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Abstract. We use statistical mechanics to study model-based Bayesian data
clustering. In this approach, each partition of the data into clusters is regarded
as a microscopic system state, the negative data log-likelihood gives the energy
of each state, and the data set realisation acts as disorder. Optimal clustering
corresponds to the ground state of the system, and is hence obtained from the
free energy via a low ‘temperature’ limit. We assume that for large sample
sizes the free energy density is self-averaging, and we use the replica method
to compute the asymptotic free energy density. The main order parameter in
the resulting (replica symmetric) theory, the distribution of the data over the
clusters, satisfies a self-consistent equation which can be solved by a population
dynamics algorithm. From this order parameter one computes the average free
energy, and all relevant macroscopic characteristics of the problem. The theory
describes numerical experiments perfectly, and gives a significant improvement
over the mean-field theory that was used to study this model in past.

1. Introduction

Analytical tools of statistical mechanics are nowadays applied widely to statistical
inference problems (see e.g. [1] and references therein). The central object of study in
parameter inference is an expression for the likelihood of the data, which encodes
information about the model that generated the data and the sampling process.
The traditional maximum likelihood (ML) method infers model parameters from
the data, but is often intractable (see e.g. [2]) or can lead to overfitting [3]. The
Bayesian framework represents a more rigorous approach to parameter inference. It
requires assumptions about the ‘prior probability’ of model parameters, and expresses
the ‘posterior probability’ of the parameters, given the data, in terms of the data
likelihood. In the so-called maximum a posteriori probability (MAP) method, one
computes the most probable parameters, according to the posterior probability. MAP
cures overfitting in ML partially by providing a ‘regulariser’ [1]. Both ML and MAP
methods can be seen as optimisation problems, in which the data likelihood and
posterior parameter probability, respectively, play the role of the objective function.
With a trivial sign change this objective function can be mapped into an ‘energy’
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function to be minimised, so that ML and MAP parameter inference can both
equivalently be seen as computing a ground state in statistical mechanics [4, 5].

Clustering is a popular type of inference where one seeks to allocate statistically
similar data points to the same category (or cluster), in an unsupervised way. It is used
in astrophysics [6], biology [7], and many other areas. The assumed data likelihood
in ML and Bayesian model-based clustering methods is usually a Gaussian Mixture
Model (GMM) [6, 8]. The GMM likelihood, however, is analytically intractable,
and one hence tends to resort to variational approximations [8] or computationally
intensive Monte Carlo methods [9]. Furthermore, the number of model parameters,
in particular the number of partitions of the data, is extensive, even if we fix the
dimension of the data to be finite, which leads to additional difficulties [10].

For this reason, not many analytical results are available for model-based
clustering (MBC), leaving mostly (many) numerical studies. Here, even when the
number of parameters d is kept finite, the matrix of ‘allocation’ variables C [8] which
we ultimately want to infer is growing with the sample size N . The situation is
complicated further if, in addition to C, we are also inferring the number of true
clusters K. In the GMM approach, the number of clusters is usually found by adding
a ‘penalty’ term to the log-likelihood function, such as for the Bayesian information
criterion (BIC) or the integrated complete-data likelihood (ICL) [11]. These penalty
based approaches sometimes lead to conflicting results [6].

A direct solution to the above problems is to follow the approach of statistical
mechanics and compute the partition function [4, 5]. This approach is usually not
pursued by statisticians, and in this case has not yet been pursued fully by physicists
either (in spite of their familiarity with such calculations). Popular Machine Learning
textbooks written by physicists, such as [8] or the more recent [12], cover only the
(algorithmic) variational mean-field approach for the case when K is unknown, and
the (non-Bayesian) expectation-maximisation algorithm for the case whenK is known.
Most statistical mechanics approaches to data clustering [13, 14, 15] use some heuristic
measure of data dissimilarity as an energy function, rather than an actual statistical
model of the data, or limit themselves to the simple case of assuming only two clusters
[16, 17, 18] in the high dimensional regime where d → ∞ and N → ∞, with d/N finite.

The work of [17] and [18] is mainly concerned with the inference of parameters
of two isotropic Gaussians from a balanced sample, i.e. a very restricted model of
the data which does not take into account correlations, different cluster sizes, data
with more than two clusters, etc. The former is concerned with the inference of the
centres of the assumed Gaussians, and the latter with finding a single ‘direction’ in the
data. Hence both studies do not formally address the MBC problem. Furthermore,
in [16] the Bayesian approach is used to infer ‘prototype vectors’, such as centres of
Gaussians, etc., of the same dimension as the data, so also this work is not addressing
the MBC problem systematically either. Finally, we note that none of the above
papers refer to previous work on MBC in the low-dimensional regime of finite d and
N → ∞. To our knowledge, only one study considers the high-dimensional regime
of a specific Bayesian GMM clustering problem, namely [19]. A systematic statistical
mechanical treatment of the Bayesian clustering problem is still lacking.

In this paper we consider a more general model-based Bayesian clustering
protocol, which allows for simultaneous inference of the number of clusters in the
data and their components, based on stochastic partitions of the data (SPD) [20].
SPD assumes priors on the partitions to compute the MAP estimate of data partitions.
The mean-field (MF) theory of Bayesian SPD inference was developed recently in [21].
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That study used the negative log-likelihood as the energy function, and computed its
average over the data and the partitions. It led to a simple and intuitive analytical
framework, which makes non-trivial predictions about low energy states and the
corresponding (MAP) data partitions. However, these predictions are only correct
in the regime of ‘weak’ correlations [21]. In this paper we pursue a full statistical
mechanical treatment of the Bayesian clustering problem covering all correlation
regimes. To this end we analyse the free energy, and we use the replica method
[22] to compute its average over the data. This, unlike MF, allows us to compute the
average energy of the optimal partitions. Furthermore, the present analysis produces a
simple algorithmic framework, with the population dynamics [22] clustering algorithm
at its heart, for the simultaneous inference of the number of clusters in the data and
their components. This can be seen as a first non-variational result for this type of
problems [8].

2. Model of the data and Bayesian cluster inference

Let us assume that we observe a data sample X = {x1, . . . ,xN}, where xi ∈ R
d for all

i. Each vector xi are assumed to have been generated independently from one of K
distributions, which are members of a parametrized family P (x|θ). M1 data-points are
sampled from P (x|θ1), with parameter θ1, M2 data-points are sampled from P (x|θ2),

etc. We clearly have the constraint
∑K

µ=1 Mµ = N , and we assume that Mµ ≥ 1 for
all µ. We will say that xi (or its index i) belongs to ‘cluster’ µ if xi was sampled from
P (x|θµ). The above sampling scenario can be described by the following distribution:

P (X|C,K, θ1, . . . , θK) =

K
∏

µ=1

N
∏

i=1

P ciµ(xi|θµ) (1)

which is parametrised by the the partition matrix, or ‘allocation’ matrix [8], C. Each
element of this matrix [C]iµ = ciµ computes an indicator function 1 [xi ∼ P (x|θµ)],
i.e. is nonzero if and only if xi is sampled from P (x|θµ). Furthermore, we have
∑

µ≤K ciµ = 1 for all i ∈ [N ]‡, i.e. xi belongs to only one cluster, and Mµ(C) =
∑

i≤N ciµ ≥ 1 for all µ ∈ [K], i.e. empty clusters are not allowed§.
Suppose we now want to infer the partition matrix C and the number of clusters

K. The Bayesian approach to this problem (see e.g. [8]) would be to assume prior
distributions for parameters and partitions, P (θµ) and P (C,K) = P (C|K)P (K)‖,
and to consider subsequently the posterior distribution

P (C,K|X) =
P (X|C,K)P (C|K)P (K)

∑N
K̃=1 P (K̃)

∑

C̃ P (X|C̃, K̃)P (C̃|K̃)

=
e−NF̂N (C,X)P (C|K)P (K)

∑N

K̃=1P (K̃)
∑

C̃ e−NF̂N (C̃,X)P (C̃|K̃)
, (2)

where we have defined the log-likelihood density

F̂N (C, X) = − 1

N

K
∑

µ=1

log
〈

e
∑N

i=1 ciµ log P (xi|θµ)
〉

θµ

(3)

‡ Throughout this paper the notation [N ] will be used to represent the set {1, . . . , N}.
§ We note that the distribution (1) could be also defined by using set notation, see e.g. [21].
‖ The simplest route, following the ‘Principle of Insufficient Reason’, is to choose uniform P (C|K) and
P (K). The former is then given by P (C|K) = 1/K!S(N,K), where S(N,K) is the Stirling number
of the second kind (S(N,K) ≃ KN/K! as N → ∞ [23]), and the latter is given by P (K) = 1/N .
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and the short-hand 〈f(θµ)〉θµ
=
∫

dθµ P (θµ)f(θµ). Expression (2) can be used to

infer the most probable partition C [21]. For each K ≤ N we can compute

Ĉ |K = argmaxC P (C|X,K)

= argmaxC
[

e−NF̂N (C,X)P (C|K)
]

(4)

and the MAP estimator

(Ĉ, K̂) = argmaxC,K P (C,K|X)

= argmaxC,K

[

e−NF̂N (C,X)P (C|K)P (K)
]

(5)

Furthermore, we can use (2) to compute the distribution of cluster sizes

P (K|X) =
e−NfN (K,X)P (K)

∑N
K̃=1 P (K̃) e−NfN (K̃,X)

, (6)

where

fN (K,X) = − 1

N
log
[

∑

C

e−NF̂N (C,X)P (C|K)
]

. (7)

3. Statistical mechanics and replica approach

3.1. Size independent identities

When the prior P (C,K) = P (C|K)P (K) is chosen to be uniform¶, MAP inference
of clusters and cluster numbers according to (4,5) requires finding the minimum
minC F̂N (C,X) of the negative log-likelihood (3), which is a function of the data
X = (x1, . . . ,xN ). Here we assume that X is sampled from the distribution

q(X|L) =
∑

C

q(C|L)
{

L
∏

ν=1

N
∏

i=1

qciνν (xi)

}

, (8)

where q(C|L) and qν(x) are, respectively, the ‘true’ distribution of partitions, of size
L, and the true distribution of data in these partitions. We note that the above
expression will generally differ from the form (2), which allows to study various
scenarios describing ‘mismatch’ between the assumed model and the actual data.

The minimum of F̂N (C,X) can be computed within the statistical mechanics
framework (see e.g. [5]), via the zero ‘temperature’ limit of the ‘free energy’ (density),
using minC F̂N (C,X) = limβ→∞ fN (β,X), with

fN (β,X) = − 1

βN
log
∑

C

e−βNF̂N (C,X) (9)

Although the free energy fN (β,X) is a function of the randomly generated data X,
we expect that in the thermodynamic limit N → ∞, i.e. for inference with an infinite
amount of data, it will be self-averaging, i.e. limN→∞

{

〈f2
N (β,X)〉X−〈fN(β,X)〉2X

}

=
0. This implies that instead of (9) we can work with the average free energy density

fN (β) = − 1

βN

〈

log
∑

C

e−βNF̂N (C,X)
〉

X
, (10)

¶ For non-uniform P (C|K) we have to minimise F̂N (C,X)−N−1 logP (C|K) instead of F̂N (C,X).
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where the average 〈· · ·〉X is generated by the distribution q(X|L). We note that if the
prior P (C|K) is uniform, i.e. P (C|K) = 1/K!S(N,K), then fN(β) is equivalent to

fN (β) = − 1

βN

〈

log
∑

C

P (C|K)e−βNF̂N (C,X)
〉

X
+ φN (β). (11)

with φN (β)=− 1
βN

log[K!S(N,K)]. The replica identity 〈log z〉 = limn→0 n
−1 log〈zn〉

allows us to write the relevant part of the average free energy density as

fN(β) − φN (β) = − lim
n→0

1

βNn
log
〈[

∑

C

P (C|K)e−βNF̂N(C,X)
]n〉

X
. (12)

The standard route for computing averages via the replica method [22] is to evaluate
the above for integer n, following by taking n → 0 via analytical continuation. So

〈[

∑

C

P (C|K)e−βNF̂N (C,X)
]n〉

X
=
∑

C1

· · ·
∑

Cn

[

n
∏

α=1

P (Cα|K)
]〈

e−βN
∑n

α=1 F̂N (Cα,X)
〉

X

=
〈〈

e−βN
∑n

α=1 F̂N (Cα,X)
〉

{Cα}

〉

X
, (13)

where the average 〈· · ·〉{Cα} refers to the replicated distribution
∏n

α=1 P (Cα|K). We

next compute the average over X (see Appendix A for details) which leads us to the
following integral

〈〈

e−βN
∑n

α=1 F̂N (Cα,X)
〉〉

{Cα},X
=

∫

{dQ dQ̂dAdÂ} eNΨ[{Q,Q̂};{A,Â}], (14)

with

Ψ[{Q, Q̂}; {A, Â}] = i

n
∑

α=1

K
∑

µ=1

∫

dx Q̂α
µ(x)Q

α
µ(x) + i

∑

ν,µ

Â(ν,µ)A(ν,µ)

+ β

n
∑

α=1

K
∑

µ=1

1

N
log〈eN

∫

dx Qα
µ(x) log P (x|θµ)〉θµ

+
∑

ν,µ

A(ν,µ) log

∫

dx qν(x) e
−i

∑n
α=1 Q̂α

µα
(x)

+
1

N
log
〈

e−iN
∑

ν,µ Â(ν,µ)A(ν,µ|C,{Cα})
〉

{Cα};C
, (15)

where the average 〈· · ·〉{Cα};C refers to the distribution q(C|L)∏n
α=1 P (Cα|K).

Finally, using the above result in our formula for the average free energy (12) gives us

fN(β) = − lim
n→0

1

βNn
log

∫

{dQ dQ̂dAdÂ} eNΨ[{Q,Q̂};{A,Â}] + φN (β). (16)

3.2. Inference for large N

For finite N , equation (16) is as complicated as its predecessor (11). The former can,
however, be computed via saddle-point integration when N → ∞, provided we are
allowed to take this limit first and the replica limit n → 0 later. Now we obtain

f(β) = − 1

β
lim
n→0

1

n
extr{Q,Q̂,A,Â}Ψ[{Q, Q̂}; {A, Â}] + φ(β), (17)
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where φ(β) = limN→∞ φN (β). The further calculation requires knowledge of the
average in the last term of the functional (15), which can be written in the form

〈

e−iN
∑

ν,µ Â(ν,µ)A(ν,µ|C,{Cα})
〉

{Cα};C
=

∑

{N(ν,µ)}

PN [{N(ν,µ)}] e−i
∑

ν,µ Â(ν,µ)N(ν,µ),

(18)

where the set of variables {N(ν,µ)}, which are governed by the distribution

PN [{N(ν,µ)}] =
∑

C

∑

{Cα}

q(C|L)
{

n
∏

α=1

p(Cα|K)

}

∏

ν,µ

δN(ν,µ);NA(ν,µ|C,{Cα}),

(19)

are subject to the hard constraints
∑

ν,µN(ν,µ) = N (the sample size),
∑

µN(ν,µ) =
N(ν) (the sample size of a data generated from qν(x)), and

∑

ν,µ\µα
N(ν,µ) =

N(µα) > 0 (the size of the cluster µα in replica α). To compute the average (18) we
will assume that for N → ∞ the distribution PN [{N(ν,µ)}] approaches the associated
(soft constrained) multinomial distribution

P̃N [{N(ν,µ)}] = N !
∏

ν,µ N(ν,µ)!

∏

ν,µ

Ã(ν,µ)N(ν,µ), (20)

where
∑

ν,µ Ã(ν,µ) = 1 and Ã(ν,µ) > 0. In this case we would find simply
〈

e−iN
∑

ν,µ Â(ν,µ)A(ν,µ|C,{Cα})
〉

{Cα};C
=
{

∑

ν,µ

Ã(ν,µ) e−iÂ(ν,µ)
}N

. (21)

The above assumption can by justified by the following large deviations argument.

3.3. Particle gas representation of replicated partitions

The multinomial distribution (20) describes n copies, i.e. replicas, of N ‘particles’
distributed over K reservoirs. For A = (a1, . . . , aN ) this distribution is given by

P (A) =

N
∏

i=1

P (ai), (22)

where P (ai) = Ã(ν,µ) = Prob(ai(1) = ν, ai(2) = µ1, . . . , ai(n+1) = µn) denotes the
probability that a particle i has ‘colour’ ν ∈ [L] and is in ‘reservoir’ µ1 ∈ [K] of replica
n = 1, reservoir µ2 ∈ [K] of replica n = 2, etc. The state A of this ‘gas’ of particles
is a ‘partition’ if the reservoirs are not empty, i.e. if Nα

µα
(A) =

∑

i≤N δµα; ai(α+1) > 0
for all α and µα. If A is sampled from the distribution P (A), this will happen with
high probability as N → ∞ if the marginal Ã(µα) =

∑

ν,µ\µα
Ã(ν,µ) > 0. To show

this we first compute the average
〈

Nα
µα

(A)
〉

A
=
∑

A P (A)Nα
µα

(A):

〈

Nα
µα

(A)
〉

A
=

N
∑

i=1

∑

ai

P (ai) δµα; ai(α+1)

= N
∑

ai

P (ai)δµα; ai(α+1) = N
∑

ν,µ\µα

Ã(ν,µ) = NÃ(µα). (23)

Thus the average
〈

Nα
µα

(A)
〉

A
> 0. Secondly, for ǫ > 0 we consider the probability of

observing the event Nα
µα

(A) /∈ (N(Ã(µα)− ǫ), N(Ã(µα) + ǫ)). Clearly,

Prob
(

Nα
µα
(A) /∈ (N(Ã(µα)−ǫ), N(Ã(µα)+ǫ))

)

(24)

= Prob
(

Nα
µα
(A)/N ≤ Ã(µα)−ǫ

)

+ Prob
(

Nα
µα
(A)/N ≥ Ã(µα)+ǫ

)

.
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For any λ > 0, the second term can be bounded using Markov’s inequality, as follows

Prob
(

Nα
µα
(A)/N ≥ Ã(µα)+ǫ

)

= Prob
(

eλN
α
µα

(A) ≥ eλN(Ã(µα)+ǫ)
)

≤ 〈eλNα
µα

(A)〉A e−λN(Ã(µα)+ǫ), (25)

with the average

〈eλNα
µα

(A)〉A =
∑

A

P (A) eλN
α
µα

(A) =

N
∏

i=1

{

∑

ai

P (ai) e
λδµα ; ai(α+1)

}

=
[

1 + Ã(µα)(e
λ − 1)

]N
. (26)

Hence

Prob
(

Nα
µα

(A) ≥ N(Ã(µα)+ǫ)
)

≤ e−NI(λ,ǫ), (27)

where I(λ, ǫ) = − log(1 + Ã(µα)(e
λ − 1))+ λ(Ã(µα) + ǫ) is a rate function. The latter

has its maximum at λ∗ = log[(Ã(µα)
2+Ã(µα)ǫ−Ã(µα)−ǫ)/(Ã(µα)(Ã(µα)−1+ǫ)], and

I(λ∗, ǫ) = D(Ã(µα)+ǫ ||Ã(µα)), where D(p ||q) = p log(p
q
)+ (1− p) log(1−p

1−q
) ≥ 0 is the

Kullback-Leibler divergence [24] of binary distributions with probabilities p, q ∈ [0, 1].
We may now write

Prob
(

Nα
µα

(A) ≥ N(Ã(µα)+ǫ)
)

≤ e−ND(Ã(µα)+ǫ ||Ã(µα)). (28)

Following similar steps to bound the first term of (24) gives us also the inequality

Prob
(

Nα
µα

(A) ≤ N(Ã(µα)−ǫ)
)

≤ e−ND(Ã(µα)−ǫ ||Ã(µα)). (29)

In combination, our two bounds directly lead to

Prob
(

Nα
µα

(A) /∈ (N(Ã(µα)−ǫ), N(Ã(µα)+ǫ))
)

≤ 2 e−N minσ∈{−1,1} D(Ã(µα)+σǫ ||Ã(µα)) (30)

The probability for one or more of the events Nα
µα
(A) /∈ (N(Ã(µα)−ǫ), N(Ã(µα)+ǫ)) to

occur (of which there are nK ) can be bounded using Boole’s inequality in combination
with (30), as follows

Prob
(

∪α,µα

{

Nα
µα

(A) /∈ (N(Ã(µα)−ǫ), N(Ã(µα)+ǫ))
})

≤
n
∑

α=1

K
∑

µα=1

Prob
(

Nα
µα

(A) /∈ (N(Ã(µα)−ǫ)), N(Ã(µα)+ǫ))
)

≤ 2nK e−N minα,µα minσ∈{−1,1} D(Ã(µα)+σǫ ||Ã(µα)). (31)

We conclude that for N → ∞ the deviations of the random variables Nα
µα

(A) from

their averages NÃ(µα) decay exponentially with N .
Let us next consider the entropy density

H(A)/N = −
∑

ai

P (ai) logP (ai) = −
∑

ν,µ

Ã(ν,µ) log Ã(ν,µ)

= −
∑

ν

Ã(ν) log Ã(ν) −
∑

ν,µ

Ã(ν)Ã(µ|ν) log Ã(µ|ν). (32)

If we assume that

Ã(µ|ν) =
n
∏

α=1

Ã(µα|ν), (33)
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then

H(A)/N = −
∑

ν

Ã(ν) log Ã(ν) − n
∑

ν,µ

Ã(ν)Ã(µ|ν) log Ã(µ|ν). (34)

The entropy of the distribution q(C|L) {∏n
α=1 p(C

α|K)}, used in (19), is given by

H(p, q)/N = − 1

N

∑

C

∑

{Cα}

q(C|L)
[

n
∏

α=1

p(Cα|K)
]

log
{

q(C|L)
[

n
∏

α=1

p(Cα|K)
]}

= H(q)/N + nH(p)/N, (35)

with H(q) = −∑C q(C|L) log q(C|L) and H(p) = −∑C p(C|K) log p(C|K). For the
case of uniform distributions q(C|L) = 1/L!S(N,L) and p(C|K) = 1/K!S(N,K) the
latter entropies are, respectively, log(L!S(N,L)) and log(K!S(N,K)). This gives us
H(p, q)/N = log(L)+n log(K) in the limit N → ∞. Comparing this asymptotic result
forH(p, q)/N with H(A)/N in (34), we see that the two expressions are equal for large
N when Ã(ν) = 1/L and Ã(µ|ν) = 1/K. In this case, the distribution (19) apparently
approaches the multinomial distribution (20). We expect this also to be true when

the distribution q(C|L) is uniform, but subject to the constraints
∑N

i=1 ciν = NÃ(ν).

4. Replica Symmetric theory

4.1. Simplification of the saddle-point problem

Using the assumptions (21) and (33), we obtain a simplified expression for (15):

Ψ[{Q, Q̂}; {A, Â}] = i

n
∑

α=1

K
∑

µ=1

∫

dx Q̂α
µ(x)Q

α
µ(x)

+
∑

ν,µ

A(ν,µ)
[

iÂ(ν,µ) + log

∫

dx qν(x) e
−i

∑n
α=1 Q̂α

µα
(x)
]

+ β

n
∑

α=1

K
∑

µ=1

1

N
log
〈

eN
∫

dx Qα
µ(x) logP (x|θµ)

〉

θµ

+ log
[

∑

ν,µ

Ã(ν)e−iÂ(ν,µ)
n
∏

α=1

Ã(µα|ν)
]

(36)

The extrema of this functional are seen to be the solutions of the following equations:

Â(ν,µ) = i log

∫

dx qν(x) e
−i

∑n
α=1 Q̂α

µα
(x) (37)

A(ν,µ) =
Ã(ν)e−iÂ(ν,µ)

∏n
α=1 Ã(µα|ν)

∑

ν̃,µ̃ Ã(ν̃)e−iÂ(ν̃,µ̃)
∏n

α=1 Ã(µ̃α|ν̃)
(38)

Qα
µ(x) =

∑

ν,µ

δµ;µα
A(ν,µ)

qν(x) e
−i

∑n
γ=1 Q̂γ

µγ
(x)

∫

dx̃ qν(x̃) e
−i

∑

n
γ=1 Q̂

γ
µγ (x̃)

(39)

Q̂α
µ(x) = iβ

〈eN
∫

dx̃ Qα
µ(x̃) logP (x̃|θ) logP (x|θ)〉θ

〈eN
∫

dx̃ Qα
µ(x̃) logP (x̃|θ)〉θ

. (40)
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For N → ∞ we can evaluate the integrals in the last equation with the Laplace
method [25], giving

Q̂α
µ(x) = iβ logP (x|θα

µ)

θα
µ = argmaxθ

∫

dx Qα
µ(x) logP (x|θ). (41)

Upon eliminating the conjugate order parameters {Q̂, Â} from our coupled equations
and considering large N , we obtain after some straightforward manipulations the
following expression for the nontrivial part of the average free energy (17),

f(β)− φ(β) = − lim
n→0

1

βn
log

{

∑

ν

Ã(ν)

∫

dx qν(x)

n
∏

α=1

[

K
∑

µ=1

Ã(µ|ν)eβ logP (x|θα
µ)

]}

(42)

and the following closed equations for the remaining order parameters {Q, A}:

Qα
µ(x) =

∑

ν,µ

δµ;µα
A(ν,µ)

qν(x) e
∑n

γ=1 β logP (x|θγ
µγ

)

∫

dx̃ qν(x̃) e
∑

n
γ=1 β logP (x̃|θγ

µγ )
, (43)

A(ν,µ) =
Ã(ν)

∫

dx qν(x)
[

∏n
α=1 Ã(µα|ν) eβ logP (x|θα

µα
)
]

∑

ν̃ Ã(ν̃)
∫

dx qν̃(x)
[

∏n
α=1

∑

µ̃α
Ã(µ̃α|ν̃) eβ logP (x|θα

µ̃α
)
] (44)

In order to take the replica limit n → 0 in (42,43,44) we will make the the ‘replica
symmetry’ (RS) assumption [22], which here translates into Qα

µα
(x) = Qµα

(x). It then
follows from (41), in turn, that θα

µ = θµα
. The RS structure allows us to take the

replica limit (see Appendix B for details) and find the following equations:

Qµ(x) =
∑

ν

Ã(ν) qν(x)
Ã(µ|ν) eβ logP (x|θµ)

∑

µ̃ Ã(µ̃|ν) eβ logP (x|θµ̃)

θµ = argmaxθ

∫

dx Qµ(x) logP (x|θ) (45)

A(µ|ν) =
∫

dx qν(x)
Ã(µ|ν) eβ logP (x|θµ)

∑

µ̃ Ã(µ̃|ν) eβ logP (x|θµ̃)

A(ν) = Ã(ν) (46)

and the asymptotic form of the average free energy

f(β) = − 1

β

∫

dx

L
∑

ν=1

Ã(ν)qν (x) log
[

K
∑

µ=1

Ã(µ|ν) eβ logP (x|θµ)
]

+ φ(β). (47)

The physical meaning of the order parameters Qµ(x) and A(µ|ν) becomes clear if we
define the following two densities

Qµ(x|C,X) =
1

N

N
∑

i=1

ciµ δ(x− xi) (48)

A(ν, µ|C,X) =
1

N

N
∑

i=1

ciµ1 [xi ∼ qν(x)] . (49)
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If we sample C from the Gibbs-Boltzmann distribution

Pβ(C|X) =
1

Zβ(X)
P (C|K)e−βNF̂N(C,X), (50)

where Zβ(X) =
∑

C P (C|K)e−βNF̂N(C,X) is the associated partition function, and
with the conditional averages 〈G(C)〉C|X =

∑

C P (C|K)G(C), then one finds that

Qµ(x) = lim
N→∞

〈

〈Qµ(x|C,X)〉
C|X

〉

X
, (51)

A(ν, µ) = lim
N→∞

〈

〈A(ν, µ|C,X)〉C|X

〉

X
, (52)

(see Appendix C for details). So, asymptotically, Qµ(x) is the average distribution
of data in cluster µ, and A(ν, µ) is the average fraction of data originating from the
distribution qν(x) that are allocated by the clustering process to cluster µ.

4.2. RS theory for β → ∞
Let us study the behaviour of the RS order parameter equations (45), (46) and (47)
in the zero temperature limit β → ∞. First, for the order parameter Qµ(x), governed
by the equation (45), and any test function aµ we consider the sum

∑

µ

Qµ(x)aµ =
∑

ν

Ã(ν) qν(x)

∑

µ Ã(µ|ν) eβ logP (x|θµ)aµ
∑

µ′′ Ã(µ′′|ν) eβ log P (x|θµ′′ )

=
∑

ν

Ã(ν) qν(x)

∑

µ′ Ã(µ′|ν) e−β(maxµ̃ logP (x|θµ̃)−logP (x|θµ′ ))aµ′

∑

µ′′ Ã(µ′′|ν) e−β(maxµ̃ logP (x|θµ̃)−logP (x|θµ′′ ))

=
∑

ν

Ã(ν) qν(x)

∑

µ′ Ã(µ′|ν) e−β∆µ′(x)aµ′

∑

µ′′ Ã(µ′′|ν) e−β∆µ′′(x)
, (53)

where ∆µ(x) = maxµ̃ logP (x|θµ̃)− logP (x|θµ). For β → ∞ the average will tend to

lim
β→∞

∑

µ′ Ã(µ′|ν) e−β∆µ′(x) aµ′

∑

µ′′ Ã(µ′′|ν) e−β∆µ′′(x)
=

∑

µ′ 1 [∆µ′ (x) = 0] Ã(µ′|ν) aµ′

∑

µ′′ 1 [∆µ′′ (x) = 0] Ã(µ′′|ν)
. (54)

Hence for β → ∞ we may write

Qµ(x) =
∑

ν

Ã(ν) qν(x)
1 [∆µ(x) = 0] Ã(µ|ν)

∑

µ′ 1 [∆µ′(x) = 0] Ã(µ′|ν)
. (55)

Similarly, equation (46) for the order parameter A(µ|ν) gives us
∑

µ

A(µ|ν)aµ =

∫

dx qν(x)

∑

µ Ã(µ|ν) e−β∆µ(x)aµ
∑

µ̃ Ã(µ̃|ν) e−β∆µ̃(x)
, (56)

so for β → ∞ we may write, assuming the expectation and limit operators commute,

∑

µ

A(µ|ν)aµ =

∫

dx qν(x)

∑

µ 1 [∆µ(x) = 0] Ã(µ|ν) aµ
∑

µ̃ 1 [∆µ̃(x) = 0] Ã(µ̃|ν)
. (57)

We note that A(µ) =
∫

dx Qµ(x), as a consequence of the (48) and (49). Finally,
taking β → ∞ in the average free energy density (47) gives us

lim
β→∞

[

f(β)− φ(β)
]
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= − lim
β→∞

1

β

∑

ν

Ã(ν)

∫

dx qν(x) log
[

eβmaxµ̃ logP (x|θµ̃)
K
∑

µ=1

Ã(µ|ν)e−β∆µ(x)
]

= −
∑

ν

Ã(ν)

∫

dx qν(x)max
µ

logP (x|θµ)

− lim
β→∞

1

β

∑

ν

Ã(ν)

∫

dx qν(x)

× log

[

K
∑

µ=1

Ã(µ|ν)
(

1 [∆µ(x)>0] e−β∆µ(x) + 1 [∆µ(x)=0]
)

]

= −
∫

dx
∑

ν

Ã(ν)qν(x)max
µ

logP (x|θµ)

− lim
β→∞

1

β

∑

ν

Ã(ν)

∫

dx qν(x) log
[

K
∑

µ=1

Ã(µ|ν)1 [∆µ(x)=0]
]

− lim
β→∞

1

β

∑

ν

Ã(ν)

∫

dx qν(x) log

[

1+

∑K
µ=1 1 [∆µ(x) > 0] Ã(µ|ν) e−β∆µ(x)

∑K
µ=1 1 [∆µ(x) = 0] Ã(µ|ν)

]

= −
∑

ν

Ã(ν)

∫

dx qν(x)max
µ

logP (x|θµ), (58)

The average energy e(β) = limN→∞〈〈F̂N (C, X)〉C|X〉X is given by (see Appendix D)

e(β) = −
K
∑

µ=1

∫

dx Qµ(x) logP (x|θµ), (59)

where Qµ(x) is a solution of the equation (45). The latter reduces to (55) when
β → ∞, and hence in this limit we find

e(∞) = −
K
∑

µ=1

∑

ν

Ã(ν)

∫

dx qν(x) logP (x|θµ)
1 [∆µ(x)=0] Ã(µ|ν)

∑

µ′ 1 [∆µ′(x)=0] Ã(µ′|ν)
. (60)

It is trivial to show (and intuitive) that e(∞) = f(∞). For finite β, the average free
energy f(β) − φN and the energy e(β), given by equations (47,59), can be used to
compute the average entropy density of the Gibbs-Boltzmann distribution (50) via
the Helmholtz free energy f(β) = e(β)− 1

β
s(β),

s(β) = − lim
N→∞

1

N

〈

∑

C

Pβ(C|X) logPβ(C|X)
〉

X
(61)

From the Helmholtz free energy we immediately infer that limβ→∞ s(β)/β = 0.

4.3. RS theory for β → 0

The RS theory simplifies considerably in the high temperature limit β → 0. Here the
order parameter Qµ(x), which is governed by the equation (45), is given by

Qµ(x) =
∑

ν

Ã(ν)Ã(µ|ν) qν(x). (62)
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The fraction of data points originating from the distribution qν(x) assigned to cluster
µ, A(µ, ν), is Ã(ν)Ã(µ|ν) due to (46). Using this in (59) gives the average energy

e(0) = −
L
∑

ν=1

Ã(ν)

K
∑

µ=1

Ã(µ|ν)
∫

dx qν(x) logP (x|θµ) (63)

where θµ = argmaxθ
∫

dx Qµ(x) logP (x|θ). We note that (63) is equal to

F (Ã) =

L
∑

ν=1

Ã(ν)

K
∑

µ=1

Ã(µ|ν)D(qν ||Pµ) +

L
∑

ν=1

Ã(ν)H(qν), (64)

where H(qν) is the differential entropy of qν(x), which is also the entropy function of
the mean-field theory [21]. For finite N , the average energy eN(β) = 〈〈F̂N (C, X)〉C〉X
is a monotonic non-increasing function of β. Also the limits limβ→∞ eN (β) and
limβ→0 eN (β) exist. Thus eN(∞) ≤ eN (0) for N finite and hence the average energy

e(∞) is bounded from above by the mean-field entropy F (Ã), i. e. e(∞) ≤ F (Ã).
For model distributions P (x|θµ) with non-overlapping supports for different θµ, this

upper bound can be optimised by replacing F (Ã) with minÃ F (Ã) and hence in this
case

e(∞) ≤ min
Ã

F (Ã). (65)

The minimum is computed over all prior parameters Ã(µ|ν) satisfying the constraints
Ã(µ|ν) > 0 and

∑

µ≤K Ã(µ|ν) = 1. Finally, we note that for K = 1, as a consequence

of Qµ(x) =
∑

ν≤L Ã(ν) qν(x), we will have e(∞) = F (Ã).

4.4. Recovery of true partitions

Equation (55) for Qµ(x) can be used to derive the following expression for the

distribution Q̃µ(x) = Qµ(x)/
∫

dx̃ Qµ(x̃) of data that are assigned to cluster µ:

Q̃µ(x) =

∑

ν Ã(ν) qν(x)
1[∆µ(x)=0]Ã(µ|ν)

Zν(x)
∫

dx̃
∑

ν Ã(ν) qν(x̃)
1[∆µ(x̃)=0]Ã(µ|ν)

Zν(x̃)

(66)

∆µ(x) = max
µ̃

logP (x|θµ̃)− logP (x|θµ)

θµ = argmaxθ

∫

dx Q̃µ(x) logP (x|θ),

where Zν(x) =
∑

µ 1 [∆µ(x) = 0] Ã(µ|ν). Suppose we knew the number of true
clusters, i.e. K = L. If our clustering procedure was perfect we would then expect that
each cluster holds data from at most one distribution, i.e. we expect Q̃µ(x) = qµ(x)
to be a solution of the following equation

qµ(x) =

∑

ν Ã(ν) qν(x)
1[∆µ(x)=0]Ã(µ|ν)

Zν(x)
∫

dx̃
∑

ν Ã(ν) qν(x̃)
1[∆µ(x̃)=0]Ã(µ|ν)

Zν(x̃)

. (67)

This is certainly true if 1 [∆µ(x)=0] Ã(µ|ν) = δν;µZν(x) for all x in the domain of

qµ(x). The latter condition implies that
∫

dx qν(x) 1 [∆µ(x)=0] Ã(µ|ν)Z−1
ν (x) = δν;µ

which, by the definition of order parameter A(µ|ν), is equivalent to A(µ|ν) = δν;µ, i.e.
all data from the distribution qν(x) are in cluster µ. Thus if

∫

dx qν(x)
1 [∆µ(x) = 0] Ã(µ|ν)

Zν(x)
= δν;µ (68)
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holds for all pairs (ν, µ) in a bijective mapping of the set [K] to itself, then Q̃µ(x) =
qµ(x) is a solution of equation (67). Let us define the set SP (x) = {µ |∆µ(x) = 0}
and consider the average

∑

µ A(µ|ν)µ:
∫

dx qν(x)

∑

µ 1 [∆µ(x)=0] Ã(µ|ν)µ
Zν(x)

=

∫

dx
(

1 [|SP (x)|>1]+1 [|SP (x)|=1]
)

qν(x)

∑

µ 1 [∆µ(x)=0] Ã(µ|ν)µ
Zν(x)

=

∫

dx qν(x) argmaxµ logP (x|θµ)

+

∫

dx 1 [|SP (x)|>1] qν(x)

∑

µ 1 [∆µ(x) = 0] Ã(µ|ν)µ
Zν(x)

(69)

We note that the second term is a contribution of sets that can be characterized as
{x |P (x|θµ1)=P (x|θµ2), µ1<µ2}, for some (µ1, µ2). If we assume that this term is
zero+, then one of the consequences of (68) is equivalence of the two averages

∑

µ

A(µ|ν)µ = ν =

∫

dx qν(x)argmaxµ logP (x|θµ), (70)

and
∫

dx qν(x)argmaxµ logP (x|θµ) =

∫

dx qν(x)argminµ logP
−1(x|θµ)

= argminµ

∫

dx qν(x) logP
−1(x|θµ)

= argminµD(qν ||Pµ) = ν, (71)

where D(qν ||Pµ) is the Kullback-Leibler distance between the distributions qν(x)
and P (x|θµ). Thus if (68) holds, then the results (70,71) show that the max and
expectation operators commute. Using this property in the average energy (60) gives

e(∞) = −
∑

ν

Ã(ν)

∫

qν(x)max
µ

logP (x|θµ)dx

=
∑

ν

Ã(ν)min
µ

∫

qν(x) logP
−1(x|θµ))dx

=
∑

ν

Ã(ν)min
µ

D(qν ||Pµ) +
∑

ν

Ã(ν), H(qν) (72)

and in the distribution (55) it leads to the equation

Qµ(x) =
∑

ν

Ã(ν) qν(x) δµ;argmaxµ̃ logP (x|θµ̃)

θµ = argmaxθ

∫

Qµ(x) logP (x|θ)dx. (73)

We note that the above average energy and the MF (64) average energy are both
bounded from below by the average entropy

∑

ν Ã(ν)H(qν). This bound is saturated
when all D(qν ||Pµ) terms vanish, i.e. when the model matches the data exactly.

+ This is certainly true for model distributions P (x|θµ) with non-overlapping supports.
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5. Implementation and application of the RS theory

5.1. Population dynamics algorithm

Equation (55) for the order parameterQµ(x) can be solved numerically by a population
dynamics algorithm [5] which can be derived as follows. Firstly, we re-arrange the
equation for Qµ(x):

Qµ(x) =
∑

ν

Ã(ν) qν(x)
1 [∆µ(x) = 0] Ã(µ|ν)

∑

µ′ 1 [∆µ′(x) = 0] Ã(µ′|ν)

=
∑

ν

Ã(ν) qν(x)
(

1 [|SP (x)|>1]+1 [|SP (x)|=1]
)

1 [∆µ(x)=0] Ã(µ|ν)
∑

µ′1 [∆µ′(x)=0] Ã(µ′|ν)
=
∑

ν

Ã(ν) qν(x)1 [|SP (x)|=1]1 [∆µ(x)=0] + · · ·

· · ·+
∑

ν

Ã(ν) qν(x)1 [|SP (x)|>1]
1 [∆µ(x)=0] Ã(µ|ν)

∑

µ′ 1 [∆µ′(x)=0] Ã(µ′|ν)
. (74)

Secondly, we note that the data distribution
∑

ν Ã(ν) qν(x) can be replaced by a large
sample X, i.e. by the data itself, via the empirical distribution N−1

∑

i≤N δ(x−xi),

which can be also written as N−1
∑

ν≤L

∑

iv≤Nν
δ(x−xiν ). Here Nν , which satisfies

limN→∞ N(ν)/N = Ã(ν), is the number of data-points sampled from qν(x). Upon
using both of these representations of

∑

ν Ã(ν) qν(x) in equation (74) we obtain

Qµ(x) =
1

N

N
∑

i=1

δ(x−xi)1 [|SP (xi)|=1]1 [∆µ(xi)=0] + · · · (75)

· · ·+ 1

N

L
∑

ν=1

Nν
∑

iv=1

δ(x−xiν )1[|SP (xiν )|>1]
1 [∆µ(xiν )=0] Ã(µ|ν)

∑

µ′ 1 [∆µ′(xiν )=0] Ã(µ′|ν)
.

Finally, it is very unlikely to find in X, sampled from a distribution of continuous
random variables

∑

ν Ã(ν) qν(x), data points which satisfy |SP (x)|>1, so the second
term in ( 75) is almost surely zero for any sample X of finite size. Thus

Qµ(x) =
1

N

N
∑

i=1

δ(x−xi)1 [|SP (xi)|=1]1 [∆µ(xi)=0]

=
1

N

N
∑

i=1

δ(x−xi)δµ;argmaxµ̃ log P (xi|θµ̃)

=
1

N

N
∑

i=1

δµ;µi
δ(x− xi) (76)

where µi = argmaxµ̃ logP (xi|θµ̃). Using the above in equation (55), we obtain for
µ ∈ [K] the following system of equations

Qµ(x) =
1

N

N
∑

i=1

δµ,µi
δ(x− xi)

θµ = argmaxθ

∫

dx Qµ(x) logP (x|θ)

µi = argmaxµ̃ logP (xi|θµ̃) (77)
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This set can be solved numerically as follows. We create a ‘population’ of random
variables {µi : i ∈ [N ]} where µi ∈ [K] are at first sampled uniformly. We use this
population to compute the parameters θµ; The latter are then used to compute a new
population {µi}. The last two steps are repeated until one observes convergence of the

energy e(∞) = −∑K
µ=1

∫

dx Qµ(x) logP (x|θµ). Finally, we note that using instead
equation (73) as our starting point would lead us to the same population dynamics
equations. Thus, for continuous data distributions

∑

ν Ã(ν) qν(x) represented by a
large finite sample, the equations (55) and (73) are equal.

The population dynamics simplifies significantly if we assume that the distribution
p(x|θ) is the multivariate Gaussian

N (x|m,Λ−1) = |2πΛ−1|− 1
2 e−

1
2 (x−m)TΛ(x−m) (78)

with mean m and precision matrix (inverse covariance matrix) Λ. The parameters
θµ = (mµ,Λ

−1
µ ) we can be estimated directly from the population via the equations

mµ =
1

∑N
j=1 δµ;µj

N
∑

i=1

δµ;µi
xi

Λ−1
µ =

1
∑N

j=1 δµ;µj

N
∑

i=1

δµ;µi
(xi−mµ)(xi−mµ)

T , (79)

where µi is given by

µi = argmaxµ logN (xi|mµ,Λ
−1
µ ) (80)

= argmaxµ − 1

2
Tr
{

Λµ(xi −mµ)(xi −mµ)
T
}

+
1

2
log |Λµ| −

d

2
log 2π.

5.2. Population dynamics algorithm for finite β

Also equation (45) can be solved via population dynamics. However, to replace the

distribution of data
∑

ν Ã(ν) qν(x) with its empirical version N−1
∑N

i=1 δ(x−xi) we

must assume that Ã(µ̃|ν) = Ã(µ̃). For µ ∈ [K], this gives us the following equations:

Qµ(x) =
1

N

N
∑

i=1

δ(x− xi)wi(µ)

wi(µ) =
Ã(µ) eβ log P (xi|θµ)

∑

µ̃ Ã(µ̃) e
β log P (xi|θµ̃)

θµ = argmaxθ

∫

dx Qµ(x) logP (x|θ). (81)

They can be solved by creating a population {(wi(1), . . . , wi(K)) : i ∈ [N ]} and using
the above equations to update this population until convergence of the free energy

f(β) = − 1

βN

N
∑

i=1

log
[

K
∑

µ=1

Ã(µ) eβ logP (xi|θµ)
]

. (82)

Finally, we note that both population dynamics algorithms derived in this
subsection look somewhat similar to the Expectation-Maximisation (EM) algorithm,
see e.g. [8]. Comparing the Gaussian EM, used for maximum likelihood inference
of Gaussian mixtures, with (79) shows that the main difference is that EM uses
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the average 〈δµ;µi
〉EM, over some ‘EM-measure’, instead of the delta function δµ;µi

.
Gaussian EM is hence an ‘annealed’ version of the population dynamics (79), but
exactly how to relate the two algorithms in a more formal manner is not yet clear.

5.3. Numerical experiments

In the mean-field (MF) theory of Bayesian clustering in [21], the average entropy (64)
(derived via a different route) was the central object. It was mainly used for the
Gaussian data model P (x|θµ) ≡ N

(

x|mµ,Λ
−1
µ

)

, where it becomes the MF entropy

F (Ã) =
1

2

K
∑

µ=1

Ã(µ) log
(

(2πe)d
∣

∣Λ−1
µ (Ã)

∣

∣

)

, (83)

where Λ−1
µ (Ã) is the covariance matrix

Λ−1
µ (Ã) =

L
∑

ν=1

Ã(ν|µ)
〈

(x−mµ(Ã))(x−mµ(Ã))T
〉

ν
, (84)

and mµ(Ã) =
∑L

ν=1 Ã(ν|µ)〈x〉ν is the mean. Here we use 〈· · ·〉ν for the averages
generated by qν(x). We note that (83) is also equal to

F (Ã) =
∑

µ,ν

Ã(ν, µ)D(qν ||Nµ(Ã)) +

L
∑

ν=1

Ã(ν)H(qν ), (85)

where Nµ(Ã) ≡ N
(

x|mµ(Ã),Λ−1
µ (Ã)

)

. In addition, for the Gaussian model, the
Laplace method, quite often used in statistics to approximate likelihoods [10], applied
to the log-likelihood (3) for N → ∞ gives the entropy

F̂N (C, X) =
1

2

K
∑

µ=1

Mµ(C)

N
log
(

(2πe)d
∣

∣Λ−1
µ (C, X)

∣

∣

)

, (86)

where Λ−1
µ (C, X) is the empirical covariance of data in the cluster µ and Mµ(C) =

∑

i≤N ciµ is its size. This expression can be minimized for clustering, either by gradient
descent [21] or any other algorithm. The MF (83) makes non-trivial predictions about
F̂N (C, X), such as on structure of its local minima, etc., and correctly estimated
F̂N ≡ minC F̂N (C, X) for Gaussian data. However, it systematicaly overestimates
F̂N when K > L and when the separations between clusters are small [21].

We expect the present replica theory, related to the MF theory via inequality
e(∞) ≤ F (Ã), to be more accurate. To test this expectation, we generated samples
from two isotropic Gaussian distributions N (m1, I) and N (m2, I). Each sample X,
split equally between the distributions, is of size N =2000 and dimension d=10. We
note that for any givenN and d, there exists an ǫ > 0 such that most of the xi in sample
X lie inside the two spheres centred at m1 and m2 and both of radius

√

d(1+ǫ)∗.
The latter suggests that the Euclidean distance ∆ = ||m1−m2||, measured relative to
the natural scale

√
d, can be use as a measure of the degree of separation [26] between

the ‘clusters’ centred at m1 and m2 (see Figure 1).

∗ The probability of being outside a sphere is bounded from above by Ne−dI(ǫ), where I(ǫ) =
(

log(1+ǫ)−1+ǫ
)

/2 (see Appendix E). A much tighter bound, given by NΓ (d/2, d(1 + ǫ)/2) /Γ(d/2),
uses that for x sampled from N (m, I) the squared Euclidean distance ||x − m||2 follows the χ2

distribution.
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Figure 1. Bayesian clustering of data generated from Gaussian distributions
N (m1, I) and N (m2, I), with separation ∆ = ||m1 − m2||. The sample, split
equally between the distributions, is of size N = 2000, and the data dimension
is d = 10. The data was generated for ∆/

√
d ∈

{

1
2
, 1, 3

2
, 2, 5

2

}

, from left to
right. Middle: Data projected into two dimensions for ∆ increasing from left
to right. The quality of the clustering, measured by the ‘purity’ ρN , obtained
by the population dynamics clustering algorithm is increasing with ∆. ρN was
measured for 10 random samples of data, but only the minimum, median and
maximum values of ρN (numbers connected by lines) are shown. The size of each
sample, split equally between the distributions, was N = 20000 and the clustering
algorithm assumed the number of clusters to be K = 2. Top: F̂N + log(K)

(red crosses connected by lines), with the log-likelihood F̂N ≡ minC F̂N (C,X)
computed by a gradient descent algorithm, shown as a function of the assumed
number of clusters K. Symbols, connected by lines and with error bars, denote
the average and ± one standard deviation, measured over 10 random samples of
data. Bottom: The log-likelihood F̂N (red crosses connected by lines) is compared
with the results of the mean-field theory (blue line) and population dynamics
(connected black squares). For K ≥ 2 only the mean-field lower bound d

2
log(2πe)

is plotted.

We used gradient descent to find the low entropy states of (86) for our data. For
each sample X we ran the algorithm from 10 different random initial states C (0), and
computed F̂N (C (∞), X). The latter was used to estimate F̂N ≡ minC F̂N (C,X).
For this data, the log-likelihood function F̂N + log(K) has a minimum at K = 2, i.e.
when the number of assumed clusters K equals the number of true clusters L, so it
can be used reliably to infer true number of clusters. However, this inference method
no longer works when the separation ∆ is too small (see Figure 1), but the ‘quality’

of clustering, as measured by the purity ρN (C, C̃) = 1
N

∑K
µ=1 maxν

∑N
i=1 ciµc̃iν which

compares [27] the clustering obtained by algorithm C with the true clustering C̃, for
K = 2, i.e. for the true number of clusters, is still reasonable♯ as can be seen in Figure

♯ We note that 0 < ρN ≤ 1 with ρN = 1 corresponding to a perfect recovery of true clusters and
with ρN ≈ 1/L corresponding to a random (unbiased) assignment into clusters.
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1.
The predictions of the MF theory for F̂N , minÃ F (Ã), is F1 = 1

2d log(2πe)+
1
2 log[1+ (∆/2)2] for K = 1, and F2 = 1

2d log(2πe) for K = 2. Thus F1 ≥ F2, as

required. Furthermore, if log(2) ≥ 1
2 log[1+(∆/2)2], which happens when ∆ ≤ 2

√
3,

then F2+log(K) ≥ F1, so the MF theory is unable to recover the true number of
clusters when the separation ∆ is small. The numerical results for F̂N + log(K) are in
qualitative agreement with the predicted values, but the MF predictions for F̂N are
indeed found to be inaccurate when the separation ∆ is small, and wrong, FK ≥ F2

by equation (85), when K > 2. See Figure 1.
To test the predictions of our replica theory we solve the Gaussian population

dynamics equations (79) and (80) for the data with the same statistical properties as
in the above gradient descent experiments, but with a population size N = 20, 000.
We find that the average energy

e(∞) = −
∑

µ≤K

∫

dx Qµ(x) logN (x|mµ,Λ
−1
µ ), (87)

as computed by the population dynamics algorithm, is in good agreement with the
value of F̂N obtained by gradient descent minimization (see Figure 1). The residual
differences observed between e(∞) and F̂N are finite size effects. Furthermore, we
note that the numerical complexity of the population dynamics algorithm is consistent
with the lower bound that is linear in N (on average), as follows from the complexity
analysis in [21].

Finally, we compare the Gaussian variant of the population dynamics clustering
algorithm with a popular software package [11] which uses EM algorithm to estimate
the maximum LN (X) of the log-likelihood

ℓN (X) =

N
∑

i=1

log

(

K
∑

µ=1

w(µ)N (xi|mµ,Σµ)

)

(88)

with respect to the parameters of the Gaussian mixture model (GMM)
∑

µ≤K w(µ)N (xi|mµ,Σµ), which are the means mµ, the covariances Σµ and the
weights w(µ) ≥ 0, where

∑

µ≤K w(µ) = 1. To this end we consider inferring
number of clusters in the samples of a Gaussian data with more than L = 2 clusters,
non-identity covariance matrices and a relatively large number of dimensions (see
Figures 2, 3 and 5). The software package uses the Bayesian Information Criterion
(BIC) 2LN − nN log(N), where nN is the number of parameters used in GMM,
and the population dynamics algorithm uses F̂N + log(K), with the log-likelihood
F̂N ≡ minC F̂N (C,X) estimated by the average energy e(∞), to infer the number of
clusters in the data.

For uncorrelated data we observe in Figure 2 that inference success in both
methods is strongly affected by the degree of separation ∆ of the clusters in the data, as
measured by the Euclidean distance between the means of Gaussians. For small ∆ the
recovery of the true number L = 3 of clusters is not possible. A simple MF argument,
similar to the one used for L = 2, predicts that this inference failure latter will happen
when ∆ ≤ 2

√
3, i.e. exactly as for L = 2. However, both algorithms are found to

‘work’ below this MF threshold (see Figure 2) suggesting that the MF argument gives
an upper bound. For correlated data, even when the separation parameter ∆ is zero,
the true number of clusters can still be recovered correctly by both algorithms (see
Figure 3). In all numerical experiments described in Figures 2 and 3 the log-likelihood
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Figure 2. Inferring the number of clusters in data generated from Gaussian
distributions N (mµ, I) with separation ∆ = ||mµ −mν ||, where (µ, ν) ∈ [3]. The
sample, split equally between the distributions, is of size N = 3 × 104, and the
data dimension is d = 10. The data was generated for ∆/

√
d ∈

{

1
2
, 1, 3

2
, 2, 5

2

}

,

but results shown here (from left to right) are only for ∆/
√
d ∈

{

1
2
, 1, 3

2

}

. Top:
BIC ≡ 2LN − nN log(N), where LN is the log-likelihood of GMM estimated by
EM algorithm and nN is the number of parameters, as a function of K. Bottom:
F̂N +log(K), where F̂N ≡ minC F̂N (C,X) is the log-likelihood function computed
by the population dynamics algorithm, as a function of K.

density −LN/N , estimated by EM algorithm, is an upper bound for the log-likelihood
density F̂N computed by Gaussian population dynamics. This points, at least in the
regime of finite dimension d and sample size N → ∞, to a possible relation between
these likelihood functions.

In the high dimensional regime d → ∞ and N → ∞, with d/N finite, both
algorithms fail to find the correct number of clusters (see Figure 5), but they fail
differently. The algorithm which uses Gaussian population dynamics, which was
derived assuming finite d and N → ∞, predicts more than L = 3 clusters in the data,
and the algorithm which uses EM predicts only one cluster. However, the population
dynamics ‘almost’ predicts the correct number L = 3 of clusters: the changes in the
log-likelihood function F̂N + log(K) in the K > 3 regime are much smaller than in
the K ≤ 3 regime, as can be seen in Figure 5. This behaviour is also observed for
similarly generated data with the same sample size but with higher dimensions (not
shown here), suggesting that taking into account the effect of the dimension d properly
in the present theoretical framework could lead to improvements in inference.

6. Discussion

In this paper we use statistical mechanics to study model-based Bayesian clustering.
The partitions of data are microscopic states, the negative log-likelihood of the data
is the energy of these states, and the data act as disorder in the model. The optimal
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Figure 3. Inferring the number of clusters in data generated from Gaussian
distributions N (0,Σµ) with (from left to right) µ ∈ [3], µ ∈ [4] and µ ∈ [5].
The samples of dimension d = 10, split equally between the distributions, were,
respectively, of the size N = 3×104, N = 4×104 and N = 5×104 . The covariance
matrices Σµ were sampled from the Wishart distribution with d + 1 degrees of
freedom and precision matrix I. Top: BIC ≡ 2LN − nN log(N), where LN is
the log-likelihood of GMM estimated by EM algorithm and nN is the number of
parameters, as a function of K. Bottom: F̂N + log(K), with F̂N computed by
the population dynamics algorithm, as a function of K.
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Figure 4. The log-likelihood densities −LN/N (top dotted line) and F̂N (bottom

solid line) plotted as functions of, respectively, the cluster separation ∆/
√
d

(computed at the inferred number of clusters) and inferred number of clusters
K for the data described in Figures 2 and 3.

(MAP) partition corresponds to the minimal energy state, i.e. the ground state of
this system. The latter can be obtained from the free energy via a low ‘temperature’
limit, so to investigate MAP inference we evaluate the free energy. We assume that
in a very large system, i.e. for a large sample size, the free energy (density) is self-
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Figure 5. Inferring number of clusters in the data generated from Gaussian
distributions N (mµ,Σµ) with separation ∆/

√
d = ||mµ − mν || = 5.2, where

(µ, ν) ∈ [3]. The sample, split equally between the distributions, is of size
N = 3 × 103, and of dimension d = 500. The (diagonal) covariance matrices
Σµ were sampled from χ2 distribution with 3 degrees of freedom. The maximum
and minimum diagonal entries in these matrices is, respectively, 17.064 and
0.017, so ∆/

√
d = 5.2 ensures that clusters in the sample are well separated

(see Appendix E). Left: F̂N + log(K), withF̂N ≡ minC F̂N (C,X) computed
by the population dynamics algorithm, as a function of K. Right: BIC ≡
2LN − nN log(N), where LN is the log-likelihood of GMM estimated by EM
algorithm and nN is the number of parameters, as a function of K.

averaging. This allows us to focus on the disorder-averaged free energy, using the
replica method. Following the prescription of the replica method we first compute
the average for an integer n number of replicas, then we take the large system limit
followed by the limit n → 0. The latter is facilitated by assuming replica symmetry
(RS) in the order parameter equation. The main order parameter in the theory is the
(average) distribution of data in each cluster µ ∈ [K].

In the low temperature limit, the equations of the RS theory allow us to study
the low energy states of the system. In this limit the average free energy and average
energy are identical. We show that the true partitions of the data are recovered exactly
when the assumed number of clusters K and the true number of clusters L are equal,
and the model distributions P (x|θµ) have non overlapping supports for different θµ.
The high temperature limit of the RS theory recovers the mean-field theory of [21]. In
this latter limit, the average energy, which equals the MF entropy [21], is dominated
by the prior. The MF entropy is an upper bound for the low temperature average
energy, and can be optimised by selecting the prior. Our order parameter equation can
be solved numerically using a population dynamics algorithm. Using this algorithm
for the Gaussian data very accurately reproduces the results obtained by gradient
descent, minimising the negative log-likelihood of data, algorithm even in the regime
of a small separations between clusters and when K > L where the MF theory gives
incorrect predictions [21]. The zero temperature population dynamics algorithm can
be used for MAP inference.

There are several interesting directions into which to extend the present work.
Many current studies use the so-called Rand index [28], or the ‘purity’ [27], for
measuring the dissimilarity between the true and inferred clusterings of data, but
it would be also interesting to estimate the probability that the inferred clustering
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is ‘wrong’. Another direction is to consider the high dimensional regime where
N → ∞ and d → ∞, with d/N finite. We envisage that here the task of separating
clusters may be ‘easier’ than in the lower dimensional d/N → 0 regime, due to the
‘blessing of dimensionality’ phenomenon [29], according to which most data sampled
from high-dimensional Gaussian distributions reside in the ‘thin’ shell of a sphere
(see Appendix E). Both the early study [30] and the more recent study [31] on
Bayesian discriminant analysis indicate that the classification of data, a supervised
inference problem closely related to clustering, becomes significantly easier in the
high-dimensional regime. Alternatively, the high dimensional regime could also cause
overfitting, and one may want to quantify this phenomena by using a more general
information-theoretic measure of overfitting [3].
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Appendix A. Disorder average

In this Appendix we study the average
〈〈

e−βN
∑n

α=1 F̂N (Cα,X)
〉

{Cα}

〉

X

=

∫

dx1 · · · dxN

∑

C

q(C|L)
{

L
∏

ν=1

N
∏

i=1

qciνν (xi)
}〈

e−βN
∑n

α=1 F̂N (Cα,X)
〉

{Cα}

=

∫

dx1 · · · dxN

〈{

L
∏

ν=1

N
∏

i=1

qciνν (xi)
}

e−βN
∑n

α=1 F̂N (Cα,X)
〉

{Cα};C
, (A.1)

where the average 〈· · ·〉{Cα};C now refers to the distribution {∏n
α=1 P (Cα|K)} q(C|L).

If we define the density

Qµ(x|Cα,X) =
1

N

N
∑

i=1

cαiµδ(x − xi), (A.2)

then we may write

−N

n
∑

α=1

F̂N (Cα, X) =

n
∑

α=1

K
∑

µ=1

log
〈

e
∑N

i=1 cαiµlogP (xi|θµ)
〉

θµ

=
n
∑

α=1

K
∑

µ=1

log
〈

eN
∫

dx Qµ(x|C
α,X) logP (x|θµ)

〉

θµ
(A.3)

and for (A.1) we obtain

∫

dx1 · · · dxN

〈{

L
∏

ν=1

N
∏

i=1

qciνν (xi)
}

e
β
∑n

α=1

∑K
µ=1 log

〈

eN
∫

Qµ(x|Cα,X) log P (x|θµ)dx
〉

θµ

〉

{Cα};C

=

∫

dx1 · · · dxN

〈{

L
∏

ν=1

N
∏

i=1

qciνν (xi)
}
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×
n
∏

α=1

K
∏

µ=1

{

∏

x

∫

dQα
µ(x) δ

[

Qα
µ(x)−Qµ(x|Cα,X)

]

}

× e
β
∑n

α=1

∑K
µ=1 log

〈

e
N

∫

Qα
µ (x) log P(x|θµ)dx

〉

θµ

〉

{Cα};C

=

∫

{

dQ dQ̂
}

eiN
∑n

α=1

∑K
µ=1

∫

Q̂α
µ(x)Qα

µ(x)dx

× eβ
∑n

α=1

∑K
µ=1 log〈e

N
∫

Qα
µ (x) log P(x|θµ)dx

〉θµ

×
〈

N
∏

i=1

∫

dxi

{

L
∏

ν=1

qciνν (xi)
}

e−i
∑n

α=1

∑K
µ=1 cαiµQ̂

α
µ(xi)

〉

{Cα};C
. (A.4)

Using the properties of {ciν}, the last line in the above expression can be rewritten as

〈

N
∏

i=1

∫

dxi

{

L
∏

ν=1

qciνν (xi)
}

e−i
∑n

α=1

∑K
µ=1 cαiµQ̂

α
µ(xi)

〉

{Cα};C

=
〈

N
∏

i=1

{

L
∑

ν=1

ciν

∫

dx qν(x)e
−i

∑n
α=1

∑K
µ=1 cαiµQ̂

α
µ(x)

}〉

{Cα};C

=
〈

e
∑N

i=1 log
∑L

ν=1 ciν
∫

dx qν(x) exp
[

−i
∑n

α=1

∑K
µ=1 cαiµQ̂

α
µ(x)

]

〉

{Cα};C
.(A.5)

Since ciν , c
α
iν ∈ {0, 1}, subject to∑L

ν=1 ciν =
∑K

µ=1 c
α
iµ = 1, it follows that the vectors

c = (c1, . . . , cL), ci = (ci1, . . . , ciL), c
α = (cα1 , . . . , c

α
K) and cαi = (cαi1, . . . , c

α
iK), will

satisfy the identities c · ci = δc,ci and cα · cαi = δcα,cα
i
. Inserting

∑

c ci · c = 1 and
∑

cα cαi · cα = 1 into the exponential function in the average (A.5) now gives, with
µ = (µ1, . . . , µn) ∈ {1, . . . ,K}n:
N
∑

i=1

log

L
∑

ν=1

ciν

∫

dx qν(x)e
−i

∑n
α=1

∑K
µ=1 cαiµQ̂

α
µ(x)

=
∑

c

∑

{cα}

N
∑

i=1

c · ci
n
∏

α=1

cα · cαi log

L
∑

ν=1

cν

∫

dx qν(x)e
−i

∑n
α=1

∑K
µ=1 cαµQ̂α

µ(x)

=
∑

ν,µ

N
∑

i=1

ciν

{

n
∏

α=1

cαiµα

}

∑

c

∑

{cα}

cν

{

n
∏

α=1

cαµα

}

× log

L
∑

ν′=1

cν′

∫

dx qν′(x)e
−i

∑n
α=1

∑K
µ′
α=1

cα
µ′
α
Q̂α

µ′
α
(x)

=
∑

ν,µ

N
∑

i=1

ciν

{

n
∏

α=1

cαiµα

}

log

∫

dx qν(x) e
−i

∑n
α=1 Q̂α

µα
(x), (A.6)

where we used the identities
∑

cα cαµ = 1 for all (α, µ), and
∑

c cν log[
∑

ν′ cν′φν′ ] =
logφν for all ν. Let us now define the density

A(ν,µ|C, {Cα}) = 1

N

N
∑

i=1

ciν

{

n
∏

α=1

cαiµα

}

, (A.7)

where NA(ν,µ|C, {Cα}) is the number of data-points that are sampled from the
distribution qν(x) and assigned to clusters µ1, . . . , µn for the n replicas, respectively.
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Using this definition and (A.6) in equation (A.5) converts the latter expression into
〈

eN
∑

ν,µ A(ν,µ|C,{Cα})log
∫

dx qν(x) exp
[

−i
∑n

α=1 Q̂α
µα

(x)
]

〉

{Cα};C

=
〈

∏

ν,µ

∫

dA(ν,µ) δ [A(ν,µ)−A(ν,µ|C, {Cα})]
〉

{Cα};C

× eN
∑

ν,µ A(ν,µ)log
∫

dx qν(x) exp[−i
∑n

α=1 Q̂α
µα

(x)]

=

∫

{dAdÂ} eNΨ̃[{Q̂};{A,Â}], (A.8)

where

Ψ̃[{Q̂}; {A, Â}] =
∑

ν,µ

A(ν,µ)
[

iÂ(ν,µ) + log

∫

dx qν(x) e
−i

∑n
α=1 Q̂α

µα
(x)
]

+
1

N
log
〈

e−iN
∑

ν,µ Â(ν,µ)A(ν,µ|C,{Cα})
〉

{Cα};C
. (A.9)

Finally, using (A.8) in the average (A.4) gives us the integral (14), as claimed.

Appendix B. Derivation of RS equations

The RS assumption implies that Qα
µα
(x) = Qµα

(x), from which one deduces θα
µ = θµα

via (41). Insertion of these forms into the right-hand side of (43), using (44), leads to

∑

ν,µ

δµ;µα
A(ν,µ)

qν(x) e
∑n

γ=1 β logP (x|θµγ )

∫

qν(x̃) e
∑

n
γ=1 β logP (x̃|θµγ )dx̃

=
∑

ν,µ

δµ;µα

Ã(ν)
∫

dx qν(x)
[

∏n
γ=1 Ã(µγ |ν) eβ logP (x|θµγ )

]

∑

ν̃ Ã(ν̃)
∫

dx qν̃(x)
[

∏n
γ=1

∑

µ̃γ
Ã(µ̃γ |ν̃) eβ logP (x|θµ̃γ )

]

× qν(x) e
∑n

γ=1 β logP (x|θµγ )

∫

qν(x̃) e
∑

n
γ=1 β log P (x̃|θµγ )dx̃

=
∑

ν

Ã(ν)
qν(x) Ã(µ|ν) eβ log P (x|θµ)

[

∑

µ̃ Ã(µ̃|ν) eβ log P (x|θµ̃)
]n−1

∑

ν̃ Ã(ν̃)
∫

dx qν̃(x)
[

∑

µ̃ Ã(µ̃|ν̃) eβ logP (x|θµ̃)
]n .

(B.1)

We can now take the replica limit n → 0, and obtain (45). Using the RS assumption
in (44) gives us the following expression for the marginal A(ν) =

∑

µA(ν,µ):

A(ν) =
Ã(ν)

∫

dx qν(x)
[

∑

µ Ã(µ|ν) eβ logP (x|θµ)
]n

∑

ν̃ Ã(ν̃)
∫

dx qν̃(x)
[

∑

µ̃ Ã(µ̃|ν̃) eβ log P (x|θµ̃)
]n (B.2)

Hence limn→0 A(ν) = Ã(ν). The RS equation for the conditional A(µ|ν) becomes

A(µ|ν) =
∫

dx qν(x)
[

∏n
α=1 Ã(µα|ν) eβ log P (x|θµα )

]

∑

ν̃ Ã(ν̃)
∫

dx qν̃(x)
[

∑

µ̃ Ã(µ̃|ν̃) eβ logP (x|θµ̃)
]n (B.3)
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Its conditional marginal is

A(µ|ν) =
∫

dx qν(x)Ã(µ|ν) eβ log P (x|θµ)
[

∑

µ̃ Ã(µ̃|ν) eβ logP (x|θµ̃)
]n−1

∑

ν̃ Ã(ν̃)
∫

dx qν̃(x)
[

∑

µ̃ Ã(µ̃|ν̃) eβ logP (x|θµ̃)
]n , (B.4)

which for n → 0 becomes (46):

A(µ|ν) =
∫

dx qν(x)
Ã(µ|ν) eβ logP (x|θµ)

∑

µ̃ Ã(µ̃|ν) eβ logP (x|θµ̃)
(B.5)

Finally, inserting Qα
µα
(x) = Qµα

(x) and θ
α
µ = θµα

into the nontrivial part of the
average free energy (42) and taking the limit n → 0 gives equation (47):

f(β)− φ(β) = − lim
n→0

1

βn
log
{

∑

ν

Ã(ν)

∫

dx qν(x)
[

K
∑

µ=1

Ã(µ|ν) eβ logP (x|θµ)
]n}

= − 1

β

∑

ν

Ã(ν)

∫

dx qν(x) log
[

K
∑

µ=1

Ã(µ|ν) eβ logP (x|θµ)
]

(B.6)

Appendix C. Physical meaning of observables

Let us consider the following two averages:

Qµ(x) =
〈

〈Qµ(x|C,X)〉
C|X

〉

X
, (C.1)

A(ν, µ) =
〈

〈A(ν, µ|C,X)〉C|X

〉

X
, (C.2)

in which 〈· · ·〉C|X is generated by the Gibbs-Boltzmann distribution (50) and the

disorder average 〈· · ·〉X by the distribution (8). Using the replica identity
∑

C W (C)F (C)
∑

C W (C)
= lim

n→0

∑

C

W (C)F (C)
{

∑

C̃

W (C̃)
}n−1

= lim
n→0

∑

C1

. . .
∑

Cn

F (C1)
n
∏

α=1

W (Cα) (C.3)

we may write for any test function g(x)
∫

dx Qµ(x) =
〈

∑

C1

· · ·
∑

Cn

∫

dx Qµ(x|C1,X)g(x)
n
∏

α=1

[

P (Cα|K)e−βNF̂N(Cα,X)
] 〉

X

=
〈〈

e−βN
∑n

α=1 F̂N (Cα,X)

∫

dx Qµ(x|C1,X)g(x)
〉

X

〉

{Cα}
. (C.4)

Following the same steps we used in computing the disorder average in (13) we obtain
〈〈

e−βN
∑n

α=1 F̂N (Cα,X)

∫

Qµ(x|C1,X)g(x) dx
〉

X

〉

{Cα}

=

∫

{dQ dQ̂dAdÂ} eNΨ[{Q,Q̂};{A,Â}]

∫

dx Q1
µ(x)g(x), (C.5)
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and for n → 0, using
∫

{dQ dQ̂dAdÂ} eNΨ[{Q,Q̂};{A,Â}]
∫

Q1
µ(x) dx = 1, this leads us

for N → ∞ to the desired asymptotic result

lim
N→∞

∫

dx Qµ(x)g(x) = lim
N→∞

∫

{dQ dQ̂dAdÂ} eNΨ[{Q,Q̂};{A,Â}]
∫

dx Q1
µ(x)g(x)

∫

{dQ dQ̂dAdÂ} eNΨ[{Q,Q̂};{A,Â}]

=

∫

dx Q1
µ(x)g(x), (C.6)

where the distribution Q1
µ(x) is the solution of equation (43). Thus, assuming that

the replica symmetry assumption is correct, the physical meaning of the distribution
in the our RS equation (45) is given by (51). Similarly we can work out

A(ν, µ) =
〈

〈A(ν, µ|C,X)〉C|X

〉

X

=

∫

dX P (X|L)
∑

C

Pβ(C|X)A(ν, µ|C,X)

=
∑

C̃

q(C̃|L)
∫

dX P (X|C̃)
∑

C

Pβ(C|X)A(ν, µ|C,X)

=
∑

C̃

q(C̃|L)
∫

dX P (X|C̃)
∑

C

Pβ(C|X)
[ 1

N

N
∑

i=1

ciµc̃iν

]

, (C.7)

where we used the definitions c̃iν = 1 [xi ∼ qν(x)] and P (X|C) =
∏L

ν=1

∏N
i=1 q

ciν
ν (xi).

Substitution of the definition of Pβ(C|X) allows us to work out the average further:

A(ν, µ) =
∑

C̃

q(C̃|L)
∫

dX P (X|C̃)
∑

C

P (C|K)

Zβ(X)
e−βNF̂N(C,X)

[ 1

N

N
∑

i=1

ciµc̃iν

]

= lim
n→0

∑

C̃

q(C̃|L)
∫

dX P (X|C̃)
∑

C

P (C|K)e−βNF̂N(C,X)

× Zn−1
β (X)

[ 1

N

N
∑

i=1

ciµc̃iν

]

=
∑

C

q(C|L)
∑

C1

· · ·
∑

Cn

[

n
∏

α=1

P (Cα|K)
]

∫

dX P (X|C)

× e−βN
∑n

α=1 F̂N (Cα,X)
[ 1

N

N
∑

i=1

ciνc
1
iµ

]

=
〈〈〈

e−βN
∑n

α=1 F̂N (Cα,X)
∑

µ

δµ;µ1A(ν,µ|C,{Cα})
〉

X|C

〉

C

〉

{Cα}
, (C.8)

in which A(ν,µ|C,{Cα}) is defined in equation (A.7). The above expression can now
be used, following the same steps as for the Qµ(x) order parameter, to show that for
N → ∞ and n → 0 the following will hold:

lim
N→∞

A(ν, µ) = lim
N→∞

∫

{dQ dQ̂dAdÂ} eNΨ[{Q,Q̂};{A,Â}]
∑

µ δµ;µ1A(ν,µ)
∫

{dQ dQ̂dAdÂ} eNΨ[{Q,Q̂};{A,Â}]

=
∑

µ

δµ;µ1A(ν,µ), (C.9)

where A(ν,µ) is the solution of equation (43). From this we deduce that (52) indeed
gives the physical meaning of the RS expression (46).
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Appendix D. Average energy

In this Appendix we compute the average energy

e(β) =
〈〈

F̂N (C, X)
〉

C|X

〉

X

= lim
n→0

〈

∑

C

P (C|K)e−βNF̂N(C,X)Zn−1
β (X)F̂N (C,X)

〉

X
, (D.1)

where iwe used the replica identity (C.3). Assuming initially that n ∈ N allows us to
compute the average over X in the above expression as follows

〈〈

e−βN
∑n

α=1 F̂N (Cα,X)F̂N (C1,X)
〉

X

〉

{Cα}

=
〈〈

e−βN
∑n

α=1 F̂N (Cα,X)
[

− 1

N

K
∑

µ=1

log
〈

e
∑N

i=1c
1
iµlogP (xi|θ)

〉

θ

]〉

X

〉

{Cα}

= −
〈〈

e−βN
∑n

α=1 F̂N (Cα,X)
[ 1

N

K
∑

µ=1

log
〈

eN
∫

dx Qµ(x|C
1,X)logP (x|θ)

〉

θ

]〉

X

〉

{Cα}

(D.2)

and, with the short-hand Ψ[. . .] = Ψ[{Q, Q̂}; {A, Â}] and after taking the replica limit
n → 0 within the RS ansatz, we then arrive at equation (59):

lim
n→0

lim
N→∞

〈〈

e−βN
∑n

α=1 F̂N (Cα,X)F̂N (C1,X)
〉

X

〉

{Cα}

= − lim
N→∞

∫

{dQ dQ̂dAdÂ} eNΨ[...]
[

1
N

∑K
µ=1 log

〈

eN
∫

dx Q1
µ(x)logP (x|θ)

〉

θ

]

∫

{dQ dQ̂dAdÂ} eNΨ[...]

= − lim
N→∞

1

N

K
∑

µ=1

log
〈

eN
∫

dx Q1
µ(x)logP (x|θ)

〉

θ

= −
K
∑

µ=1

max
θ

∫

dx Q1
µ(x) logP (x|θ). (D.3)

Appendix E. ‘Sphericity’ of Normally distributed samples

Here we show that almost all points of any random sample from the d-dimensional
Normal distribution N (x|m,Σ), with mean m and covariance Σ, lie in the annulus
d(λmax−ǫ) < ||x−m||2 < d(λmax+ǫ), where || · · · || is the Euclidean norm and λmax is the
maximum eigenvalue of Σ, for sufficiently large d and 0<ǫ≪1. If x is sampled from
N (x|m,Σ), then

〈

||x−m||2
〉

= Tr(Σ). We want to bound the following probability:

Prob(||x−m||2 /∈ (Tr(Σ)−dǫ,Tr(Σ)+dǫ))

= Prob(||x−m||2≤Tr(Σ)−dǫ) + Prob(||x−m||2≥Tr(Σ)+dǫ). (E.1)

Firstly, for sufficienty small positive α we can use the Markov inequality to obtain

Prob(||x−m||2≥Tr(Σ)+dǫ)

= Prob(e
α
2 ||x−m||2 ≥ e

α
2 (Tr(Σ)+dǫ)) ≤

〈

e
α
2 ||x−m||2

〉

e−
α
2 (Tr(Σ)+dǫ)

= e−
1
2 (log |I−αΣ|+α(Tr(Σ)+dǫ)). (E.2)
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The last line, which assumes that Σ−1−αI is positive definite, follows from (78).
Denoting the eigenvalues of the covariance matrix Σ by λ1, . . . , λd, we can bound
log |I − αΣ| = ∑d

ℓ=1 log(1 − αλ(ℓ)) from below by d log(1 − αλmax), where λmax =
maxℓ λ(ℓ). Using this in (E.2) gives us the simpler inequality

Prob(||x−m||2≥Tr(Σ)+dǫ) ≤ e−
1
2 (d log(1−αλmax)+α(Tr(Σ)+dǫ)), (E.3)

The function d log(1 − αλmax) + α(Tr(Σ) + dǫ) is found to have its maximum at
α = (Tr(Σ) + dǫ− dλmax)/(λmax(Tr(Σ) + dǫ)), which allows us to optimise the upper
bound in (E.3) and produce the inequality

Prob(||x−m||2≥ Tr(Σ)+dǫ) ≤ exp
[

− d

2
Φ
( dλmax

Tr(Σ) + dǫ

)]

, (E.4)

where Φ(x) = log(x)+x−1−1. We note that Φ(x) ≥ 0, by the inequality log(x) ≥ 1− 1
x
.

Also, Φ(x) is monotonic increasing (decreasing) for x > 1 (x < 1), and is exactly zero
when x = 1. Secondly, we derive a similar bound for the second probability in (E.1):

Prob(||x−m||2 ≤ Tr(Σ)−dǫ)

= Prob(e−
α
2 ||x−m||2 ≥ e−

α
2 (Tr(Σ)−dǫ)) ≤

〈

e−
α
2 ||x−m||2

〉

e
α
2 (Tr(Σ)−dǫ)

= e−
1
2 (log |I+αΣ|−α(Tr(Σ)−dǫ)). (E.5)

Now log |I + αΣ| =∑d
ℓ=1 log(1 + αλ(ℓ)) is bounded from below by d log(1 + αλmin),

where λmin = minℓ λ(ℓ). Using this in (E.5) gives us the inequality

Prob(||x−m||2 ≤ Tr(Σ)−dǫ) ≤ e−
1
2 (d log(1+αλmin)−α(Tr(Σ)−dǫ)). (E.6)

We note that the quantity d log(1 + αλmin) − α(Tr(Σ) − dǫ) takes its maximum for
α = (Tr(Σ)− dǫ + dλmin)/(λmin(Tr(Σ)− dǫ)), which in (E.6), gives the new bound

Prob(||x−m||2≤ Tr(Σ)−dǫ) ≤ exp
[

− d

2
Φ
( dλmin

Tr(Σ)− dǫ

)]

. (E.7)

By using the two inequalities (E.4,E.7) in (E.1), we obtain the inequality

Prob(||x−m||2 /∈ (Tr(Σ)−dǫ,Tr(Σ)+dǫ))

≤ 2 exp
[

− d

2
min

{

Φ
( dλmin

Tr(Σ)−dǫ

)

,Φ
( dλmax

Tr(Σ)+dǫ

)}]

(E.8)

Moreover, since Tr(Σ) ≤ dλmax, we may also write

Prob(||x−m||2 /∈ (Tr(Σ)−dǫ,Tr(Σ)+dǫ))

≤ 2 exp
[

− d

2
min

{

Φ
( λmin

λmax−ǫ

)

,Φ
( λmax

λmax+ǫ

)}]

(E.9)

The remaining extrema are given by

ǫ ∈ (0, ǫ1) : min
{

Φ
( λmin

λmax−ǫ

)

,Φ
( λmax

λmax+ǫ

)}

= Φ
( λmax

λmax+ǫ

)

(E.10)

ǫ ∈ (ǫ1, ǫ2) : min
{

Φ
( λmin

λmax−ǫ

)

,Φ
( λmax

λmax+ǫ

)}

= Φ
( λmax

λmax−ǫ

)

(E.11)

with

ǫ1 =
λmax(λmax−λmin)

λmax + λmin
, ǫ2 = λmax−λmin (E.12)

Furthermore, when λmax = λmin = λ, i.e. Σ = λI, one obtains

ǫ ∈ (0, λ) : min
{

Φ
( λ

λ−ǫ

)

,Φ
( λ

λ+ǫ

)}

= Φ
( λ

λ+ ǫ

)

(E.13)
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If, in contrast, we observe a sample x1, . . . ,xN fromN (x|m,Σ), instead of a single
vector x, then the probability Prob(∪N

i=1

{

||xi−m||2 /∈ (Tr(Σ)−dǫ,Tr(Σ)+dǫ)
}

) that
at least one of the events ||xi−m||2 /∈ (Tr(Σ)−dǫ,Tr(Σ)+dǫ) occurs, can be bounded
by combining Boole’s inequality with inequalities (E.4) and (E.8):

Prob(∪N
i=1

{

||xi−m||2 /∈ (Tr(Σ)−dǫ,Tr(Σ)+dǫ)
}

)

≤
N
∑

i=1

Prob(||xi−m||2 /∈ (Tr(Σ)−dǫ,Tr(Σ)+dǫ))

≤ 2N exp
[

− d

2
min

{

Φ
( dλmin

Tr(Σ)−dǫ

)

,Φ
( dλmax

Tr(Σ)+dǫ

)}

(E.14)

Repeating similar steps to those followed earlier then gives for λmax > λmin:

Prob(∪N
i=1

{

||xi−m||2 /∈ (Tr(Σ)−dǫ,Tr(Σ)+dǫ)
}

) ≤ 2N exp
[

− d

2
Φ
( λmax

λmax+ǫ

)]

(E.15)

provided ǫ ∈ (0, λmax(λmax−λmin)/(λmax+λmin)), whereas for Σ = λI we have

Prob(∪N
i=1

{

||xi−m||2 /∈ (Tr(Σ)−dǫ,Tr(Σ)+dǫ)
}

) ≤ 2N exp
[

− d

2
Φ
( λ

λ+ǫ

)]

,

(E.16)

provided ǫ ∈ (0, λ). It is now clear that there is a function d(ǫ, λmax, N) > 0 such
that for d > d(ǫ, λmax, N) almost all points of a sample from N (x|m,Σ) lie in the
annulus††

√

d(λmax − ǫ) < ||x−m|| <
√

d(λmax + ǫ).
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[5] Mézard M and Montanari A 2009 Information, Physics, and Computation (Oxford: Oxford

University Press)
[6] de Souza R S, Dantas M L L, Costa-Duarte M V, Feigelson E D, Killedar M, Lablanche P Y,

Vilalta R, Krone-Martins A, Beck R, and Gieseke F 2017 Mon. Not. R. Astron. Soc. 472

2808
[7] Hanage W P, Fraser C, Tang J, Connor T R, and Corander J 2009 Science 324 1454
[8] Bishop C M 2006 Pattern Recognition and Machine Learning (Berlin: Springer)
[9] Nobile A and Fearnside A T 2007 Stat. Comput. 17 147

[10] Guihenneuc-Jouyaux C and Rousseau J 2005 J. Comput. Graph. Stat. 14 75
[11] Scrucca L, Fop M, Murphy T B, and Raftery A E 2016 R J. 8 205
[12] David Barber. Bayesian reasoning and machine learning. Cambridge University Press, 2012.
[13] Rose K, Gurewitz E, and Fox G C 1990 Phys. Rev. Lett. 65 945
[14] Blatt M, Wiseman S, and Domany E 1996 Phys. Rev. Lett. 76 3251
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