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Abstract. We present an analytical approach for describing spectrally
constrained maximum entropy ensembles of finitely connected regular loopy
graphs, valid in the regime of weak loop-loop interactions. We derive an expression
for the leading two orders of the expected eigenvalue spectrum, through the use of
infinitely many replica indices taking imaginary values. We apply the method to
models in which the spectral constraint reduces to a soft constraint on the number
of triangles, which exhibit ‘shattering’ transitions to phases with extensively many
disconnected cliques, to models with controlled numbers of triangles and squares,
and to models where the spectral constraint reduces to a count of the number of
adjacency matrix eigenvalues in a given interval. Our predictions are supported by
MCMC simulations based on edge swaps with nontrivial acceptance probabilities.
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1. Introduction

A huge amount of scientific work has been devoted in recent decades to the study
of random graphs, motivated partly by their interesting mathematical properties [1]
and partly because of their frequent and fruitful use in the modelling of complex
systems [2]. The most famous random graph ensembles are probably the Erdos-Renyi
model (ER) [3-5] and the configuration model (CM) [6]. These are popular because
models of interacting systems defined on their typical graph instances can often be
solved analytically, and because sampling graphs from these ensembles is easy. Both
properties derive mainly from the fact that ER and CM graphs are typically locally
tree like, which enables the application of many relatively simple mathematical and
numerical approaches. In fact, nearly all mathematical and computational techniques
currently available for analysing processes on large graphs (cavity methods, belief
propagation and other message passing algorithms, generating functional analysis,
conventional replica methods, etc) rely explicitly or implicitly on being able to neglect
the presence of short loops, or on being able to treat such loops as perturbations of a
fundamentally tree-like architecture.

Ironically, their built-in locally tree like topology makes both ER and CM
ensembles, and their numerous tree-like variations such as scale-free network models,
also rather unsuitable as models for real networks. Simplicity comes at a nontrivial
cost. Real networks are usually not tree like, but have many short loops, i.e. closed
non backtracking paths [7]. Moreover, their significant ‘loopiness’ cannot be ignored,
since it has profound functional implications} . Hence there is a clear need for simple
loopy graph ensembles, and for new mathematical tools with which to analyse them.

1 For instance, extensive loopiness is the main topological difference between the trivially solved
ferromagnets on Bethe lattices or on random regular graphs with degree six, and the as yet unsolved
three-dimensional Ising model.
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Studying random graphs is also important in the area of null models for real
observed networks. Null models of networks are unbiased random graph ensembles
describing graphs that share with the networks the values of a given set of observables,
i.e. maximum entropy ensembles [8, 9] subject to specific topological constraints. The
constraints can be imposed as ‘soft’ conditions, where observables are matched on
average, or as ‘hard’ conditions, where observables are matched by every graph in the
ensemble. Realistic null models for graphs must be sparse and loopy. The simplest
approach would be to control the number of edges and the number of triangles via
soft constraints, leading to e.g. exponential ensemble of [10]. Unfortunately, upon
varying the control parameters this ensemble was found to switch between very weak
clustering and dominance by dense graphs [11-13]. See also [14]. The alternative is to
impose both the number of single edges and of edges in a triangle around a node via
hard constraints [15], but these graphs do not lend themselves as easily to tractable
solutions, see e.g. [16-18].

In the present paper we focus only maximum entropy ensembles of g-regular
graphs, with soft-constrained adjacency matrix eigenvalue spectra to introduce
‘loopiness’. We use the imaginary replica approach to obtain analytical results on
the dependence of the spectrum on the functional Lagrange parameter, following [19],
and we build on recent studies such as [20-25]. The functional nature of the constraint
in our ensemble allows us to bias the number of eigenvalues in all infinitesimal
intervals simultaneously, while recovering the average spectral density through a simple
functional derivative. We compute analytically in leading two orders in the system
size the expected spectrum, a calculation found to take its most natural form using
Chebyshev polynomials, and is valid in the regime where the loops are still sufficiently
rare to prevent loop-loop interactions from becoming relevant. The simplest nontrivial
members of our family of spectrally constrained maximum entropy ensembles are
those where the spectral constraint reduces to a constraint on the expected number of
triangles (equivalently, on the average clustering coefficient), with a single Lagrange
parameter . We show that these models always exhibit transitions into a phase where
the graphs shatter into an extensive number of disconnected cliques of ¢ + 1 nodes,
analogous to the condensation transition in the model in [10]. We are able to present
a description of the ensemble for all values of « for large enough N. We also show
how our general theory can be applied to compute spectra for other ensembles with
more complicated Lagrange parameters.

Our paper is organised as follows. In section 2 we give the relevant definitions
of our spectrally constrained ensembles. Section 3 is devoted to the derivation of the
generating function for the adjacency matrix spectrum. The theory is then applied
in section 4, first to existing models (recovering known results as a test), followed by
applications to other loopy graph ensembles. Technical details are often delegated to
Appendices, to improve the flow of the paper. We end with a discussion of the results
obtained, and an outlook on future work.

2. Definitions

We study ensembles of simple nondirected N-node regular graphs with degree ¢q. Each
graph is defined by its symmetric N x N adjacency matrix A, with entries A;; =1
if nodes i and j are connected, and A;; = 0 otherwise (A;; = 0 for all 7). A path of
length ¢ on a graph is a sequence of ¢ + 1 pairwise connected nodes. A closed path
starts and ends in the same node. Loops are closed paths without repetition of nodes,
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except for the first and the last node. The formula for the total number of closed
paths of a given length in a graph A is, apart from a simple overcounting factor,

Tr(A%) = # of closed paths of length £. (1)

It follows from the relation Tr(A*) = N [du o(u|A)u’. that controlling the numbers of
closed paths of all lengths ¢ in random graphs is equivalent to controlling the moments
of the spectral density o(u|A) of A,

N
ollA) = >~ 30— (A)). @)

where p;(A) is the i-th eigenvalue of A.

In exponential spectrally constrained ensembles [19], the graph probabilities p(A)
on the set G of simple nondirected N-node graphs are determined by maximising
the Shannon entropy S[p| = > A o P(A)logp(A), subject to prescribed values of
all degrees and a prescribed expectation value of the spectral density. For g-regular
random graphs this gives

oN [du d(me(ula) N

Ay ST TS 3
p( ) Z[Q] £[1 @205 Aij ( )
N
208 = Z oV Jdu a(p)e(ulA) H5q S A (4)
AcG i=1 J

Here 9(u) is a functional Lagrange multiplier. By construction, (3) defines the most
unbiased ensemble of ¢g-regular nondirected graphs with a prescribed adjacency matrix
spectrum. We write averages over (3) as (f(A)) = D aceP(A)f(A). The expected
eigenvalue density o(p) = (o(u|A)) can be obtained from a generating function ¢[g]:

59[0]
o(u) 5201)’
Our main interest is in finding an analytical expression for the expected density o(u)
in terms of the functional Lagrange parameter g(u).
For the simple choice g(u) = au® we recover from (3) the model of [26], in which
the number of loops of length three (i.e. of triangles) is constrained:

¢[o] = N~ log Z[2]. ()

eocTr(AS) N a Tr(A) N
p(A) = W HCSq,Z]. Aij> Z(a) = Z € U 5q,zj Ay (6)

=1 AcG =1
The number of triangles na(A) differs from the trace only by an overcounting
factor, viz. na(A) = LTr(A%). The generating function associated with (6) is
#(a) = N7tlog Z(a). From m(a) = d¢(a)/da = N~1(Tr(A3)) follows the average
clustering coefficient (C(A)) = m(«)/q(qg—1). For ¢ = 2 one can compute ¢(«) using
standard combinatorics [26], for both & = O (N°) and a = O (log N). For arbitrary ¢,
the expected loop density m(«) always vanishes for N — oo if a = O (1). As in [26],
one could rescale o with a factor log N. While this could give an asymptotic theory
with finite loop densities, we will find that it would not be a useful network model for

applications.
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3. Evaluation of the generating function

3.1. Imaginary replica approach

We note that all g-regular graphs of size N have identical probabilities in an Erdds-
Renyi (ER) ensemble with average degree g,

Ng N N
g\ = (N —qg\z(N-1-0q) ]
rer(A) = (£) 7 () forall A€G with [[d,50, 4, =1 (7)
i=1
Hence we can rewrite (5) as an average over this ER ensemble:
1 N
Al N fdp o A
olo] = ¥ log <e Jdu o(we(ulA) lj[l(;qzj A”>ER + constant. (8)

Upon using the Edwards-Jones formula [27] for o(u|A), writing the integral over
eigenvalues as f dp... = limAHOAEH ..., and after some modest manipulations,
the key quantity in this expression can be written as follows, with infinitely many
imaginary replicas (two for each eigenvaluepu, n,, and m,,):

N Jdw owe(nlA) — Jiym  lim lim Hz | A Z (A (9)

A=0n,—i2 6/ (p) Mu——Np

Here p. = p + ie and

Z(1.1A) = /Hdwexp[——Zw b)) (10)

One initially takes n,,, m, € N, in order to perform the calculation, followed by analytic
continuation to the relevant imaginary values. In its above form, (9) appeared first in
[19, 28], but similar formulae involving limits of replica dimensions to non-zero values
have been introduced in different contexts, in particular when counting the number of
eigenvalues in certain intervals for random matrix ensembles, see e.g. [20-25,29]. We
can combine the integrals in (9) as follows:

[T 20ul &) ZGTAT™ = [dl@, wexp (= 5 3 37 6k, b, (A —135))

H M0 1

X exp (% Z Zd}zhﬁudjiﬁu (Alj— EKS”)), (11)

B tj

where d[®, ¥]=T~, I, [( H%_ldqﬁiﬁ%) (IT5/1d¥}, 5,)]- To simplify our notation
we introduce the vector ¢ € R%, where d = > M+, my, with entries

o= (i) .

the dot product
2= buanBa, = D Uunsts, (13)

0y Hvﬁu
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and the following dx d diagonal matrix g, in which u € {u1,...,un} and I, denotes
the n dimensional identity matrix:

,ulslnul 0 NN 0
0 0
0 I, 0
p= HMedn, . (14)
0 il O
0 0
0 ... 0 7marln,,

Here M denotes the number of u-values in the discretized eigenvalue integral, so
M — oo when we take the limit A — 0. We finally introduce the two shorthands
1.
v = 2P HP lim = lim lim lim . 15

(#) A=0n, =120 (k) Me =~ (15)
The above definitions, together with the integral form of the Kronecker delta,
6nm = (2m) 71 [T _dw expliw(n —m)], enable us to compute the generating function (8)
following [19], which in turn is reminiscent of previous spectral calculations for sparse
random graphs [30,31]. Upon dropping the irrelevant constant in (8) we get

o) = hm—log/H dcp v(p Qi 1‘“1‘1}< -3, Aijlete +wl+wj]>

ER
= hm—log/H de" v( i “‘“q}ezw@ log[ +%(°7i[¢iw”wi+wﬂfl)].(16)

Since we intend to compute finite size spectrum fluctuations, in expanding the
logarithm for large N we keep both the O (N) and O (1) terms in the exponent:

o8] = (”W + lim — log/H dpi (') S0 giwia— e ’”"’1""”2“”} (17)

. k3 J 1
X exp { Ze_‘["’ ol Fwitw;] —= Ze_2‘["’ ® +“i+“’f]} + O0(3)-

N = N

We now introduce the order parameter
1 & .
Pp,w) = NZ5(80—801)5(<«1—%) (18)
i=1

We enforce it by inserting the following functional integral, obtained by writing delta
functions for each (¢, w) in integral representation, and with the usual path integral

measure DP =[], [[,[dP(¢, w)\/NAA, /27)] (where Ay, Ay, — 0):
1= /@p@fa oNi [dedwP(p,w) P(e.w)—i [dedwP(p.w) 2, 8(9—@")s(w—wi) (19)
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The result is:

. o1 5 NS[P,P 1
¢lo] = lim N log /'DP'DP eVSIPPT 4 (’)(m), (20)
: 40,972\ . :

SIPP) = - S0+ 2) +i [dpds Plo,w)Ple,w)

+ g(l“L%)/d‘Pdcpdwdw’ P(p,w)P(p ,w)etere miwmie
2 . I o s
- 4q_N dpdepdwdw’ P(p,w)P(@,w')e 2ie e —2iv—2iw (21)
9 —ip-p—2iw dwde iwg—iP(p,w)
5N dedw P(p,w)e + log/ o v(p)e .

It was shown in [31] how this type of integral can be reduced to an integral over a
single functional variable. In Appendix A we work out the details, leading to

olo] = lim{log/dcp V(cp)[/dsO’ Ul(‘vaol)Wo(Sol)}q‘*‘ % 3 Tr(;I‘f)}, (22)
=3

in which U (¢, ') = e ¢"and the function Wy () is to be solved from

Wote) = "2 [ tr(op ()] (23)
z, = [devte)] [ae tie. o Wale)], (24)
and
T(e,¢') = (a-DrWal@)|Ua(e. ') — aWole) [ a6 Uil )Wo(),  (25)
rtmale)l = 2 [ae vt Wite)] (26)
Finally, following [32] we may use the following identity§:
Te(T*) = (¢—1)"[Te (M) ~1] + (= 1)° (27)
with M (e, ") = r[Wo(e)]Ui (e, ¢’), to simplify (22) modulo an additive constant to
o o 1\E
#[3] = lim { log Z, + ; (q2 N1€) Tr(MY) } (28)

Expression (28) was originally presented in [31], and we have indeed chosen our
notation at the start deliberately to emphasize and exploit the similarity. However,
although identical in structure, the present formula (28) differs from the one in [31] in
the underlying definitions of the fields ¢, the dot product ¢- ¢’ and the function v(¢p),
which here all involve the full eigenvalue spectrum and describe our present controlled
non-uniform measures over the space of graphs.

§ The proof of this interesting identify follows directly from the operator properties MB = BM =
B? = 1I, where M (¢, ¢") = r[Wo(@)]U1(p, ¢’) and B(p,¢') = Wo(p) [dyp Ui(e’, 1) Wo ().
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3.2. Replica symmetric solution

In order to continue, we assume that the order parameter Wy(¢) is replica symmetric
(RS), i.e. invariant under all permutations of all replicas (noting that in the present
problem we have a separate replica index for each eigenvalue u, and that Wy (¢) is not
a normalized distribution). We write Wy () as a superposition of zero mean complex
Gaussian distributions:

1 1
Wolp) =C [dX W(X —rieXe 29
1) = € [ dX W (X) s e X, (29)
. 21 N3/ 2m \ 5
Z(X) = /dcp eTzieXe — (—) (—) ) 30
) 1;[ iz(p)/  \iz(p) (30)
where X € R?* is a diagonal matrix with the following structure:
(1)L, O e 0
0 0
0 I, 0
X = () L, (31)
0 T (MI)IWLH1 0
0 . 0
0 0 z(um)lm,,,

Expression (30) is indeed invariant under all permutations of replica indices with any
fixed value of y, that is {¢u1,...,¢un,} and {Yu1,..., Yy m,}. The new RS order
parameter is the distribution W (X)), where each X is specified by M complex numbers
x(p). Hence the integration in (13) is over the real and imaginary part of each z(u),
so dX = [], dRe[z(p)]dIm[z(n)]. For (29) to be well defined, we must restrict all
z(p) to have Im z(p) < 0. We may assume that [dX W(X) = 1, since possible
non-normalization of Wy is reflected in the inclusion in (30) of a constant C.

We note that for the present definition (13) of the dot product, the following
identity is still valid.

/dgo' el —3ie" Xe' _ zix)ezieX e, (32)

Insertion of our RS ansatz (30) into the full order parameter equation (23) shows,
using the above identity, that the RS ansatz indeed gives a solution of (23), provided
the RS order parameter satisfies

woo =52 [ ([Tonvons) sGeen-Exct). o

Z, _/dX(kf[lkaW(Xk)) Z(X)a(X+u+zq:x,;l), (34)

k=1
C2 = q—1 /Zq . (35)

We similarly derive Z, = C?Z,, giving in combination with (35):

1 1
log Z, = gqlog Zqo1 — 5(q—2) log Z,. (36)
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The above RS order parameter equations (33,34) have one specific simple solution,
namely the delta distribution W (X) = §(X — X*), in which the entries of X* satisfy

* q— 1

= —u, — ) 37
Of the two possible solutions of this equation we must choose the one with Im z(p) < 0:

1 1
t(p) = —gpe = 5ivAg—1) - p?. (38)

For this special RS solution we have

C 1 *
_ —5ip-X"p

WO(SD) Z(X*)e 2 ) (39)
Z,o1 =Z(X¥), (40)
z, = /dX Z(X) 5(X+u+q(X*)_1), (41)

— Z(X— (X)),

and hence also C? = Z(X*)/Z(X*— (X*)71). The kernel M which appears in the
generating function (28) will now have the following entries:

M(p, ') = Zqill e3ie [ut(g=2)(X*) e—ip@’ (42)
In Appendix B we work out the traces Tr(M?) for the RS solution, and find
zall |Z (el A7) ZeTAT,)™ (43)

Where Z(pu-|A7 ) denotes the orlgmal complex Gaussian integral defined in (10), and
A7, is now the £ x { adjacency matrix of a loop of length £ in the presence of a complex
field acting on the diagonal, of value (2—¢q)/z*(u):

2— .
(Azﬂ)kk, Ok k1 + Ok or—1 + —— ) 6kk/ (with k mod ¢).  (44)

Substituting (36) and (44) into expression (28) for the generating function, folowed
by using formulae (40,42) for the constants Z,_; and Z,, then gives

9l6] = lim { Sqlog Z(X*) — 1(4-2)log Z(X* ~ (X*) )

[e’e] Y .
+;(q2N1£) Ze(lx*ﬂ;[[Z(MEIAZH)”“Z(MAZ#) “”,(45)

3.8. Imaginary replica limits

At this stage we can safely take the three limits defined in (15), where first for each
discretized eigenvalue p of the adjacency matrix the replica dimensions n, and m,
take specific imaginary values, followed by the limit A — 0 that converts discretized
eigenvalues of adjacency matrices into continuous ones. The objects in (45) affected
by these limits are all of the following form, with §'(u) = do(p)/du:

lim Hf )™ f () "= lim lim lim  e>» [ 108 £ Go)Fmu 105 7

A—=0 p ﬁi%@/(u) My —>—"n,

— o2 Jdu o(w) g Imlog f () (46)
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In particular, application to f(u) = [27/iz*(1)]2 and to f(u) = Z(p|A7 ) gives
1 d
limlog Z(X*) = — — /du o(p)—Imlogz* () (47)
T du
and

m{H (helA7 )" Z(neTAT,) " | = o7 T 20 ditmios ZeAL0) - (45)

This gives us

= /du (u 27rd Im[(q—Q) log (UC*(N)_ ) —qlogx*(u)}}

1
x* ()
L1 Z q 1) ok Jdu o) & tm [Clog 2 (1) +2108 Z(ue|A7 )] (49)

Since d¢[0]/60(u) = (o (M|A)>, the first line of (49) is the generator of the asymptotic
spectrum in the limit N — oo, whereas the second line will give us the O(N 1) finite
size corrections to the spectrum. In Appendix C we show that, upon taking the limit
e — 0, the factor inside the curly brackets in the first line indeed works out to be
exactly the Kesten-McKay law (KM) [33, 34] for random regular graphs:

q VAg—1) —p?

This shows that, for regular graphs, the deformation of the measure in the ensemble
(6) does not alter the resulting spectrum in leading order, but in sub-leading order
O(N~1). In regular graphs, the Lagrange parameter o(u) apparently needs to be
rescaled further with N to induce a spectrum that in leading order differs from (50),
similar to what was found in [26].

Having simplified the first line of (49) to [du o(p)oo (1), we now work out further
the exponent in the second line of (49). First, in Appendix C we show that

10 (2va—1— |pl)
LRVZICES VT

We can evaluate the second term in the exponent using the eigenvalues A\, =
2 cos(2mk/{) of the adjacency matrix A;; = 0; j+1 + d; j—1 (mod ¢) of a length-¢ loop,

and the identity dz*(u)/dp = —ix*(u)//4(g—1)— p:

2 d .
g¢(p) = lim Elm{ a log Z(/L5|Al,u)}

oo0(p) =

) = = - -Imloga” (1) = (51)

1 ) 1—(2—q)%( a* ()~
:é_ﬂ'glm{ A+ =4 }

k=1 G M
1 1+it 2 4(g—1)—p? "3
- é—Im{ Z i — } (52)
7 =1 2cos(2mk/0)— 51

With the above simplifications we can write both the leading two orders in NV of the
generating function ¢[g] and of the resulting average spectrum o(u) = d¢[9]/00(p) for
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our ensemble (3), for Lagrange parameters g(u) = O(1), in the following transparent
form, which represents one of the main results of this paper:

oo 1\ X

018 = [ dtien) + gy 32 UG oS IO o0, )

o) = o0(1) + 55 D (a—1)"e! F 2o g, (1) —h(u)] 4 o(5.).  (54)
(=3

The sum over £ need not always be convergent, but this has been shown not to
necessarily pose problems [31,32,35]. The coefficient (¢—1)¢/2¢ in ¢[g] is exactly
the asymptotic expected number of loops of finite length ¢ inside a random regular
graph [36]. It is amazing that this can be recovered with a replica calculation, and
gives an intuitive interpretation of the series in (54): £[g¢(p)—h(p)] is the correction
to the Kersten-McKay spectrum formula due to the appearance of a loop of length /¢,
as discussed in [31,32]. In our present ensemble (3), the number of loops of a given
length are given by the usual number found in random regular graphs, multiplied
by a factor that depends on the spectral Lagrange parameter g(u). Given that the
effect of the loops is additive in (54), we must expect that these spectral corrections
come from isolated and well separated loops in the graph. We wish to point out that,
while a cavity approach could account for the presence of loops, it would not be able
to provide information on their average number in an ensemble such as (3). The
imaginary replica approach presented here, in contrast, has simultaneously provided
for the ensemble (3) both the spectrum formula and the expected number of loops.

3.4. Remaining integrals over eigenvalues

In our present theory we have an as yet arbitrary functional Lagrange parameter 9(u)
which controls the dependence of the graph probabilities on their expected spectra.
In (54) we still have integrals over g(u), of the form:

Tild) = / A 8()lge(i) —h(y0)- (55)

While expressions (51,52) for h(p) and ge(p) will turn out useful in establishing links
with previous research in a subsequent section, here we will continue the further
evaluation of J;[g] using the earlier forms

) = = = -Imloga” (). (56)
¢
ge(p) = — %%% ;Im log [i(cos(ka/f)—i—j*zj) —u)] (57)
These give
¢
gile) = ~1m [an o) Y % [10s (cos(zwk/m% 1) ~loga* ()]
k=1
2t 1 2—¢q -1
= Im/du Q(M)K_w ; o log [17*(#) (cos(27rk/€)+x*—(m—u)} . (58)
We now use z* (1) + z* (1) " = —p — (¢—2)/2* (1), which follows directly from (37):

4 _1
Jelo] = Im /du o) = 3 4 g (1+C°Sﬁ$/€) + (x*(lm)Q) *. (59)
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In this expression we recognize the generating function of the Chebyshev polynomials
T, (t) [37]. These are defined for ¢t € [—1, 1], and can be written in explicit form as

T.(t) = Re (t—l—i\/l—t?)n. (60)

They obey the orthogonality relation

2 /_1 s Tu(OT(0) = G (1 + 6100) (61)
as well as
T, (cos(0)) = cos(nd), To(—t) = (=1)"Tu(¢). (62)
The first five Chebyshev polynomials are [3 ]
To(t) = 1, Ti(t) = To(t) = 2t% — 1,
Ts(t) = 4t3 — 3t,  Ty(t) = 8t* — 82 + 1. (63)

For the evaluation of (59), in particular, we may apply the generating function identity

1

ZT =log(1—2tz+2%) % for |z| <1 (64)

to the choices x = 1/:10 (u) and t = — cos(27rk/€) in order to obtain

— 1 [du o0 ZZ (cos(2mk/0)) ﬂ( ()

klnl

B o Tn(cos(2mk/0)) d
= Im/du o ;nz:l HWdﬂx (1) (65)

We next use dz*(p)/dp = —ix*(u)/+/4(g—1)— p? and the short-hands

4
.y = % > To(cos(2rk/0))

=
:% l cos(2mnk /) = " Gn pe (66)
This results in - <
Ji[g) = Tm / du é(u)%i( 1" (xfl&f))n =
- g<—1>”dn,e ~ [ slnRe [ 4@_11)_ ]
= g(—l)"dn,e %/du |I*@((:))|2nRe[ 4@71_”2] (67)

If u? < 4(g—1) one has |2*(u)|? = ¢—1 and \/4(g—1)—p? € [0,00). For u? > 4(qg—1),
on the other hand, we have 2*(u) € IR and /4(¢—1)—p? is purely imaginary. We
also note that for p? < 4(g—1) we may write

Re (" (2t/a—1) ) (4=1)"/2 Re( - t+i\/@)”

= (=1)"(g=1)"? T (). (68)
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In combination these properties allow us to simplify Z;[g] to
g = 3 e 2 /W ' dp o(wRe[z* (1))
(@=1)" 7 ) ayg=t  A(g—1)—p2

= Z (qd”ﬁ [1 1di = 0(2t\/q—1)T, (t)

1 2 (oA
= ;W ;/;lﬁ 0(2t\/q—1)Tpe(t). (69)

The above result shows that the Chebyshev polynomials form the natural basis in
terms of which to express the functional Lagrange parameter §(u), and is inserted
into our spectrum formula (54) to give

n=1

8

I « ; 1
o(p) = o0o(p) + N > (g—1) e gy ()~ h()] + O(N)' (70)
(=3
It is instructive to work out J;[g] for £ > 3 and some simple choices of §():
o () = p’
This choice corresponds to random regular graphs in which the number of triangles
is controlled. We use t* = 1T5(t) + 2T3(t) and the orthogonality relation (61):

oo

el = 3 o 5 2 [ o+ 0] T

O3,p0 + 301,p0 =
22 =T =28 0 = 203 (71)
p=1

o o(p) = pt:

This choice corresponds to random regular graphs in which the number of squares
is controlled. We use t* = 1Ty(t) + 1Ta(t) + §To( ) and the orthogonality (61):

oo

Tild) = Zm / S [Tilt) + 273(0) + 3T (0] (1)
0a,pe + 202 pe + 300,p¢
_221 8 (g—1)( zz))f 4)/2 - _22164,17@:25@4' (72)
p= p=

4. Applications of the general theory

4.1. Recovering previous results as a test

Upon making the trivial choice g(1) = 0 we return to the conventional ensembles
with uniform probabilities, and our equations (53,54) recover the natural spectrum
fluctuations of random regular graphs, as previously studied in detail in [38] and with
the traditional replica method (where n — 0) in [31]:

o(1) = oo(p) + N o1 (p) +o(N7H) (73)

:Z(q—

£=3

with

) —h(p)]- (74)
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This series was summed in [31], and we can connect the result of the summation, in
the notation of [31], directly to the theory developed in the present paper as follows:
(a—1)ge(r) (a—1)g2(n) ]
01(p) = h(p) Re [ +
(1) = A 1=(g=1)ge(n) ~ 1=(g—1)g2(n)

- 0 925 (1)
+ k(i) Re ;(q—l) %—K(gc(#))] ; (75)
in which now
ge(p) = —1/x*(p), (76)
K(9) = (¢—1)g + qlg—1)g* + (¢—1)*g™. (77)

Here h(u) and z*(p) are given in (51) and (38), respectively.

As a second test we can make the special choices ¢ = 2 and 9(u) = ap?, resulting
in the ensemble that was studied in [26] via direct combinatorics, i.e. without the
replica method. This particular model represents the simplest solvable non-uniform
random graph ensemble with tuneability of the frequency of short loops. First, by
setting ¢ = 2 our general results (51,52,54) simplify greatly. We now find that

ooy = 221D ) = o) (78)

™ ‘/4—'u2 ’

‘ ‘
1 1 1 2rk
9e() 151%1 I m{ 1; 2cos(2ﬂ'k:/£)—u—ia} 14 ;6[M 2 cos( 14 ) (79)

Upon inserting also g(p) = au® into (54) we need the values of

[ anti) =0 (80)

¢
8 27k
3 _ 3 _
/du wge(n) = 5 g:lcos (=) = 20¢3 + 8001 (81)
With this the ensemble spectrum becomes

0o 14
1 1 onk 1 16(2—|u|) 1
ol10) = 00(1) + 55 S {13 6 fu—2eos2T0)] - ZTEHY Lo L) (s2)
R E Y E. IR T | RE
and for the triangle density m(a) = [du o(u)u® we obtain
m(a) = N~ tet (83)

These results are indeed identical to those derived combinatorially in [26].

4.2. Triangularly constrained regular graph ensemble with arbitrary degree

We proceed to apply the general theory developed in the previous section to the graph
ensemble (6) with controlled numbers of triangles, i.e. with g(u) = au3, but now for
arbitrary values of the degree ¢ where the direct combinatorial approach of [26] is no
longer possible. We can start directly by inserting (71) into (70), upon adding the
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Figure 1. Average spectral densities for g-regular graphs sampled from (6). We
show the rescaled finite size deviations from the standard Kersten-McKay formula
00(p), by plotting do(u) = Nle(n) — eo(p)] = e1(u) + 21(k). Left panel: ¢ = 3,
N = 1000 and o = 0.416, giving average clustering coefficient (C(A)) = 0.016.
Right figure: ¢ = 5, N = 2000 and o = 0.431, giving average clustering coefficient
(C(A)) = 0.02. Each marker shows the average spectral density contribution
obtained from 200 histograms of samples of (6), generated with an appropriate
MCMC process, and error bars indicate &+ one standard deviation. The dotted line
shows the theoretical prediction (84,86), and circles show the density prediction
computed for exactly the eigenvalue bins that were also used for the histograms
of the simulation samples.

control parameter «, giving

o(n) = oo(p) + % > (g—1) 5% gy(p) —h(p)] + 0(%)
{=3
= ool1) + 1) + 31 (4) + 0l 5, (34)
01(k) = 5(a= 1" ~1)lgs () ~h(p)]. (%)

Here p;1(u) is the function (74) that already appeared in the spectrum of the non-
deformed ensembles of [31], and for which we can use the resummation (75). The
impact of controlling the graph probabilities (6) with a nonzero Lagrange parameter
o(p) = ap? is fully concentrated in gy (u). We next insert our earlier expressions for
ge(p) and h(p) into (85) and simplify the result where possible:

21(0) = S 00 1) g2 /g1 Ju

2w
3 . qg—2 21— 1
" {ImFZH'lmq*—(#)[‘l(q—l)—H] 2} B 1 }
—2
3= 2COS(27T]€/3)—IQ*(M)—/L 4(g—1)—p?
:(q—1)3(em_l)@[?x/q—l—lul] q—2[ 29+ p Lt }_1
2m Aqg-1)—p2 | 3 Ll?=3(g—D)+pg+p® q—p

(86)

The results of testing this prediction against numerical simulations are shown in Figure
1, and reveal excellent agreement. In the simulations we sampled numerically from
(6) with an edge swap based Markov Chain Monte Carlo algorithm (MCMC) with
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nontrivial acceptance probabilities. Edge swaps are accepted or rejected depending
on the change in the number of loops and on the change in the possible number
of possible swaps. This corrects for entropic effects, see e.g. [39] or [9]. Since we
work with a system of finite size N, our predictions refer to the average eigenvalue
density, not to the density of individual graph instances. The error bars in Figure 1 are
computed following 10 different initialization seeds of the MCMC algorithm, consisting
of distinct regular graphs sampled uniformly with a configuration model algorithm.
Following each initialization, 20 samples were taken, separated in algorrithmic time
by ~ 10% accepted MCMC swaps per link in the graph.

We can also calculate the expected triangle density m(a) = [du o(u)p® for the
ensemble (6). It is easier to do this by integrating over (70) rather than via (84,86),
although both routes give the same result:

1
2N
(=3

o0

m(a)

(g= 1ot i) [ ap 1)~ ()] + of )

RS £ 25050l 1
—ﬁ;(q—l)e ‘s 25@3+0(N)

1 3 6 1

= N(q 1)°e +0(N).
This formula gives very accurate results for a values up to a certain point, defined as
a1(N) in the next section. This can be seen very clearly in figures 2 and 4, where we
test its predictions for ensembles (6) with ¢ = 3. Since m(«) represents an ensemble
average, we compare (87) against the average loop density over multiple graphs drawn
from the ensemble, m(a) = M1 Z%:l Tr(A32)). Figures 2 and 4 show averages and
standard deviations of the estimator m(«), for 50 different small samples sampled
during MCMC simulations, separated in algorithmic time by ~ 10® swaps per link (in
order to ensure independence of the M samples).

We have developed a theory that quantifies the O (1/N) effects on the eigenvalue
spectrum of probability deformations in ensembles of the general family (3), in which
loops can be induced via the functional Lagrange parameter g(u), and we applied
our results to a specific member (6) of this family. As mentioned before, the theory
implicitly assumes that loops inside the graph are far away from each other. As
the control parameter « in (6) is increased for fixed system size N, we must therefore
expect the behaviour of the ensemble to start deviating from the predictions (84,86,87)
as soon as the loops start to interact. This can indeed be seen in figure 2. As
« increases the clustering coefficient starts deviating from (87), which is shown as
a dashed line. Mathematically, one can explain the deviations from (87) as the
emergence of higher order corrections to the saddle point approximation, O (N~7)
with v > 1, that were not incorporated into the replica calculation. These would
account for the presence of loops that are not isolated from each other. The accuracy
of (84,86) and (87) suggests that calculating higher order corrections in the replica
calculation would improve our predictions, but this would require of course a much
more complicated calculation. In the next section we will explore what happens as we
keep increasing « beyond the validity of our replica calculation.

(87)
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al(N) OéQ(N)

Figure 2. Plot of the clustering coefficient C(A) versus «. Squares show
results from MCMC sampling with N = 1000 (average plus/minus one standard
deviation). Solid line: predicted values computed from the theory (87), via
(C(A)) = m(a)/q(g—1). We also show separately the two distinct contributions
to the theoretical prediction, viz. (C(A))r (those from disconnected triangles,
dashed line) and (C'(A))x (those from triangles in cliques, dotted dashed line).
Typical graph examples generated within each o regime are shown in Figure 3.

4.3. Phases of the ensemble and the shattering transition

We will now give a qualitative picture of the behaviour of the ensemble (6) for all
values of a € [0, 00). We will focus on g > 3, since the case ¢ = 2 was already covered
in [26]. In MCMC simulations one observes three distinct regimes, which are not
phases in a rigorous thermodynamic sense, but size dependent ranges of v values that
exhibit qualitatively different phenomenology:

o Small a: connected phase
The triangle promoting probability bias in the ensemble introduces isolated loops
embedded in the giant component. Here the analysis of the previous section
should apply, as is confirmed in figures 2 and 4 for different values of ¢. Indeed
one observes only small deviations from (87), as one approaches the next phase.

o Intermediate a: partially connected phase
Edges can now be part of more than one triangle, and the graphs contain an
increasing number of cliques of ¢ +1 nodes, denoted by K,yi;. The triangle
density and hence the clustering coeflicient grow considerably faster than in the
previous phase, increasingly so for larger degrees g.

e Large a: disconnected phase
Here the graphs break down completely into large collections of those cliques

that had started to appear in the previous phase. The resulting configurations
correspond to ¢ regular graphs with the maximum possible number of triangles.
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connected phase partially connected phase
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0 a1(N) az(N)

shattering transition

Figure 3. Three typical 3-regular graphs, of size N = 1000, sampled numerically
via MCMC from the canonical ensemble (6). The value of the tuning parameter
« increases from left to right, and each graph shown is generated from one of the
three distinct phases defined in Figure 2.

In analogy with physics, we call these ground states.

We label the transition points between the phases a3 (IN) and aa(N), see figure 2.
Both a1 (N) and aa(N) grow logarithmically with N. We refer to the transition from
connected to partially connected as the shattering transition to highlight its topological
nature. In figure 3 we show typical graphs sampled via MCMC in the three phases.

In order to complement the previous distinctions with quantitative estimates,
we will next give an alternative derivation of (87) that incorporates higher order
effects. We can always write averages over (6) in terms of averages over random
regular graphs (RRG), described by the ensemble po(A) = N, ' [T,c v 0q,5>, A;; With
uniform probabilities. We will write average over the unbiased random regular graph
ensemble po(A) as (...)rrc. In particular,

N
¢(CY) _ N—l ].Og( Z eaTr(AS) H6q>zj Aij)
=1

AcG
= N"'log <e°‘Tr(A3)>RRG + N7t log N, (88)

We can therefore use some of the rigorous results from random graph theory [40]
established for unbiased ensembles. For instance, a standard result on RRGs [36]
concerns the asymptotic distribution of isolated triangles:

) 1
pN(A) = <5A7A(A)>RRG m POISS(A,/\), A= g(q—l)g, (89)

in which A(A) is the number of isolated triangles in graph A. To understand the
shattering transition, we also need to know the statistics of cliques K,y; in RRGs.
We do this by splitting the triangle count in two contributions, one from the isolated
triangles inside the giant component and the other from the triangles in the cliques
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Figure 4. In this figure we show the agreement between the clustering coefficients
predicted by (94), with lines, and the values measured MCMC simulations
(markers, showing average plus/minus one standard deviation) with N = 1000.
Full details on the number of samples generated and their separation in MCMC
edge swaps are given in the main text. These results confirm that (94) captures
the essence of the phenomenology of the ensemble.

Kg4+1. We denote the numbers of each type by T(A) and K(A) respectively.|| Thus
Tr(A%) = 6T(A) + (q+1)q(q—1) K (A). (90)

We now assume that also K (A) follows a Poisson distribution, and that for large N
the joint distribution of T" and K factorizes asymptotically. This assumption is to be
confirmed a posteriori in MCMC simulations. Now

PN (T, K) = (0r,7(A)0k, K (A) ) grg ~ Poiss(T; Ar)Poiss(K, Ak ). (91)

Here A\r = %(q—1)3, and we can obtain the parameter A for the Poisson distribution
for the cliques K441 from [41]. Details are given in Appendix D. Upon approximating
N!/(N—gq—1)! = N9! we obtain

1 (ghe*!

AR = Va2 3@t (g 1 )1 (92)
We can now proceed with the evaluation of (88):
1
o(a) = N [log Z Poiss(T, A7 )e%* 4 log Z Poiss(K, )\K)eo‘q(qul)
T>0 K>0
+ log/\fq}

1

_ N [)\Teﬁa + /\Keaq(qul) — A — Ak + 10qu]. (93)

|| We hereby disregard as insufficiently relevant those triangles that are neither isolated, nor in cliques.
This step, which is motivated by what is observed in the MCMC simulations, will be validated a
posteriori by the accuracy of the resulting prediction.
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From this directly follows m(«) = d¢(a)/da:

1 (7
() = (= 1% +

1 @)™ e

N1+3(@=2)(g+1) q%(4+1)(q_2)! - (99)

The first term coincides with formula (87) from the previous section. The second
term in (94) represents the impact of cliques, and, according to figure 4, accounts for
most of the deviations from (87). In spite of our approximation of only accounting for
isolated loops and isolated cliques, the resulting description is seen to give very good
agreement with simulations for the whole range of « values.

As one might expect, the MCMC sampling algorithm slows down as it approaches
the ground state. While we will not carry out a detailed dynamical analysis, we
will mention the MCMC process slows down considerably precisely in the partially
connected phase. To obtain good (i.e. sufficiently independent) samples even close
to the ground state, we increased the number of accepted swaps per link in between
samples beyond a; (V) to values in the range of 10* — 10° accepted swaps per link. We
also increased considerably the waiting time before the first sample to ~ 10® accepted
swaps per link, to allow the system to escape from possible metastable states.

Expression (94) has a clear interpretation: the expected number of subgraphs
of the types T and K are boosted independently when increasing «, each with
an exponential factor in accordance with the model (6). This already provides an
explanation for the phases described previously. If we denote by mr(a) and mg(a)
the first and second term of (94), then we can describe the phases in terms of the
relation between these two terms.

o Small a: connected phase

Here we have my(a) > mg (a). Even though cliques K441 may be present, their
probability is too small to be relevant.

o Intermediate a: partially connected phase
Here m g («) becomes significant. We may define the onset a1 (V) of the partially
connected phase to be the point where mg () = nmyp(«) for some finite n € (0, 1).
Here we chose n = 1/10, which was found appropriate in the ranges ¢ < 6 and
N < 2000. The shattering transition point is then given by

a1 (N) = %7(11(](;222(1(1)4;16) log N

+

1
q9(¢*—1)-6
e Large a: disconnected phase

Here the contribution from mp (a) dominates, and the whole graph is made of
disconnected cliques. The critical value as(/N) marking the start of this phase
is defined by the instance where m(az(N)) = g(¢—1), i.e. where the maximum
possible density of loops is achieved. We can replace m(az(N)) by mg (az(N))
since the contribution from disconnected triangles is now very small, giving
1(g—2)(¢g+1)+2 log(q)  log(q!)

Even though mg(a) in (94) has a higher power of 1/N compared to mg(«), the

prefactor of a for mg («) is higher in the exponential, viz. (¢+1)g(¢—2) > 6 for ¢ > 3.
This means that for any N, the clique contribution mg(a) will always grow faster

(96)
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Figure 5. The upper bound Cmax on the tuneable level of clustering within the
giant component, for graphs from the ensemble (6), plotted against the graph size
N. This is shown for different degrees of the regular random graphs. Values for
clustering above the lines cannot be achieved in the connected phase, but would
require the formation of isolated cliques.

with o than mr(a), which implies it will always surpass it for large enough a. We do
not claim that graphs will only be made either of isolated loops in a giant component,
but only that knowing the behaviour of the two quantities my(«) and mg (a) appears
sufficient to understand the overall behaviour of the loopy ensemble (6).

Let us briefly discuss the potential practical utility of (6) in light of the previous
results. Our ensemble is the maximally unbiased random graph ensemble over regular
graphs that satisfies the condition of having a particular clustering coefficient C'. In
order to achieve one’s desired value of C' it is only necessary to find the appropriate
a(C) by solving C = C(«a) = m(a)/q(g—1) using (94). However, if one’s interest
is in using (6) as a null model for real networks with link clustering, the presence of
cliques is undesirable. If we aim to generate graphs with a single component and a
nontrivial number of loops, we need to stay in the connected phase. Moreover, in this
phase we have a very accurate control of m(«) and the spectral density through (84).
We conclude that (6) can be a useful null model when C € (0,C(a1(N))). In that
clustering range we can simply take

a(C) = %1og (NgC/(q—1)?). (97)

While the shattering transition occurs at o = «3(N), the finite size nature of
the problem makes it possible that some cliques appear already somewhat earlier.
However, it is clear from Figure 2 that an upper bound to the level of clustering
achievable without cliques is given by Chax = Cr(aa(N)), the contribution to
clustering from disconnected triangles at the transition point to the disconnected
phase. Values C' > Ciyax are impossible to achieve in the ensemble (6) without
triangles appearing outside the giant component, and additional constraints would
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Figure 6. Average spectral densities for more complicated spectrally constrained
g-regular graph ensembles. As before we show the rescaled finite size deviations
from the Kersten-MacKay law do(u) = N[o(n) — 0o(p)]. Left: results for the
ensemble (101), with ¢ = 3, N = 2000, and o« = 8 = 0.2. Right: results for
the ensemble (103), with ¢ = 3, N = 1000, and a = 0.5. Markers show the
average density computed from from histograms of samples obtained via MCMC
simulations. The dotted line shows the theoretical predictions, circles show the
density prediction for the exact bins as those used for the histograms of the
numerical samples. See the main text for further details.

have to be introduced into the model to prevent the formation of isolated cliques.
This dependence on N of the hard upper bound, shown also in Figure 5, is somewhat
unexpected. In particular,
lim Chpax = lim Cr(az(N)) = 0. (98)
N—o0 N—o0
Hence for very large sizes, N > 1, even very small clustering coefficients are not
accessible in the connected regime. This can be understood intuitively as an entropic
effect. For fixed value of C(«) and large enough N, there are simply many more graphs
that achieve C(A) = C(«) through cliques than graphs that achieve it through loops
embedded in the giant component.

4.4. Other ensembles

So far we have focused specifically on the ensemble (6) as the simplest nontrivial
instance of the more general family (5), suitable for testing limits and for developing
further our intuition for the phenomenology of ‘loopy’ random graph ensembles.
However, we have the more general results (69,70), applicable to any functional
Lagrange parameter g[u], with the key integral expressed as an expansion in Chebyshev
polynomials. We will now turn to other choices for g[u].

Our first choice is g[u] = ap® + Bu?, which generalizes the ensemble (6) in that
we now control the number of closed paths of both length 3 and length 4:

e Tr(A%)+8Tr(AY) NV

ra) =g s (99)
’ i=1
3 4 N

Z(a,f) = Y e TADVTADTTS, o 4 (100)

AcG =1
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The calculations for this ensemble (99) are very similar to those carried out for (6),
which allows us to be brief. We have already computed the relevant integrals in
(71,72), and we can therefore immediately proceed to the spectral density:

ooy
o(k) = oo(p) + %@1 () + > ((127]\]1) (66“53”5”m‘;“”Z —1) [9¢(p2) = h(p)] + 0(%)
=3
= 00(1) + s ) + L (e 1)y ) ()
14
LD 5 gy ) ()] + o), (101)

in which the functions g¢(u) and h(u) are given in (56,57). A comparisons of the
predicted spectrum (101) with measurents in MCMC simulations, for N = 2000 and
a = [ = 0.2, is shown in the left panel of Figure 6. The MCMC algorithm used
was similar to the one described before, but now they also require monitoring the
evolution of Tr(A%) (in addition to Tr(A3)), as both appear in the move acceptance
probabilities. In each run 100 samples were generated from each initial seed, after a
burn-in (waiting time) of ~ 103 swaps per link. Error bars give the standard deviation
corresponding to fluctuations between 10 different initial seeds, so that a total of 1000
graphs were averaged. As in the previous case, we recover the results from [26] when
setting ¢ = 2. As one would expect, (101) is only valid in the vicinity of (o, 8) = (0, 0),
to avoid the emergence of extensively many small fully connected g-regular bipartite
graphlets, which maximize the number of 4—loops around a node.

Our second alternative choice for g[u] is the following block function, which
introduces a bias in the graph probabilities depending on the number of eigenvalues
inside the interval [—1, 1]:

o) = o (1  [u). (102)
Now we have N [dup é(p)e(pu|A) = oZ(Al[-1,1]), where Z(A|[-1,1]) denotes the
number of eigenvalues of A inside the interval [—1,1]. In contrast to powers
of p, understanding intuitively the topological effects of the choice (102) is not
straightforward, notwithstanding the clear nontrivial effect on the observed spectrum.
In this case we have Jp[9] = o [du 0[1—|pu|][ge(p)—h(pe)] # 0 for all £, so we introduce
a (sufficiently large) cutoff L in the summation of (70). Since |J¢[9]] < 1 we set this
integral to zero for £ > L, as was done previously in [32], leaving the truncation

o) = polh) + 51 (4)

L
—1 £ 1 _
+ E:'(QQN)‘ [ Fatn b= [, () — ()], (103)
=3

in which the integrals can be worked out in more explicit form, as we did for the
previous cases. In figure 6 (right panel) we compare the prediction (103) with
results from numerical MCMC samples, and observe a good agreement. We point
out that generating graph samples from the spectrally constrained ensemble (5,
102) numerically is considerably more computationally expensive than the for the
previous models. Here, instead of the number of triangles or squares, the number of
eigenvalues inside the interval [—1, 1] has to be monitored. This requires that the full
set of eigenvalues of the graph A has to be calculated after each edge swap, which
necessitated parallel execution in multi-core computers, to reduce CPU time to a few
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weeks. We seen in Figure 6 that the deviations from gg(u) are quite small, nevertheless
they are nontrivial and are predicted accurately. To measure spectra at this level of
detail, we averaged over 10 graphs, separated during the MCMC process by ~ 1
swaps per link. Error bars are obtained by splitting this data set in groups of 10.

The above results are similar in form to the ones derived for weighted graphs in
[25], the main difference is that in [25] a second set of replicas with the traditional
limit n — 0 is introduced to get the spectrum. It is interesting to see that with the
functional formalism (5) both the observable [du 9(p)o(p) and the spectrum o(u)
itself are calculated at the same time.

5. Discussion

In this paper we have extended and applied an analytic approach for describing
constrained maximum entropy ensembles of finitely connected random loopy graphs
of large but finite size. We focused on regular random graphs with soft constrained
adjacency matrix eigenvalue spectra. We were able to develop a general theory
describing the O (1/N) contributions to the expected eigenvalue spectrum, through
the use of an infinite number of replica indices taking values in the imaginary axis
[19], and building on techniques from earlier studies such as [25,30-32].

The simplest nontrivial spectrally constrained ensembles are those in which the
spectral constraint reduces to a soft constraint on the number of triangles. We
quantified the behaviour of such systems, which following [26] we have come to regard
as the ‘harmonic oscillators’ of loopy graph ensembles, and showed how they allow
for fine tuning of their average clustering coefficients. A limitation on their use as
null models for regular graphs with nontrivial clustering is that there is a maximum
achievable clustering coeflicient, whose value depends on the size of the graph, beyond
which the ensemble undergoes a transition into a new phase, where high clustering
levels are achieved by the graph fracturing into extensively many disconnected cliques.
We presented a precise analytic estimate for an upper bound on the maximum
clustering coefficient that is achievable without fracturing of the graph. We also
showed how the general theory applies to other spectrally constrained ensembles, such
as those where both the number of triangles and the number of squares are controlled,
and to ensembles where the spectral constraint reduces to a count of the number of
adjacency matrix eigenvalues in a given interval. We carried out numerical simulations
via MCMC processes based on edge swaps with nontrivial acceptance probabilities,
which are themselves generally nontrivial in view of the need to recompute eigenvalue
spectra after each accepted move. In comparing triangle counts and spectra, we found
excellent agreement between the theoretical predictions and the MCMC measurements
in all cases, provided we remain in the parameter regime where higher orders in N of
the generating function are not yet important.

The most natural generalization of the presently studied family of models would
be to extend the imaginary replica approach to sparse graphs with an arbitrary
degree distribution p(k). Preliminary numerical simulations show that these non-
regular graph ensembles behave in a very similar way to what has been observed
for regular graphs. In addition it would be interesting to explore further the
possibility of controlling short loops in finitely connected graphs without this being
realized microscopically by such graphs fracturing into extensively many disconnected
graphlets, even at high loop densities. This would seem to require more complicated
choices of the functional Lagrange parameter g(p) than the ones studied so far,
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possibly including choices that scale differently with N. Both these directions for
further research are now being explored by the authors.
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Appendix A. The functional integral

Appendiz A.1. Transformation to Fourier components

In this Appendix we simplify expression (20,21) for our generating function ¢[5]. We
first introduce a number of definitions to compactify our formulae:

eilw 2 .
Plpw) = S Wde) o Wile) = [ do Plpw)e ™, (A1)
LEL 02
Plpw) = S Wiple ™, Wie)= [ 52 Plowd™  (a2)
LEL 0

We then write S[P, P] strictly in terms of the Fourier transforms {We(e), We(e)},
noting that w € [—m, w]. The result is

S[P, P] = S[Wl,Wl,Wg,Wg] +So[{Wg,Wg}], (A?))
where, using the notation r = {r, >0, £ € Z},
Slwelwl =i > [de Wite)Wite)
0¢{1,2}
_iW Te
+10g [ (@)Y b, [T 0 ()
r tez ¢
. . 2 . .
S[Wi, Wi, Wa, Ws| = — g(l-i-qz—N) +1/dso[W1(<P)W1(<P)+W2(<P)W2(90)
— L [ dp Wa(p)e e + g(Hi)/dsodso Wi (@)W (' )e ¢
2N ) 2 N
B zlq_N/dS"dso Wa(@)Wa(p')e 2e¢", (A.5)

The integration in (20) can be replaced by integration over the functional Fourier
components, since (apart from an irrelevant multiplicative constant) the Jacobian of
this coordinate transformation is unitary. We define DW = [[_[dW (¢)\/NA, /2],

and the functional delta distribution 6[W] =[], [6(W (¢))\/27/NA], where §(z) is
the ordinary delta distribution, so that for any smooth F[W] we will have:

/ DW FIWISIW] = Fl0,  8[W] = / DV eNJde WoW () (A)
and the generating function can be written as, modulo an irrelevant additive constant:

$[0) = lim % log / [ H DW@'DW@} N SWL W1, Wo Wal i NSo[{We. Wel] (A7)
LET

With (A.6), integration over the Fourier components with £ = 1,2 has become trivial:

/ [T [DWeDIW,] eNSoliWeWal] — N i fae Wel@)We(e)

0¢{1,2} B )
></ H [DWe 6[W4H exp (N log/dgo v(p) Z 505 e H M)

T[!
£¢{1,2} (€7
= exp (iNZ / de Wi()We(ep)
=1 1 —2r —i 1 T
+ Vo /dgo oo Y VAN iy g

_ | |
0o (g —2r)! rl
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Hence (20) can be written as follows:

dlo) = — _(1+W) + lim — 1og /@W1®W2 exp {N(51 [Wl] + SQ[WQ]
_1 q—2r —i 1 r
© Niafoorin X O Y

0<r<gq/2

with the following two functionals Sy o[WW]:
o 1 o
S1[W] = N log /@W exp iN/dgo W(p)W ()
q
+2(v+0) [dede W@)ilp. @)W (e)  (110)

So[1V] = < log [ DW exp ( 1N/dsow )W ()~ /dsovv(so)vw:)

- 14 /d<pd<p W(p)Us (e, <p’)W(so’)), (A.11)

where we used the short-hands U, (¢, ¢’) = exp(—ing - ¢’) and V(p) = Ui (g, ).

Appendiz A.2. Gaussian functional integrals

Both S;[W] and S3[W] involve complex Gaussian functional integrals, of the following
form, with d = dim(¢) and A, — 0 in the functional integration limit:

JIU, Q] = /@W e~ 3 Jdede” W(@)U(e,@ YW(e)+[de W(e)Q(e)

/ H 0 BAL T W)U (e )W (@) HA, 5, W(9)Q)
\/27T/NA
d/2 1 1A2E (A2U)—1( ’ ’
=(— 0385 2 (8% P )QP)Q(¥") A12
(Aw) vV DetU ( )

U is the matrix of discretized values U(ep, ¢’). The entries of the inverse functional
kernel U~ (¢, ¢’), defined by the condition §(p—¢’) = [de” U (¢, ") U(@", ¢'),
are U™ (p,¢") = (AZU) "' (¢, ¢'). Hence the following identities hold:

N d/2 1 1 / -1 / ’
JU, = (= o3 Jdede' Q@)U (#,¢")Q(e )7 A.13
vl (A@) VDetU (4.13)
JUL Q] = (NA,)Y? V/DetU o3/ dede’ Q(e)U(e,0)Q(#") (A.14)
We can now work out (A.10) and (A.11), and find
eNSUV] — J[—g(N +q)Uy,iNW]

:( N )d/2 1 i dede’ W)U (0.0 )W (e) (A.15)
_q(N + Q)ASO \/m ,

; 1 -1
eNS2W] — J[§q2U2,iNW—§qV]

:( 2N )‘”2 L 5 aede/ INW (@) +5iV(@)IU; ! (0.0 ) INW ()4 51V (¢")]
A,/ /DetUy !

(A.16)
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For (A.9) this implies:
R q—2 2N \d/2 1
= — —(14+—=) + 1 1
¢[0] ( +55) + lmN og(q%w) Seio,

o / DIV, o a2/ dede/ INWa(@)+ iV (@)1 (.0 ) INWa(e') + 41V ()

DI, NI

X exp {Nlog/dgo V(QD) Z [_1W1(80)]q*27“ [_IWQ(SO)]T } (A17)

o<rea/2 (g —2r)! r!

We transform W () — Wa(@)/N—qiV ()/2N and and expand for large N, following
[31]. q This assures that ¢[g] remains well-defined and nontrivial, and that the leading
orders in N of the generating function can be written as follows (assuming that ¢ > 1):

-2 2 /2 ] A 7
ol = — Z(1+2—= li 1 DI, oNS1Wi]
ol = - 20+ 22) +1im "g(quw) 5o | O e

« eNlog [de v(@)[=iWi())"/a! / DIV, e~ b/ dede’ Wale) (30U~ (00 Wa(e)

Jde v(e )[—1W1( N2 Wale) ~ 3igV ()]
Jde' v(@")[=iWi ()]
We can now integrate over Wg, and with the short-hand
; v(p )[ i ()"
-1 A19
T’ vig )W (@) A

X exp {—iq(q—l) +(9(%)}.(A.18)

the result takes the form

olo] = — _(1+ 2)+hm_10g/@W1 o 4 [dede’ RIW: (9)]Us (0.9 RIW: ()]
2N

NS [Wi]+N log [de v()[-iW1(9)]?/q!— % [de R[W1(#)]V(p)+O(N)

X e
q —2 dede’ RIW ()]U R[W
- _ 3 i—“ il D 14° [dede’ RIW1 (9)]U2 (0,0 ) RIW1 (¢')]
2(1—i— 2N)+hm log/ Wye s
( N )d/2 1 emfdwdw Wi(@)U; (0,0 Y Wile')
—q(N+q)A,/  /DetU;
« &N log [de v(e)[=iW1(#)]"/al=Lafde RIW1(#)]V(e)+O(N~1) (A.20)

Finally we transform Wi(p) = i[d¢’ Ui(p, ¢’ )W(¢'), which gives apart from
irrelevant additive constants:

o) = Hm%log{v /Det(qu)_/CDW eNso[W]+sl[W]+o(N*1)}7 (A.21)

with
So[W]= — %/dsodcp’ W(p)Ui(p, " )W (¢')
+log [dp vie)] [ae' Uile. )W) (A.22)
SV = = 7la=1? [ dpde! r{IW(@)|Uz(ip. )1 (') (A.23)

+ 58 [dede! WUie )W (@) - 5(a-1) [de W@V (),

€ Note that we could also have chosen the transformation Wa (@) — Wa(p)/vN — gie™1#"#? /2N, but
this would in subsequent stages of the calculation have prompted a further rescaling of Wa by v/N.
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and
__ v@)f d¢ Ur(p, @)W ()"
Tag" V@[ ag” Ur(g " W

rW(e)] (A.24)

Appendiz A.3. Leading two orders via saddle point integration

Expression (A.21) allows us in the usual manner to calculate the leading two orders
in N of the generating function, by substituting W = Wy + N 7%W1, where Wy is the
saddle point of So[W] and where W1 = O(1). We obtain, again modulo a constant:

Det(qUq) } } 5

ol6) = tim {Sy[1Wo) + - 1[Wo] + = log [ oY), (A25)

Det(-T)
in which we have the functional curvature at the saddle point:
§2S[W]
Ip, @)= ———r| . A.26

What remains is to compute Wy(¢) and I'(p, ¢’). Setting dSy/6W = 0, and using
the symmetry of Uy, gives the saddle point equation from which to solve Wy:

Wale) = (o) Jae viteemae)] " (A.27)

z, = [aeute)] [ Uitee o). (A.28)

and the curvature at the saddle point is found to be

o) = L2 v v .00 6.0 [aw’ U0 W)

@)~ L [ v 01| [ o' Ui o)

q—2

q—1

q—1

<[4 i) | [0 Ui W)
=q(q—1) /d¢ Ui, ¥)r[Wo(¥)IU1 (¥, ¢) — qUr (e, ¢)
~ [ [aw viteumo)] | [aw Ui )Walw)

~q [ 4w V(@) 56 -¢) - Ts,¢). (4.29)
with

T(p,¢") = (a=D)r[Wo(p)IUi (e, ") — aWo () /dSO”Ul(sO’, ") Wo(e").  (A.30)
We could also have written the curvature in the form I' = —qUz (1 — T)Ulé with a
symmetric kernel T, but since we only require the determinant of I" this would not

make a difference. Various terms in ¢[g] can be simplified using equations (A.27,A.28).
For instance, with the simple identity [dede’Wo()Ui (e, @' )Wo(¢') = 1 we find that

So[Wo) = — g +log Z,, (A.31)
$ilWal = 5¢* = (-1 [dd’ W (@) Ualp. @)W (')

2 4
- 3a-D) [de V@IV, (A.32)
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Hence, using log Det A = Trlog A and apart from irrelevant additive constants:

o161 = 1 {10g 7, ~ " [ apags so(@)lUatee, Mol

— q2—N de r[Wo(e)]V(p) — %T‘rlog(ﬂ—T)} +ON"3).  (A.33)

We can expand the last nontrivial term using Trlog(II-T) = — >, Tr(T*)/¢. The
first two terms in this sum give, after some simple manipulations:

W) = [de o) = (@) [de M@V (o) -0 (A.34)
Tr(T?) = /dsodsO’ T(p,)T(¢', )

=2¢—¢°+ (¢—1)° /d<pd<p’ r[(Wo(@)|U2(p, " )r[Wo(¢')].  (A.35)

Thus the first two terms ¢ = 1,2 precisely remove those non-constant terms in ¢|g]
that originated from S;[Wj]. This simplifies ¢[9] to the following expression, modulo
additive constants and O(N~%) terms, and upon inserting the definition of Zg:

o1a) = 1m {10 [ 1) [0 thtin e mol)]"+ oS- T (a0

Appendix B. Replica symmetric value of the traces

Here we compute the traces Tr(M?), that appear in the generating function ¢[g], for
the kernel (42). Upon defining p* = p+(¢—2)(X*)~! we can write this kernel as

M, ') = 2, esionemiod’, (B.1)
We can write the /-th trace of M as follows, with the identification ¢,,, = ¢, and
that both p and X* (and its inverse) are diagonal matrices in the space of :

Tr(Mé) = Z;fl /( ﬁ d‘Pk) ( f[ e%i‘Pk'“*‘Pk_i‘Pk"PHl)
k=1 k=1

J4
— Ziel/(HdS%)e%izik':l ka'I:/J'*ékk’_(6k+1,k/+6k—1,k/)u}LPk’
g—
k=1

~z I I/
Il

d(bk) e—% Zik/zl Pk (5k,k/+1+5k,k/—l_6kk/u*)¢k’j|

my

X H [/( d¢k)e% Eik:y ¢k(5k,k/+1+5k,k/1‘Skk/l“)1/1k/:|}
Bu=1 k=1
=z, 1H[ (e |A7,)™ Z e AT ). (B.2)

Here Z(p:|A7 ) denotes the original complex Gaussian integral defined in (10), and
A7 , 1 now the adjacency matrix of a loop of length ¢ in the presence of a complex
field acting on the diagonal, of value (2—¢q)/z*(u):

X 2— .
(Ae,u)kk, Ok k1 + Ok ki—1 + — 7 ) 6kk/ (with k mod ¢). (B.3)
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Appendix C. Recovering the Kesten-MacKay law

Here we derive expressions (50) and (51). The factor between curly brackets in the
first line of the generating function (49), which will give the eigenvalue spectrum for
graphs from the ensemble (6) in the limit N — oo, is given by the following expression,
in which 2*(u) is given by (38):

1 d 1 X
) = g -2 (61~ ) o]
_22011[(‘1 2)Arg(e (M)_l)"'(q_?)Arg(w*(ﬂ)‘i‘l)_2(q—1)Arg(:c*(u))},

(C.1)
We note that as soon as u? > 4(g—1) we have z* () € IR, hence for all such eigenvalues
Arg(2z*(u)+a) = 0 for any real a, and thus go(u) = 0. For eigenvalues p? < 4(g—1),
on the other hand, we may use identities such as dArg(z)/du = Im(z~'dz/du) and
x*(w)/dp = —iz*(u)/4/4(g—1)— p? to derive:
{dx*(u) { ¢-2 , q=2 _ 2(q—1)”
dp Lar(u)+1  a*(u)-1 2 (n)
1 a**(p)
=—Re{ 1 (g—2 7}
m/4(g—1)—p? I @ )17*2(#)—1

1
oo(p) = o Im
T

== C.2
27T q2 ‘LLQ ( )
Hence, in combination,
q VAlg—1)—
oolp) = - o =T (€3)
In the same way we derive expression (51) for the function h(u):
1 —iz*(p 10(2vqg—1— |y
h(p) = —;Im[ (k) }:— ( ). (C.4)

4(qg—1)— T /4(g—1)—

Appendix D. Expected number of subgraphs in a RRG

Here we restate and apply a result in [41] on the expected number E[J] of strictly
balanced subgraphs J with k& nodes and ¢ edges, in a random regular graph A with N
nodes and degree ¢ (see [41] for the precise definition of strictly balanced subgraphs,
here we only require that these include loops and cliques). This number is given by

= pac Al pgcay- Inld (1+o((%)2)) (D.1)
a(J)’ (gN)* N '

Here P(J C A) is the probability of J being a subgraph of A, j; is the degree of node

i when computed only via incident links that belong to J, [r ]S =rl/(r—s)!, and a(J)

is the number of automorphisms of J. For the case of a length-¢ loop, J = Ay, we
have k = ¢ and a(J) = 2¢, and hence

E[Ad] = (¢ —1)°/2¢ (D.2)

For (g+1)-node cliques we have k = ¢g+1, £ = 1¢(g+1), and a(J) = (¢+1)!, so
(@) [Nlgn
(Nq) 3 (q+1) (q+1)

E[K 1] = (D.3)



