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Abstract – Many realistic networks are scale-free, with small characteristic path lengths, high
clustering, and power law in their degree distribution. They can be obtained by dynamical net-
works in which a preferential attachment process takes place. However, this mechanism is non-
local, in the sense that it requires knowledge of the whole graph in order for the graph to be
updated. Instead, if preferential attachment and realistic networks occur in physical systems,
these features need to emerge from a local model. In this paper, we propose a local model and
show that a possible ingredient (which is often underrated) for obtaining scale-free networks with
local rules is memory. Such a model can be realised in solid-state circuits, using non-linear passive
elements with memory such as memristors, and thus can be tested experimentally.

The field of complex networks has recently become
of tremendous interest, since the discovery that many –
although not all– realistic networks present small-world
[1] and scale-free properties [2], namely a power-law tail
for the distribution of the degree in the graph. Scale-free
networks are important in a range of topics from ecology
and evolution theory [3], to protein folding and neural
networks [4–6], technological and scientific networks [7],
social sciences [8], economics [9, 10] and cascade analysis
[11].

Preferential attachment [2] is the most well known
mechanism for constructing scale-free networks. This is
an evolutionary algorithm in which nodes are added to
the network and linked to the existing nodes with a prob-
ability proportional to the degree of the pre-existing node.
This is a “rich gets richer” mechanism that requires at
each step the knowledge of the whole configuration of the
graph. However, if real-world scale-free networks are cre-
ated by physical processes, then preferential attachment
must emerge from completely local rules.

Several models in which preferential attachment is an
emergent property have been proposed in the physics lit-
erature [19], while other models which made the growth
deterministic have been proposed (for instance, [20]). In

particular, the so-called random walk attachment graph
mechanism was proposed in [21], in which new nodes at-
tach to particles hopping on the graph. Other models in
which particles act as “mediators” for the preferential at-
tachment were proposed in [21–23, 25–27]. In the case of
[21] and [22], the links from new nodes are connected to
the node in which the particle is sitting after l steps, but
for l big enough, this new link is connected with probabil-
ity proportional to the degree of the node. A preferential
attachment model related to the weight of the edges was
also considered in [28], without walkers; in [23], a model of
community formation which generates self-similar graphs
was introduced in order to reproduce the distribution of
the web structure.

In this article, we present a mechanism that gives rise
to scale-free graphs by means of what we call memory.
In the context of this paper, memory is the process given
by the interplay between random growth of the graph,
decay of the links and their strengthening carried by ran-
dom walkers that hop over them. We stress that all three
processes are entirely local, in the sense that the dynam-
ical processes involving nodes, links and walkers results
solely from the interaction of a small number of them in
the same space-temporal neighborhood. The temporal as-
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pect derives from the fact that in order to update some
links at the step t, we need to know their configuration
in that neighborhood at the step t − k. We will see that
we only need short-term memory (k = 1) in order to ob-
tain scale-free networks. Such short memory effects are
quite general in non-linear systems [12]. In fact, any real
condensed-matter system shows some degree of memory
in its response functions (e.g., its resistance) when subject
to external perturbations [29].

We recall that scale free networks are defined by the dis-
tribution P (k) of the degrees of connectivity, which obeys
a power law P (k � 1) ≈ k−ρ, with k the number of con-
nections of a given node to neighboring ones, and ρ typ-
ically ranging between 2 and 3 [13]. Moreover, quite of-
ten realistic networks are also ”small world”, which means
that they possess a small average distance between nodes
and high clustering coefficient [2, 14–17]. The mechanism
proposed here produces networks that are both scale free
and small world.

Despite the wealth of examples found in the literature,
it is still not completely clear how realistic graphs ac-
quire their scale-free properties through a physical process.
Watts and Strogatz demonstrated that small-world net-
works can be obtained from random networks by adding
a few long-range shortcut edges, which connect otherwise
distant nodes [1].

As we demonstrate in the following, memory, i.e., the
interplay and competition between growth, decay, and
strengthening operated by random walkers, can lead
to scale-free, small-world networks. The growth of the
network is the familiar random graph growth. However,
as we have anticipated, unlike preferential attachment,
the mechanism we propose is completely local, i.e, no
global information about the graph is needed. We thus
suggest that scale-free networks can thus emerge from
local self-organization assisted by memory. A similar
memory mechanism is used as an optimization procedure
by ants in order to find the shortest path, by reinforcing
with pheromones the most walked paths [30, 32]. This
mechanism is also the same one employed by networks of
memristors (resistors with memory) to solve optimization
problems such as the maze [33] or other shortest-path
problems [34]. These memristive networks can support
self-organized critical states [35] similar to those encoun-
tered in the brain at rest [36]. Our predictions can then
be readily tested in these types of condensed-matter
systems, and may be relevant to brain dynamics and
neurogenesis.

Model.— The algorithm to create and update the
network consists of the following four steps:

Initialization: Start with a weighted random graph
with N0 nodes, link strengths taking random values
within [0,1], and P ≤ N0 particles placed at random on
the nodes. After initialization, a cycle of the algorithm

consists of the steps of Hopping, Strenghtening/Decay
effect, and Growth:

Hopping: Let the particles hop between nodes i and
j with probability pij proportional to the link strength
pij = Aij/

∑
j Aij , where Aij is the weighted adjacency

matrix of the graph.

Strenghtening/Decay: All the links hopped on by
the particles in the last M steps are reinforced by γ.
Links with strength less than threshold Ld decrease
their strength of a value α, with probability pd, and are
removed when they reach a negative weight.

Growth: At this step, a new node is added (and with
probability pp a new particle is placed on it). The new
node connects to each of the existing nodes with proba-
bility pnl and with random strength between 0 and 1 with
flat probability distribution.

The simulation stops when Nf nodes are reached. As
one can see, the reinforcing process due to the particles
hopping is the only mechanism preventing the graph from
being eroded. Note that in [26], Ikeda introduced a model
of reinforcement-decay that bears some similarities with
the one introduced in this paper. However, that model
features a fixed number of nodes and a initial fixed geome-
try and dimensionality, and is focused more on the relation
between initial topology and diffusion than on the creation
of scale-free networks. Note also that the requirement of
an initial lattice with fixed dimensionality is very strong.
In this paper instead, we are interested in showing how
scale-free, small-world networks can arise by means of mi-
croscopic rules only, without any other constraint on the
global geometry of the system. As we shall see, in order
to obtain the fat tailed distribution of the node degrees
without a pre-existing fixed skeleton of geometry, we need
a growth mechanism.

Analytical results for some limit cases .— Two limit
cases can be solved analytically: those in which particles
are not present (P = pp = 0) and the one in which also
decay is not present (pd = 0). In the first case, one ex-
pects that the nodes of high degree are those whose decay
is slower, because they are more likely to have some links
above threshold. So the probability of decay would scale
like 1/k, which would yield a corresponding tail in the de-
gree distribution. However, such a graph would not be
stable and at long times it would be very sparse.

In the Supplementary Material of [24] we derive and
solve a master equation, in mean field theory, for the av-
erage degree as a function of time. The master equation
takes the form:

∂tks(t) = c− aks(t) (1)

with boundary condition ks(s) = cs. Using then the stan-
dard machinery used in the mean field theory analysis, one
can calculate an asymptotic distribution which takes the
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Fig. 1: Frequency distribution obtained for pnl = M = 1,
α = pd = 0.01 and no particles. We observe that the tail follows
an approximate power law with exponent ρ = 1, as predicted
by solving the approximate master equation approach. Results
averaged over 30 simulation runs.

form:

P (k � 1, t� 1) ≈ 1

t
· 1

k
. (2)

We note that the distribution is asymptotically unsta-
ble, and indeed a factor 1/t is present. This behavior has
been confirmed also numerically (shown in the Supple-
mentary Material in [24]), and shows that without parti-
cles these distributions cannot be stable, as the power law
decays with an exponent smaller than 2.

The second case without decay, i.e., pdecay = 0, has
been instead discussed in [31] where it has been shown
that the distribution is well approximated by a Poisson
distribution. The other extreme case is the one of pd = 1
and α > 1. In this case, the threshold guarantees that
only links which are greater than the threshold survive,
and thus the effect is similar to reducing the constant c.

The power law behavior is consistent with the results
obtained in Fig. 1, meanwhile the instability of the distri-
bution is supported by the numerical analysis provided in
the Supporting Material in [24].
Simulations with particles: results— Although a power

law is already present in the case of growing graphs with
decay, the case without particle leads to a graph which,
asymptotically, disappears. Introducing reinforcing parti-
cles thus is a necessary requirement to stabilize the graph.
The simulations were run with a maximum number Nf of
2800 nodes and 2800 particles, starting from a single node
with one particle. The decay probability was initially set
to pd = 0.01, pp = 0.5 and α = γ = 0.1. The threshold
parameter for the decay was set to Ld = 0.99. New nodes
were linked to all the old ones with link strength picked
at random in the interval [0, 1] from a flat distribution.

In order to better analyze the properties of these graphs
results have been averaged over 30 runs for fitting the de-

Fig. 2: Degree distribution and the tail best fit for the pa-
rameters Ld = 0.99,α = γ = 0.1, pp = 0.5, M = 1 and
pd = 0.01. We fit the tail using the function f(d) = a dρ. The
best fit exponent parameter (using least square fitting) found
is ρ = −1.15± 0.4, with goodness of fit RMSE= 0.22 and with
adjusted R2 = 0.69. The distributin has been obtained after
averaging over 30 runs, and has been smoothed using a robust
local regression algorithm.

gree distribution, and 20 for the clustering coefficient. Fig.
2 shows the results of our simulations where a power law
with exponent ρ ' −1.15 fits the tail of the degree distri-
bution (see also inset of Fig.2) and the fit of the cumulative
distribution function in Fig. 3. By employing the same
parameters but with pp = 1 leads to a shorter tail, fitted
with an exponent ρ = −2.36, roughly double that of the
one obtained in Fig. 2. Since the introduction of particles
can lead to tails which fall off with an exponent greater
than ρ = 2, we can interpret this as the fact that particles
indeed can lead to stable distributions, as these are now
normalizable.

We analized also the sensitivity of the tail to the size
of the system, which in our case is the number of steps
of the simulation. With increasing size, the tail becomes
longer, and better statistics can be obtained. The current
analysis was the best we could obtain with our computing
capabilities.

The graphs thus obtained have degree distribution tail
exponents both greater and smaller than 2. This implies a
short graph diameter in the latter case, namely an ultra-
small network, as guaranteed by the theorem in [18]. To
confirm that we have indeed obtained small-world net-
works we have also studied the clustering coefficient, which
is provided in the Supporting Material.

All these results show that the (ant-inspired) memory
mechanism is indeed a selection one: decay is a hostile
environment which selects those links that are stronger
(busy-gets-busier), by virtue of being crossed more often,
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Fig. 3: Cumulative distribution function of the distribution of
Fig. 2. Inset plot. Fit of the log-log corresponding to the tail
of the distribution on the tail. The log-log plot in the tail of the
distribution is linear, with fitted slope 0.16, compatible with
the exponent of the tail of the distribution.

which means that there are more roads to them. This com-
petition mechanism does modify the effective exponent of
the tail of the distribution, which otherwise would be an
unstable distribution.

In order to confirm this, we have also varied the de-
cay probability pd and the reinforcement parameter γ, by
keeping the length M fixed. This is shown in Fig. 4(a) for
a varying decay probability and in Fig.4(b) for a varying
reinforcement parameter. In both cases we see that by
making the memory too strong or too weak, the scale-free
property is considerably reduced. For instance in Fig. 4(a)
we see that as the decay probability increases while keep-
ing the other parameters fixed, the distribution is skewed
towards smaller average degrees. The tails of the distri-
bution become shorter and shorter, until eventually they
disappear. In the opposite limit, if we switch off the de-
cay mechanism, the scale-free property is completely lost
(inset in 4(a)).

Thus, the introduction of particles, combined with the
effect of network acceleration and decay, interpolates be-
tween Poisson distributions and an unstable power law
with exponent equal to minus one.

This shows that memory, although essential, must decay
faster than the time-scale necessary to build the graph,
otherwise a sort of “memory saturation” effect occurs
that is rather an hindrance to the formation of a scale-
free state. A similar effect holds in networks of memris-
tors [33,34], where an optimal memory range is necessary
to solve optimization problems. Finally, to make the anal-
ogy with the ant colony even stronger, if the pheromone
trail decays too fast—compared to the average time it
takes the ants to go from the nest to the food source—

Fig. 4: (a) Frequency distribution of the degree for various
values of decay probability pd , for fixed parameters Ld = 0.99,
α = γ = 0.1, M = pp = pnl = 1, and averaged over 30
runs. Inset plot. Degree distribution at pd = 0, showing
that without decay the fat tailed distribution is not obtained.
(b) Frequency distribution of degree for various values of γ,
Ld = 0.99,α = 0.1, M = pnl = pp = 1, pd = 0.01 and averaged
over 30 simulation runs.

the ants have no time to reinforce the shortest path; if it
does not decay at all, any path is equally attractive to the
next ants, and no efficient optimization can be achieved.

In order to stress even more the role of memory in the
emergence of scale-free, small-world networks, we have
studied how the length M of memory affects the graph’s
growth. We find that by increasing M amounts to soften-
ing the selection process since even farther neighbours of
high-degree nodes can be reinforced. We show the results
for memory lengths M = 1, 2, 3, 4 in Fig. 7.

It is interesting to note that when the memory length
increases, the size of the tail decreases until it actually
disappears, indicating that an “optimal memory range” is
necessary for scale-free properties.
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Fig. 5: Frequency distributions of degree for various values of
the parameter pnl for fixed parameters Ld = 0.99,α = 0.1,
M = pp = pnl = 1, pd = 0.01 and averaged over 30 simulation
runs and smoothed using a robust local regression algorithm.
The insert instead represents the double-log of this quantity.
The importance of this plot is to show that the exponent of
the tail does not depend on this parameter, but that the the
extension of the tail depends on it, and if fact the closer it is
to one, the longer is the tail.

Conclusions.— In this paper we have presented and an-
alyzed a model of network growth in which scale-free prop-
erties emerge by means of a local self-organising mecha-
nism that is based on short-term memory. By this, we
mean that as the network grows randomly, all links decay
except those that are visited by random walkers, a process
that instead increases the link strength. In this model,
no previous geometry and dimensionality is assumed, and
all of the properties are emergent from the competition
of local processes. The model is inspired by evaporating
ant pheromone trails, a process known to be able to solve
problems as finding the shortest path between their nest
and food by leaving a pheromone track that has a char-
acteristic decay time, but which is reinforced every time
other ants use it. In our model the ants are the random
walkers. It turns out that the optimal memory to obtain
strong power-law effect must be short-term, but nonzero.
Therefore, there is an optimal range of memory length
which allows for the emergence of a scaling behavior.

We want to stress also that, being completely local, the
model proposed here lends itself to being engineered in the
lab. Indeed, this model can be realized in a network of
memristive elements (resistors with memory), making our
predictions easily realizable experimentally. In much more
general terms, our study makes a connection between self-
organization, time non-locality and scale-free properties.
Since self-organized critical states are ubiquitous in Na-
ture, an interesting line of research suggested by our work
regards the role of memory in the formation of such critical
states. We thus hope our work will motivate further theo-

Fig. 6: Frequency distributions of degree for various values of
the stability threshold parameter Ld, with pnl = 1,α = 0.1,
M = pnl = pp = 1, pd = 0.01; results obtained after averaging
over 30 simulation runs and smoothed using a robust local
regression algorithm. The insert instead represents the double-
log of this quantity. The importance of this plot is to show
that the exponent of the tail is unaffected by the threshold
variation, although the peak of the distribution moves to the
right for increasing values of the threshold.

retical and experimental studies along these directions. In
future works we will address the study of the phase space
of the model, in which we observe both fat and short tails,
and work on an analytical treatment for the distribution
of degree in the case with particles.
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Fig. 8: Snapshots from the time evolution of the graphs, for
parameters M = pnl = 1, Ld = 0.99,α = γ = 0.1, pp = 0.5
and pd = 0.1. Initial configuration at time T=1 with a single
node. Left: Configuration at time T=10 with 10 nodes.
Center: Configuration at time T=50 with 50 nodes.
Right: Configuration at time T=200 with 50 nodes,
after having stopped growth at T=50. We see from
this picture that only few links survive the decaying
process.

Supplementary Material. – In order to visualize
the difference between the two behaviors, we include two
snapshots from the full dynamics for the graph with mem-
ory in Fig. 8.

Unstable power law without particles.– In this section we
discuss the master equation for the growth of the graph
without particles. Let us start with the dynamic equation
for the adjacency matrix, which takes in account the decay
α and where θ takes care of the threshold chosen as Ld = 1:

At+1
ij = −pdα θ(Atij) +Atij (3)

the θ functions instead represent the threshold of the pro-
cess.

We now introduce some quantities that are useful in
calculation of mean properties of the graph for growing
networks. First, we introduce the p(k, s, t), the probability
that a vertex introduced at time s has degree k at time
t ≥ s. At each time step, a new vertex is introduced with
probability one. The degree distribution at time t, is then
given by

P (k, t) =
1

t+ 1

t∑
s=0

p(k, s, t) (4)

assuming that we start with one node. The average de-
gree value is given by ks(t) =

∑∞
k=1 k p(k, s, t). This is

the degree of the node s at time t. Note that s is also a
time, as we assume we introduce the node s at time s. We
use at this point the effective medium approach Ansatz
[15], and thus assume that p(k, s, t) = δ(k−ks(t)). In this
approximation, we are able to calculate P (k, t) from the
knowledge of ks(t), using the continuum degree assump-
tion:

P (k, t) =
1

t+ 1

∫ t

s=0

δ(k − ks(t))ds

= − 1

1 + t
(
∂ks(t)

∂s
)−1|s=s(k,t). (5)

One has also to consider the boundary condition kt(t) =
ct, given by the fact that the average degree of the new

node is proportional to the number of nodes present at
time t; c is the probability of adding a link to any node in
the graph and will play a role in the boundary condition.
One can connect the mean field equation to the dynami-
cal equation for the adjacency matrix using the definition
ks(t) =

∑
r Asr(t). We assume also a continuous time at

this point:

d

dt
Aij(t) = −pdecayθ(Aij(t)) (6)

together with the boundary conditions as before. We thus
have:

d

dt
ks(t) =

∑
j

d

dt
Asj(t)

= −pdecayα
∑
j

θ(Aij(t))

Since we set Ld = 1, we can approximate, making an error
of the same order of magnitude, θ(Asj(t)) with Asj . This
allows to keep track of the fact that the decay occurs only
when a link is present, and allows to have a closed form
master equation:

d

dt
ks(t) = −pdecayαks(t) (7)

In addition to the decay, one has to add a term that rep-
resents the growth of the graph:

d

dt
ks(t) = c− pdecayαks(t) (8)

which according to the definitions of [31] is a graph with
acceleration. If at time t we add t links with probability c,
the average degree is given by ct; c can also be interpreted
as composed in this effective approach: we add the link
with probability pl and with strength ln. Then c = pnlξ,
with ξ the average strength in the mean field theory.

If we now set pdecayα = a, this equation has a unique
solution given by:

k(t) =
c

a
− e−atQ (9)

where now Q is a free parameter that we set to ceas from
the boundary condition ks(s) = cs, which implies an equa-
tion of the form

ks(t) =
c
(
(as− 1)ea(s−t) + 1

)
a

(10)

We now evaluate s(k, t), given by the solution of the im-
plicit equation k = ks(t):

s(k, t) =
W
(
− e

at+1(c−ak)
c

)
− 1

a
(11)

where W is now the Lambert W-function. As a result, we
are now in the position of obtaining P (k, t), given by the
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Fig. 9: Distribution of degree obtained for pd = pnl = M = 1,
α = 0.1 and no particles. The distributions are compared at
two different times, T = 4000 (blue) and T = 5000 (green).
We can observe that for the tail at later time is lower than the
one at earlier time. This is compatible with the observation of
the instability of the tail from eqn. (12), as this is roughly 4/5
higher than the other one, and the probability is transferred to
the lower degree bin (inset).

eqn. (5):

P (k, t) =
1

c

(
−eW

(
eat+1(ak−c)

c

)
−at−1 − 1

)
+ ak

(12)

which shows several interesting properties. It is easy to
see that

P (k, t� 1) ≈ F (t)
1

k
. (13)

Thus we expect to observe, once one has normalized the
distributions, a power law which is compatible with k ≈ 1,
once one has appropriately normalized the bins.

Two important comments are in order. First, we note
that since P (k, t) = P1(k)P2(t), one can, at each finite
time t, obtain a distribution out of equilibrium for the
degree which is consistently P1(k) ≈ 1

k . However, it is
easy to see that this distribution is not normalizable, as
for large values of k,

∫
P1(k)dk ≈ log(k), which indeed

suggests that this distribution cannot be a stable one.
Since a < 1, being the product of the probability and the
requirement that we remove only smaller values than 1,
limt→∞ P1(t) = 0 and thus requires more statistical anal-
ysis as one goes further to obtain this distribution. Thus,
the distribution of degree is valid only for finite values of
k, as one would expect, and has to be normalized by a
factor P̃1(k) = 1

N
1
k , with

N =

∫ k=t

k̃

1

ξ
dξ = log(

t

k̃
). (14)

In addition, we note that unless the k > c
a , P (k, t) does

not exist, as the W-function is defined only for positive
values.

We have discussed the case of the probability distri-
bution obtained by acceleration of the network in combi-
nation with decay, and have shown that the probability
distribution is unstable, as it effectively decays as 1/t, as
explained in Fig. 9, and thus compatible with the simula-
tions performed.

Clustering In order to confirm we have indeed obtained
a small-world network, we also studied the clustering coef-
ficient. This is defined as follows for weighted graphs. The
number of triangles based at a node i, if Aij describes the
network, is given by t(i) =

∑
jk

1
2AijAjkAki. The cluster-

ing coefficient C(i) of a node i is the ratio of number of
triangles and the immediate weighted neighbours: C(i) =

2t(i)/
∑N
j=1Aij . We thus define Cmax = maxiC(i), while

Cmean = 1
N

∑N
i=1 C(i). This is plotted in Fig. 10, for the

parameters pp = 1, pd = 0.01, α = γ = 0.1, Ld = 0.99, as
in Fig. 10. The maximum clustering coefficient Cmax of
the graph is rather high, although it is clear that as the
graph increases, Cmax decreases until saturation as shown
in Fig.10, and it drops as the growth stops (T=2800),
while the average is basically unaffected, meaning that
only a few nodes have high clustering coefficient.

Fig. 10: Maximum and average clustering coefficient at T =
2800, γ = α = 0.1, pd = 0.01, pp = 1 and Ld = 0.99, for
which we obtained a degree distribution with a power law tail
with exponent ρ = −2.36. The plot shows that only few nodes
are highly clustered, while the average is low. The drop at
T = 2800 is due to the fact that the growth stopped, and we
evolved the system (so that only stable nodes would survive).
Results averaged over 30 simulations.

Robustness.— The above discussion showed that there
is an optimal memory range, as represented by the values
of M , for the size of the tail. However, this by no means
requires fine-tuning of that parameter. We show here that
no fine-tuning is necessary in any of the other parameters
of the model as well, namely the probability of decay pd,
the strength parameter γ, the probability of connecting a
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new node to an old one pnl, and the stability threshold
Ld. The results are shown in Figs. 7, 4, 5, 6 where it
is clearly shown that the power-law degree distribution is
robust with respect to variations in all these parameters.

What is important, instead, is the continuous growth of
the graph. Unless one imposes some geometry skeleton (as
in [26]), if one stops the growth of the graph and keeps it
evolving in time (therefore, decay and hopping/strength-
ening), the tail in the distribution is soon destroyed, de-
pending on the thermalization time.

We previously mentioned that we observe tails both
with exponent greater and lower than 2. We observe that
the exponent depends linearly with the parameter which
regulates the introduction of a new particle with each new
note, the probability parameter pp, such that ρ ≈ ρ0pp.
However, a more detailed analysis is necessary in order to
clearly find the dependence on the other parameters.
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