known in the literature as the Hill equation and has many interesting
properties [23]. In particular, because of Floquet theorem, all the solutions of (6) can be
written as

f h h h= +m h m h+ - - - -c f c fe e , 15k k k k k
i ik k( ) ( ) ( ) ( )

where the functions hfk ( ) are periodic, h h+ P = f fk k( ) ( ), and mk are called the Floquet
exponents. The coefficients ck describing the mode function are readily obtained by imposing
(7), whereas mk depends on wk and, in general, can be real, complex or integer. When mk is
complex the solutions are not stable, i.e. they diverge for h  ¥. We argue that this is not a
physical occurrence so we skip the discussion of this eventuality. More interestingly, when mk
is an integer (or a fraction) the solution (15) is periodic of period Π (or a multiple of Π). In
this case, not only the geometry, but also the quantum fields display a cyclic dynamics during
the evolution, so h hW + P = W∣ ( )⟩ ∣ ( )⟩. From the mathematical point of view, w hk ( ) can be
designed to allow for periodic solutions [24] for each value of k, but typically, for physical
conformal factors, the periodic solutions appear only for specific discrete values of the
parameters, e.g. for some specific values of k.

In general mk is a real number, making the solution equation (15), and thus the quantum
fields, an aperiodic function of η. When the vacuum state is not periodic the average density
of particles after T periods is evaluated from equations (12) and (15):
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m
w

P =
P
++ -n

T

g g

sin
, 16k

k

k k

2

2 2
( )

( )
∣ ∣

( )

m w
=

¢




  
g

f

f f

0

0 0 i 0
. 17k

k

k k k k

( )

[ ( )] ( ) ( )
( )

The Floquet exponent mk can be evaluated perturbatively using the techniques reported in
appendix 6 while the quantities g depend on the initial value. Therefore, Pnk ( ) is zero only
when mk is an integer or when = -g 0k

1( ) . We will discuss below these possibilities for some
particular cases.

3.1. Kronig–Penney approximation

The equation for the modes of a bouncing Universe are formally similar to those of Bloch
electrons in a spatially periodical lattice, where the space dimension is the conformal time.

Instead of


-E Vm2 ( ) for wk, we now have a relativistic energy given by h+k m a2 2 2( ) ,

with the periodicity encoded within ha ( ). One can thus use a similar approach to those of
used for tunneling of electrons from one lattice site to the other, or for calculating the bands of
a solid. In this section we will assume for simplicity a scale factor which oscillates as:

= +a t a b rtsin . 180( ) ( ) ( )
As r is merely a redefinition of time, we consider r = 1 hereon. We note that this toy model
requires > >a b 00 for a regular cosmology in which the scale factor never reaches zero. For

this model, we find that the conformal time òh = x
x

t

a

d

( )
is

⎛
⎝⎜

⎞
⎠⎟

h
p q p

=
-

+
- - -

-

p

-
+

-
t

a b

t

a b

2 tan 2
, 19

a b

a b
b t1

tan

0
2 2

2 2

0
2 2

t
0 2

0
2 2 ( )( )

( )
( )

( )

where · refers to the integer part, which is everywhere continuous and monotonic, allowing
for h t( ) to be inverted " t. From this we obtain a closed formula for h hºa a t( ) ( ( )) given by:

⎛

⎝
⎜⎜⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟⎟⎟h

h
=

X X -
+-a b

b

a
asin 2 tan

tan
201

1
2

0
0

( )
( ) ( )

with X = -a b0
2 2 . It is easy to show that the cyclicity of this Universe depends on the

parameters a0 and b, h h= + Pa a( ) ( ), with P = p

-a b

2

0
2 2

. From now on, we will

assume >a b0 .
In what follows, we will assume also that our potential can be approximated by step

functions. In particular, we would like to treat the effective potential w k( ) as a a two-valued
function, as in the Konig–Penney approximation for electrons on a Bloch lattice. In the
standard case of a scalar field in a potential with many local minima, as shown in [25, 26] the
field can move through tunnelings from one local minimum to another. In our case instead,
the interpretation is different, as the potential is now driven by an external factor, i.e. the
bounce of the Universe. This will allow to treat the modes close to the bouncing and con-
tracting phases of this toy Universe as a constant, and thus the local solution being a plane
waves. An example of this approximation is given in figure 1. We use a full width at half
maximum approach, i.e., the energy is approximated by w h= +k k m al

2 2 2
bounce( ) ( )) and
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w h= +k k m au
2 2 2

contr( ) ( ) in the low and high energy regimes, with hbounce being the local
bounce, meanwhile hcontr being the local time of the maximum expansion, and the time of the
switch at half maximum, h kinf ( ) and h ksup ( ) are defined by the two (locally in each cycle)
solutions of the equation for η:

w h w h w h= +
1

2
, 21k k kbounce contr( ) ( ( ) ( )) ( )

in which the smaller solution is hinf , and the larger given by hsup , denoting the transition from
the bounce to the maximum expansion and vice versa, respectively. We denote the nth
recurrence of the h kinf sup ( ) as h kn

inf ( ), as for a lattice.
For each mode k, we solve the contact equation at each transition point, from one bounce

to the other one, imposing the continuity and differentiability of the solution. If fk
n is the

solution within at the nth bounce, and f +
k
n 1 at the +n 1 th bounce, one can use a transfer

matrix approach for calculating the transition coefficients. If fk
n˜ is the wavefunction in the

contracting phase, one can write the contact equations between the various solutions at
hn

inf sup :

f h f h

f h f h

f h f h

f h f h

=

¶ = ¶

=

¶ = ¶

h h

h h

+

+

,

,

,

22

k
n n

k
n n

k
n n

k
n n

k
n n

k
n n

k
n n

k
n n

inf inf

inf inf

sup
1

sup

sup
1

sup

( ) ˜ ( )

( ) ˜ ( )
˜ ( ) ( )
˜ ( ) ( ) ( )

and if one expands the various terms in Fourier modes:

f h

f h

= +

= +

w h w h

w h w h

-

-

A B

C D

e e ,

e e 23
k
n

n
k

n
k

k
n

n
k

n
k

i i

i i

l l

u u

( )
˜ ( ) ( )

( ) ( )

( ) ( )

Figure 1. Kronig–Penney approximation of the energy w hk ( ) for = =k m 1. We plot
both the real and approximated versions of the effective potential.
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as a result of equation (22), one can write a matricial equation:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟=+

+

A
B

T
A
B

. 24n

n

n

n

1

1
( )

In general, the transfer matrix is a rotation due to Bloch theorem, =Tdet 1( ) , and in
particular each element is the wronskian between the two solutions:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

f f f f

f f f f
= = + +

+ +

T
T T
T T

W W

W W

, ,

, ,
. 25

n n n n

n n n n

11 12

21 22

1 1

1 1

[ ] [ ]

[ ] [ ]
( )

†

† † †

Thus, the element T12 represents 2i times the Bogoliubov coefficient which represents bk,
connecting the modes from one bounce to the next. Due to the symmetry of the problem, the
transfer matrix depends only on the mode k, once one has fixed the mass, and the shape of the
function ha2 ( ). From the physical point of view, we are calculating the tunneling of the
modes between one bounce to the other, i.e. from one ground state to the other in this
approximation.

The elements of the transfer matrix derived in the Kronig–Penney approximation of the
cosmological bounce. We define h h hD = -sup inf and h h h= +inf sup . The transfer matrix
elements are given by Tij, with  i j1 , 2. Thus we have:

w w
w w w h

w w w h
h h

w w

h h
w w

w h
h h

w w
w h

w w

w w

w w w h

= D

+ + D

=- =
-

-

=
-

D

µ
-

D

=

-
+

+
D

w h

w w h w h w h

w w h w h

w w h w w h

w h w h w h

w w h w h

- D

- +

- + +

- + + -

+ +

hD

T
k k

k k k

k k k

T T m
a a

k k

m
a a

k k

k

m
a a

k k
k

T
k k

k k

k k k

e

2
2 cos

i sin ,

i
2

e e e ,

i
2

e e sin

2
sin ,

1

4
e

e e e

4e
cos ,

k

l u
l u l

l u u

u l
k k k k

u l

k k k
u

u l
u

l u

k k k k

k k k

u l
k k k

u l u

11

i

2 2

12 21
2

2
contr

2
bounce

i 2i 2i

2
2

contr
2

bounce

i 2i

2
2

contr
2

bounce

22
i 2

i 2i 2i
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which one can verify to satisfy the condition of the transfer matrix: (i) =Tdet 1( ) , (ii) for
hD  0 or w wk kl u( ) ( ),  T T 111 22 , meanwhile T 012 . Since we are interested in

the off-diagonal elements of this matrix, we note that for m = 0, the Bogoliubov coefficient
goes to zero; in addition to this, it is proportional to the difference between the maximum and
minimum conformal factors, h h-a a2

bounce
2

contr( ) ( ). It is also clear, that the Bogoliubov
coefficient is proportional to w hDksin u( ( ) ), and thus the faster the Universe expands and
contracts, the fewer particles are produced.
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In figure 2 we plot the Bogoliubov coefficient between one bounce and the next in the
Kronig–Penney approximation for various values of k and m. As we will see, many of the
phenomenological features of this approximation are retained in the exact solution of the
differential equation with a smoother approximation of ha ( ), as for instance interference
patterns and particle production which goes to zero as  ¥k . We note, however, that in this
approximation the transfer matrix is independent from the bounce number n which we used to
diversify one bounce from the other. One can, in fact, interpret the Kronig–Penney approx-
imation as a two-way WKB approximation at the Bounce and at the point of maximum
expansion in which one has w h¶ =h 0k ( ) . As a last comment to conclude this section, we
note that due to the discontinuous approximation of the potential, several interference effects
which are spurious occur. This will be solved in the next section, by means of a smoother
approximation.

3.2. Mathieu fields

The Kronig–Penney approximation is a first, rough approach to calculating the Bogoliubov
coefficients. In this section we work on the analytical solution of the differential equation
which describes the evolution of the modes. Differently from the case discussed before, we
consider a simple smooth approximation of the conformal factor given by the function:

h h= +a a b cos 2 , 262
0( ) ( ) ( )

whose period is pP = . Within this approximation, the differential equation (6) is the well-
known Mathieu equation, whose solutions are given by (15) with the following analytical
expressions

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠h h= + -  + -m h f C a m k bm S a m k bme ,

1

2
, i ,

1

2
, , 27k

i
0

2 2 2
0

2 2 2k ( )

Figure 2. In this figure we plot b mk∣ ( )∣) as a function of m and k. We observe both
interference effects and thresholds related to the mass of the scalar field. These features
will be also present in the other approximations.
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where hC , ,(· · ) is the even Mathieu function, hS , ,(· · ) is the odd Mathieu function and, in this
case, mk the Mathieu exponent [27]. Mathieu functions have a long history of applications in
quantum mechanics (see e.g. Slater [28]) with important applications to the theory of optical
lattices [29, 30]. From (16) one finds that after T full oscillations the average number of quasi-
particles is

pm=
-

n
g

g
T

1

2
sin , 28k

k

k
k

2 2

( ) ( )

w=
+ -

¢ + -
g

C a m k bm

S a m k bm

, , 0

, , 0
0 . 29k k

0
2 2 1

2
2

0
2 2 1

2
2

( )
( ) ( ) ( )

For the present analysis we are interested only in the regions where μ is real but, for the sake
of completeness, it is worth mentioning that there are some zones in the parameter space

Figure 3. (top) Average number of particles n after a full oscillation (T = 1) in terms
of momentum k and mass k, given by equation (29). (bottom) Value of (k, m) such that
mk is integer. We used = = -a b2.0, 1.90 .
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where the Mathieu exponent can become complex and the solutions of equation (6) may grow
exponentially as  ¥T [31]. From figure 3(a) one can see that, for small values of k, the
energy gap w hD = hmin k ( ) is sufficiently small to allow for the creation of some particles.
Similar interference effects are found also using the Kronig–Penney approximation, although
emphasized due to the non-smooth approximation in of ha ( ). It is interesting to see that, for
fixed small k, there are some values of m where no particles are created. This can be explained
by noting that for some values of (k, m) the Mathieu exponent mk can be an integer number,
making nk = 0 in (29). The locus of points (k, m) where mk is integer is shown in figure 3
(bottom).

On the other hand, when a b m,0 we expect that the system remains in its ground state
during the evolution because of the large energy gap Δ which prevents the creation of
particles. In more mathematical terms, indeed we find that in this limit »g 1k making n 0k .

An interesting question is whether the number of particles remains finite after many
oscillations. Indeed, if the current lifetime of the Universe is much larger than the oscillation
time, then in our Universe we can expect to observe extra particles due to the oscillating
geometry. Calling òp= å =N n k k n4 dk k k

2 the total number of particles we find

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ò

p
=

-
+

¥
-N k

g

g
k T

2
d

1
, 30k

k0

2 2

2 1 2( ) ( )

where the  -T 1 2( ) correction is due to the stationary phase approximation and can be
neglected for T 1. In our numerical simulations N is finite for any reasonable value of a0
and b. Moreover, for large energy gaps, namely when a b m,0 we still find that »N 0,
showing that the particle content of the Universe is cyclic.

We have discussed some limits where not only the geometry but also the quantum fields
show a cyclic or almost cyclic evolution. In the next section we ask whether this peculiarity
shows some quantum features in the form of a non-zero geometric phase.

4. Berry’s phase

The Berry phase is a geometrical phase acquired by a quantum mechanical system during its
evolution. It was introduced in [32] for adiabatic evolutions and then promptly extended to
more general cases [33]. This geometrical phase is gauge-invariant and can be regarded as a
generalization of the Aharonov–Bohm phase, which on the other hand appears only in
specific cases when the fields are coupled to electromagnetic radiation. Aside from its fun-
damental implications, the Berry phase has been used also to gain further understanding of
complicated phenomena such as quantum phase transitions [34, 35] and the dynamics of
entanglement [37, 38], while its non-abelian generalization provides an alternative avenue for
quantum computation [39].

In a cyclic Universe one can interpret the occurrence of a Berry phase as a memory of the
quantum system on the previous cycle. From this perspective, we are indeed interested in
showing that for the case of cyclic cosmologies, such phases could occur to be non-zero. As a
matter of fact, assuming that the Universe is topologically equivalent to a sphere in which the
radius for the spectator scalar field represents an external forcing undergoing a loop in the
space of parameters. Thus, the conditions for the emergence of a non-trivial phase are present.
Moreover, we have previously discussed that, if a Universe is cyclic, the vacuum states can
display a periodic evolution or almost periodic evolution, depending on the geometry of the
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space–time. For cyclic evolutions, thus, a non-zero Berry phase can emerge in the ground
state.

The Berry phase fB for a state hW∣ ( )⟩ which undergoes a cyclic evolution of period Π is
given by [33]

òf h
h

h h= W
¶
¶

W
P

i d . 31B
0

⟨ ( )∣ ( )⟩ ( )

We specify to the case in which hW∣ ( )⟩ is the ground state of the Universe at conformal time
η, and we assume that the Universe was in its ground state at time h = 0. Exploiting the
relation (11) between ground states at different conformal times one can show that the Berry
connection is

⎛
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⎠⎟*å
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The above equation can be written in a more convenient form by defining the quantity

g
w

=
¢ +

v

v vi
, 34k

k

k k
( )

which satisfies the differential equation

g w g w g¢ = - - ¢1 2i i , 35k k k k k
2 ( )

with the initial condition g w= -0 2i 0k
1( ) [ ( )] . Indeed, by substituting (10) in (33) one finds

ò åf
w h

g h h=
¢P


R

2
d , 36

k

k
kB

0

( )
[ ( )] ( )

ò òp h w h g h= ¢
P ¥

Rk k2 d d . 37k k
0 0

2 ( ) [ ( )] ( )

Before evaluating the Berry phase for some relevant parameters, we study the depend-
ence on k of the integrand p w h g h= ¢ RI k2k k k

2 ( ) [ ( )]. When ¢k m m,eff eff it is w  kk ,

Figure 4. Integral ò fkd k and phases fk for different values of k as a function of η. The

conformal factor is given by equation (26) with =a 20 , b = 1, while m = 1.
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w¢  0k and hence I 0k . Therefore, one expects that the integral over k in equation (37) can
be performed up to a cut-off value kcut without introducing significant errors. In particular,
here we evaluate the Berry’s phase numerically by solving the coupled differential equation
f h h¢ = Ik k( ) ( ) and equation (35) for several values of Îk k0, cut[ ] and then using

òf f= P kd
k kB ( ) , where the latter integral is evaluated numerically. For instance, in figure 4,

we show that f  0k for k10, while on other hand the integral òf h f h= kd
k k( ) ( ) is non-

zero and increases for increasing η.
From the form of the Berry connection one can see that, if there is no particle creation

during the evolution of the Universe, i.e. b h = 0k ( ) for each value of η, then the Berry phase
is exactly zero. In a non-trivial cyclic evolution on the other hand, some particles are created
during the bounce, but then after one period the fields go back to their initial state. This
observation, that will be clarified in the following, motivates our interpretation of the Berry
phase as a memory of the dynamics of the Universe. However, as in equation (37) the
constraint about the periodicity of the initial state is not explicit, we start our analysis by
introducing the k-dependent Berry phase defined by

òf
w h

g h h=
¢P
Rk

2
d . 38k

kB
0

( )
( )

[ ( )] ( )

Indeed, in section 3.2 we have shown that, for a given cosmological factor, there are some
pairs (k, m) where there is no particle creation after a bounce. In other terms, particles are
created during the evolution of the Universe but after a cycle the ground state is exactly the
initial ground state. In particular, for the simple cosmological factor (26), we have shown that
the locus of points where P =n 0k ( ) define different curves (see figure 3) in the (k, m) space
where the Mathieu exponent μ takes integer values. We now evaluate the k-dependent Berry
phase along those curves and show that the Berry’s phase is non-zero even when the ground
state is perfectly periodic, thus signaling a non-trivial quantum evolution of the Universe. The
results are shown in figure 5. Moreover, we observe that f kB ( ) is larger for smaller values of k
where the corresponding mass in the curves figure 3 is smaller.

The results presented in figure 5 show a rigorous findings of a non-zero Berry phase
acquired after one cycle by some discrete set of modes for which ºn 0k . However, in the

Figure 5. k-dependent Berry’s phase f kB ( ) as a function of k, evaluated along the
curves in the (k, m) space shown in figure 3(down).
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Universe there are many modes and, as discussed in the section 3, in general the vacuum after
one period hW + P0∣ ( )⟩ is different from hW 0∣ ( )⟩. The closeness of these two vacua can be
evaluated with the fidelity

 h h a= W W + P =

= å b

-

- + -



e e , 39
k

k

N

0 0
2 1

log 1 2
k k

1
2

2

∣⟨ ( )∣ ( )⟩∣ ∣ ∣

( )( ∣ ∣ )

where òp b= å =N n k k4 dk k k
2 2∣ ∣ is the mean density of particles and where, in the last

equality, we assumed that b  1k
2∣ ∣ . We claim that, even when hW + P0∣ ( )⟩ is different from

hW 0∣ ( )⟩, and thus the evolution is not perfectly cyclic, if N 1 the two vacua are almost
indistinguishable (  1). In that limit we can thus consider the field evolution
approximately periodic and evaluate the Berry phase.

In section 3 we have shown that, as far as the conformal factor (26) is concerned, the
condition N 1 can be obtained when the gap Δ is large, i.e. when a b m,0 . In the inset
of figure 6 we show that this holds also for the more complicated geometry of equation (18).
Given that in these conditions the Universe is cyclic, in figure 6 we evaluate the resulting
Berry phase of equation (37) and we find that it is non-zero. A non-trivial Berry phase seems
thus a general occurrence in cyclic Universes. To motivate this further, we consider more
general scale factors with higher harmonics in the Fourier expansion (26), namely we set

h h h= º + åa =a a a a jcos 2n j
n

j
2

,
2

0 1( ) ˜ ( ) ( ) and we choose = åa a-
=

-a j kj k
n

1 so that the
dominant frequency is 2. As shown in figure 7, when h h= aa an,( ) ˜ ( ) the number of particles
increases with n, although N 1 especially for a = 2. In all the cases discussed so far, the
Berry phase is non-zero after a bounce so we argue that it is a generic feature of cyclic
Universes.

In order to show that the Berry phase heirs information of past evolution of the Universe
in this toy model, we consider the accumulated phase in the limit hk m a2 2 2 ( ). In this case
an analytical result can be obtained (see appendix 6 for a full derivation), showing that
wavelengths at which Berry’s phase is zero can be enumerated and given by:

Figure 6. Berry’s phase after one cycle fB as a function of the mass m. The oscillating
geometry is implemented by the factor factor (18). Inset shows the mean density of
particles in the state W P∣ ( )⟩.
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where ò h h=
p

P
E a d1

2 0

2 ( ) and Π is the length of a cycle measured in conformal time. These

wavelengths contain information on the life cycle of the Universe as equation (40) shows.
Measuring the Berry’s phase requires the introduction of extra degree’s of freedom

coupled with the field. To show this point, we use a simplified argument and we consider a
further term in the potential V(g) in (3) of the form m Sr

z2 , where S z is a spin-1/2 operator in
the z direction. Depending on the value of the spin along the z direction, this extra coupling
renormalizes the mass. Because, as we have shown, the Berry’s phase depends on the mass of
the field, after one cycle the state of the coupled system formed by the field and the spin is

⎜ ⎟⎛
⎝

⎞
⎠W =+ + W = -f f

+ -
+ -

S S
1

2
e

1

2
e

1

2
, 41z zi iB B∣ ⟩∣ ⟩ ∣ ⟩∣ ⟩ ( )

namely there is a different Berry’s phase depending on the state of the spin. The relative
Berry’s phase can then be measured, e.g., with Sx⟨ ⟩. Although simplified, our argument shows
that the Berry’s phase can have measurable effects when the field is coupled to other external
degrees of freedom.

Figure 7. Total number of particles N and Berry’s phase fB after the first cycle when
h h= aa an,( ) ˜ ( ) (see discussion in the text) for different values of n and

α. = =a m20, 30 .
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5. The case of LQC

In the preceding sections we have tried to keep the discussion as general as possible. In fact,
equation (40) applies to any scale factor which is periodic in conformal time. In this section,
we will calculate the Berry phase using the effective LQC equations for a closed Universe.
We start by introducing the standard Friedmann equations in a genericmatter-dominated
Universe for k = 1 in the dust approximation, in which P = 0 and r =t a t constant3( ) ( ) . The
first Friedmann equation becomes [40]:

⎜ ⎟
⎛
⎝

⎞
⎠

p r
= = -H

a

a

G

a a

8

3

1
, 42

2
0
3 2
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and if for simplicity we consider the case = p r
A

G8

3
0 , then it is a known fact that the scale

factor takes the form h h= -a A 1 cos( ) ( ( )). Inevitably, such equation describes a Universe
in which also a Big Bang is present, as dynamically the scale factor eventually becomes zero
at values of conformal time h p p p= ¼ n0, , 2 ,{ }.

These equations describe a Universe in which there is a maximum expansion (the Big
Crunch), followed by a recollapse. It is a widely accepted idea that during the recollapse
phase, when the linear size of the scale factor is of the order of the Planck length, Quantum
Gravity phenomena take place [19, 20]. LQC is one example in which a Bounce due to
quantum corrections occurs. After the bounce, a new expansion phase is recovered, and thus it
is possible to observe a cyclic dynamics of the scale factor. Thus, the machinery we have
developed can be applied to the case of LQC if considering purely semiclassical Friedmann
equations.

Here we consider the effective corrected equations derived in a recent paper [41], where
equation (42) is corrected by a term which contains a quantum gravitational term
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In general, equations of the type above strongly depend on the details of the quantization
procedure, but the phenomenology described is well captured by equation (43), which differs
in the exact values of rLQC. The effective model of equation (43) agrees with other
quantization procedures [42] up to higher orders in the quantization procedure, but differs
from well known results in the field [20]. Another important comment to be made here is that
the derivatives with respect to ‘time’, are now with respect to an external scalar field which
takes the role of a clock, which is a standard procedure in quantum gravity approaches
[19, 20]. Notwithstanding these important remarks and without going into the merit of the
quantization procedure, the dynamical interpretation of equation (43) is clear: at large scale
factor, matter forces the Universe to recollapse, meanwhile at scale factors comparable to the
Planck length, the quantum regime kicks in, forcing the Universe to re-expand. This beautiful
and appealing picture is the mechanism for which the singularity of the big bang is avoided,
and which we considered in this paper insofar in a stylized manner. In order to proceed with
our calculations, we need to recast the equation (43) into a form which is explicitly solvable
as a function of the conformal time η. It is easy to use the definition of conformal time, and
turn equation (43) into equation (44) below:
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for the case = =a A 10 . One can in general obtain periodic solutions to the scale factor, as in
figures 8 and 9. It is a general feature, usually discussed in the literature of LQC, that the
Universe remains surprisingly close to the classical trajectories predicted by equation (44)
also in the quantum regime. In this case, we can in fact use the semiclassical method
described in the body of this paper, and evaluate the Berry phase numerically after each cycle.

We stress that the Berry phase can be observed only if the dynamics of quantum wave
function of the scalar field is cyclic. This implies that depending on the parameters rLQC and
r0, we have to check whether the particle content of the Universe is negligible. In figure 8 we
plot from the top to the bottom, the scale factor, the particle content and the Berry phase
respectively obtained numerically for the case r r= 2LQC 0, i.e. when the density of the
Universe is smaller but comparable to the effective density due to LQC corrections. We
observe that the particle content h h" N, 1( ) due to the smooth Bounce. In this case, we
observe a non-zero Berry phase which implies that at the quantum level the scalar field carries
information from one Bounce to the other.

Figure 8. Conformal factor ha ( ), total number of particles hN ( ) and dynamical (Berry)
phase f hB ( ) for r r r= = = = =

p r
-m a G3, 0 25, 10 , 2,

aLQC
4

0 LQC
3

32 0 2
0

( )
( )

.
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In figure 9 we show the same plots obtained for the case r r= 100LQC 0, and thus in the
regime in which the Bounce is abrupt. In this case, we observe a high particle content, which
although invalidating the calculation of the Berry phase, implies that the scalar field carries
information through the Bounce in the form of particles. This picture might seem to differ
however from the results obtained in [20, 43, 44], where it has been shown that the dynamics
has effectively no memory from the previous process. As a first comment, it is worth to note
in [45] it has been discussed that although similar, the polymeric quantization differs from the
standard harmonic oscillator quantization used here. Moreover, our analysis relies on the
existence of a spectator scalar field which is quantized in a standard way, and is forced
(parametrically) by the dynamics of the scale factor. Thus it is not the Universe per se
carrying the phase, but the scalar field living on it.

Before concluding this section it is worth mentioning that, although in this paper we
focused on standard semi-classical methods, the rigorous origin of the Berry’s phase might be
further clarified with a full-quantum treatment, without any semiclassical approximation,
given that the Hilbert space structure is exactly known [46]. Specifically, it may be possible to
generalize recent techniques [38], where the transition between quantum to classical behavior
is explicitly discussed, to the case of loop quantum gravity.

6. Conclusions

In the present paper we have studied the quantum features of scalar field both in cyclic and
bouncing toy Universes, and in the case of LQC effective Friedman equations. Among the
many alternatives to the inflaton field, there are many approaches in which the Universe is
considered cyclic. Among these, we mentioned LQC and the Ekpyrotic String approach. Our
motivation was to understand whether a scalar field does hold memory of the previous
bounces in subsequent ones, thus changing the physics at each bounce. We studied the
particle content after many bounces in a general manner, and observed numerically that even

Figure 9. Conformal factor ha ( ) and total number of particles hN ( )
for r r r= = = = =

p r
-m a G3, 0 25, 10 , 100,

aLQC
4

0 LQC
3

32 0 2
0

( )
( )

.
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when the ground state is periodic, and hence there are no particles after one cycle, the
Universe keeps track of its history via a non-zero Berry phase. We argue that this is
potentially a physically relevant phenomenon if the scalar field is entangled, and have pro-
vided general arguments why such phases should be expected for more general, periodic
evolutions of the conformal factor of the Universe. As a result of our analysis, we have
observed within various approximations, as for instance the Kronig–Penney and the case of
Mathieus approximation, the presence of particles, and noted that in cases where the particle
content present at each new bounce is negligible, one can reliably observe the presence of a
Berry phase. In fact, after having introduced a differential equation describing the Berry’s
connection as function of time, we have obtained a numerical solution of the Berry’s phase,
showing that this is non-zero for our toy model, but providing a general framework, based on
the Fourier expansion of the energy of the scalar field, for calculating it perturbatively. We
have observed that when the ground state is cyclic, for a particular mode, one can observe a
non-zero Berry’s phase. In addition to this, we have observed that values for which the Berry
phase are zero, contain information on the L2 norm of the scale factor of the Universe over the
cycle. This gauge-invariant phase is of geometrical origin and provides a unified framework
to explain important observable phenomena like the Aharonov–Bohm effect. Being a mea-
surable quantity, a non-zero Berry’s phase can provide a figure of merit to demonstrate that
the Universe is cyclic. This phase becomes physically relevant if the scalar field is entangled
to another field which can be measured. In this case, after each bounce the physical state of
the system changes, and thus the physics changes as well.

In the first part of this paper, we worked initially within the framework of a toy model
and thus there are some further limitations to this approach. First of all, we have considered
modes which cross the bouncing phase without any new physics to intervene, as for instance
Quantum Gravity. The paper does not describe that phase, and treats the Universe as a
smoothly oscillating ball. Yet, we believe that this phenomenon is interesting per se from the
theoretical standpoint, as also for generic Fourier expansions of the scale factor a non-zero
Berry’s phase was observed. In the second part of this paper, we applied these ideas to the
case of LQC, where a description of the quantum phase of these oscillations is provided. Also,
an extra appeal of this approach for the present paper is that in LQC the quantum description
is very close to the classical one, and thus we do not require the use of a full quantum
gravitational approach. In the case of LQC, we find that for the case of a specific semiclassical
Friedman equations for which there are oscillations of the scale factor, one can observe two
specific regimes. In the first regime, in which the effective quantum density is comparable to
the density of the Universe at a=1, we observed numerically small particle content and non-
zero Berry phase. In the other regime, in which the quantum effective density is much higher
than the density of the Universe, one observes non-negligible particle content.

Our results are general enough to be considered in other cases in details. In fact, given the
standard quantization procedure of the scalar field, we have considered the case in which the
only requirement is that the scale factor has a Fourier expansion. We studied some specific
cases, but used known relations for the Hill equation, which underlies the evolution of the
modes of the scalar field. In addition to the remarks above, nothing prevents this same
analysis to be repeated in the case of particles with spin other than zero, which are far more
common than scalar particles. As a final remark, we stress that there are other ways in which a
Berry’s phase could be originated for non-cyclic cosmologies. This is the case, for instance, if
the scalar field undergoes a quantum phase transition in the early Universe [34, 36, 47] and as
shown in [17] for inflationary models as well.
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Appendix. General considerations and Floquet’s theorem

The differential equation in equation (6),

f w h f + = 0, A1k ( ) ( )

is called Hill’s equation when w hk ( ) is periodic, and has interesting properties [23] which can
be tackled analytically. In particular, according to Floquet’s theorem, such equation has a pair
of solutions which can be written in the form:
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where α is called characteristic exponent and where p are functions which have the same
periodicity of wk. If α is not an integer, then one has that
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In particular, if wk is an even function with period Pk , one can expand it in Fourier series:
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gnʼs are the expansion factors, and θ is a factor which we assume can be considered small. Let
us rescale the conformal time such that P = 1k , and rescale w k0, , w w w = Pk k k k0, 0, 0,˜ and
q q= Pk

2˜ . In this case, then, there is a closed formula for estimating α:
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For our case of interest, where w h h= +k m ak
2 2 2( ) ( ) , we need to relate the coefficients gn

to wk. Assuming the periodicity of a2, one has h = å h
=
¥

P
a b rcos 2 ;r r

2
0 ( )( ) we now rescale

 Pk and  Pm m , one has that the Fourier coefficients gn introduced above but for the
periodicity fixed to be equal to π, the coefficients are given by:
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Let us now consider the two limits: hk m a2 2 ( ) and hk m a2 2 ( ). In the former case, one
can expand the square root, obtaining the following formula for gn:
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Now the last delta contributes only if = = =n i j 0, and thus:
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so, if we define h= hk m amax 2 2˜ ( ), we have:
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easy to see that for certain values of g0ʼs, α is ill-defined. These are all the values of k for
which g0 takes an integer value n; an easy calculation shows that these values are given by
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Of these phases, we disregard -kn as this violates the condition we started from. Thus, these
phases contain information on the whole evolution of the Universe’s scale factor ha2 ( ), and
are those values for which the Floquet’s theory fails and the phase α becomes an integer
number.
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