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Abstract: A remarkable result at the intersection of number theory and group theory
states that the order of a finite group G (denoted |G|) is divisible by the dimension dR of
any irreducible complex representation of G. We show that the integer ratios |G|2/d2

R are
combinatorially constructible using finite algorithms which take as input the amplitudes of
combinatoric topological strings (G-CTST) of finite groups based on 2D Dijkgraaf-Witten
topological field theories (G-TQFT2). The ratios are also shown to be eigenvalues of han-
dle creation operators in G-TQFT2/G-CTST. These strings have recently been discussed
as toy models of wormholes and baby universes by Marolf and Maxfield, and Gardiner and
Megas. Boundary amplitudes of the G-TQFT2/G-CTST provide algorithms for combina-
toric constructions of normalized characters. Stringy S-duality for closed G-CTST gives
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a dual expansion generated by disconnected entangled surfaces. There are universal rela-
tions between G-TQFT2 amplitudes due to the finiteness of the number K of conjugacy
classes. These relations can be labelled by Young diagrams and are captured by null states
in an inner product constructed by coupling the G-TQFT2 to a universal TQFT2 based
on symmetric group algebras. We discuss the scenario of a 3D holographic dual for this
coupled theory and the implications of the scenario for the factorization puzzle of 2D/3D
holography raised by wormholes in 3D.
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1 Introduction

A well-known fact in finite group theory equates the sum of squares of dimensions of
irreducible representations (irreps) to the order of the group G. Letting R label the irreps
and denoting the dimensions by dR, we have

|G| =
∑
R

d2
R (1.1)

where |G| is the order of the group. Another well-known fact equates the number of irreps
to the number of conjugacy classes. These are two properties of the set of irreps which
can be constructed using the combinatorics of group elements and their group multipli-
cation. It is natural to ask whether this combinatoric constructibility of properties of dR
goes further to allow reconstruction of all the individual dR. A remarkable fact about
finite groups is that |G|dR is an integer for every R. The proof, which relies on properties
of algebraic integers, involves the intersection of number theory and group theory (see
for example [1] for the proof). In this paper, we will describe an algorithm for the con-
struction of the integers |G|2/d2

R, and hence of dR, from the combinatoric data of group
multiplications. The multiplications are shaped according to the fundamental groups of
two dimensional surfaces.

Many interesting results in representation theory have combinatoric constructions. For
example the enumeration of representations of the symmetric group can be done by enumer-
ating Young diagrams. The computation of dimensions dR for irreps of symmetric groups
can be done by counting standard Young tableaux. The Littlewood-Richardson coefficient
can be computed by a combinatoric rule for composing Young diagrams. These results
are described in standard textbooks on representation theory, e.g. [2]. Further results
along these lines are given in [3]. A number of open problems in representation theory
revolve around finding combinatoric interpretations for representation theoretic quanti-
ties [4]. Such interpretations have implications for computational complexity theory [5–9].
In a recent paper [10], it was shown that stringy combinatoric structures, notably bipartite
ribbon graphs, can be used to provide a lattice interpretation for Kronecker coefficients.
The stringy nature of bipartite graphs reveals itself in a number of ways [11–15].

Here we turn to the question of whether string theory can provide an avenue for the
constructibility of dR and |G|dR . A number of developments in topological field theory and
topological string theory, provide valuable hints in this direction. Our constructions will be
based on the topological field theory of flat G-bundles on two dimensional surfaces, which
has concrete realizations as lattice constructions [16–19]. We will refer to this topological
field theory based on G as G-TQFT2. Recent work in connection with wormhole physics
and baby universes [20, 21] has introduced sums over surfaces weighted by a string coupling
gst, where each surface supports a G-TQFT2, thus defining topological string theories based
on G-TQFT2. We will refer to these string theories as combinatoric topological string
theories or G-CTST. We will give a construction of (|G|/dR)2 which involves collecting
G-TQFT2 data from surfaces of different genera, so the construction may be naturally
interpreted in terms of G-CTST. G-TQFT2 have been used as an alternative approach to
proving the integrality of the ratios |G|/dR in the mathematics literature in [22].
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While the paper starts with these motivations based on representation theoretic con-
struction algorithms related to G-TQFT2/G-CTST, we then turn to physical questions
related to these theories and it turns out that these ratios continue to play a key role.
We describe transition probabilities constructed from G-TQFT2, from disjoint unions of
circles to disjoint unions of circles, using the topological lattice formulation as a model
for a two-dimensional path integral. As usual the probabilities are squares of amplitudes
computed from the path integral. The algebraic structure of G-TQFT2 ensures that the
amplitudes themselves are sums over sectors labelled by irreducible representations of G.
The weights include the Plancherel distribution over irreps of finite groups [23] and various
generalizations (depending on the choice of genus of the interpolating surfaces), which find
a geometrical interpretation as amplitudes in G-TQFT2. The sums over sectors labelled
by irreps are interpreted following [20] as sums over the α-states, which were identified
by Coleman [24] as part of a mechanism to restore quantum coherence in the context of
wormhole physics. Using some of the algebraic structures of G-TQFT2 developed in the
context of open-closed topological string theory [25], we find that regarding the centre of the
group algebra of G, denoted Z(C(G)) ≡ H, as a quantum mechanical Hilbert space gives a
useful way to think about the one-dimensional topological quantum mechanics underlying
G-TQFT2 and its two-dimensional geometrical structures. The integer ratios |G|dR play a
central role in this discussion. Denoting as PR the projector basis elements of Z(C(G)),
there is a handle-creation operator

Π =
∑
R

( |G|
dR

)2
PR (1.2)

which can also be expressed in terms of the structure constants of Z(C(G)) [19, 26].
Considering the sums of G-TQFT2 amplitudes over all genera which define G-CTST

as in [20, 21] we investigate the stringy property of S-duality. We then study the finite-
ness properties of G-TQFT2/G-CTST and their physical implications. This leads to the
definition of an inner product for a polynomial algebra of surfaces, where the null states
capture the finiteness relations. This draws on the study of giant gravitons [27–29] in the
context of AdS5/CFT4, notably features such as the departure from large N factorization
and their connection to finiteness and the holographic map for large operators [30, 31]. As
we explain, G-TQFT2 amplitudes play a mathematical role analogous to trace-observables
of CFT4. This leads to the consideration of a 2D/3D holographic duality involving G-
TQFT2. The discussion gives a new perspective on the factorization puzzle associated
with 3D wormholes in 2D/3D holography [32].

The paper is organized as follows. In section 2 we explain how the integer ratios ( |G|dR )2

are constructed from amplitudes of G-TQFT2. In section 3 we generalize the discussion
to show how to construct the normalized characters of finite groups from boundary ampli-
tudes of G-TQFT2. We explain the relation of this construction to existing algorithms for
characters. The normalized characters are defined as χR(g)|C|

dR
, where χR(g) is the character

of a group element g in the irrep R, dR is the dimension of the irrep, and |C| is the number
of elements in the conjugacy class C containing g. In section 4, we describe probability
distributions associated with the interpretation of G-TQFT2 in terms of a 2D path inte-
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gral, and the structure of the amplitudes as sums over irreps. In section 5 we describe an
S-duality transformation on closed string amplitudes of G-CTST. While the expansion of
G-CTST at positive powers of the string coupling gst is given in terms of positive powers
sums of |G|/dR, the S-dual expansion is in terms of positive power sums of dR. We give a
geometrical interpretation of these positive power sums in terms of G-TQFT2 amplitudes
for entangled disconnected surfaces, where the entanglement is defined using projectors PR
for the irreps living in the centre Z(C(G)) of the group algebra of G. In this section we also
describe the singularity structure of stringy partition functions of G-CTST amplitudes as
a function of the string coupling, exhibiting an interesting link between poles and residues
of the partition functions and representation theoretic data. Section 6 is a detailed discus-
sion of the implications of the finiteness of G for relations between string amplitudes at
different genera. This discussion leads to the introduction of a coupling between TQFT2
for G and TQFT2 for symmetric groups, which we refer to as C(G) × (C(S))∞-TQFT2.
Powers of the handle-creation operator Π play an important role in this coupling. Section 7
discusses the possibility of a 3D holographic interpretation for C(G) × (C(S))∞-TQFT2
and in that scenario discusses the factorization puzzle associated with wormholes in 2D/3D
holography [32].

2 Constructing integer ratios |G|/dR from group products associated
with surfaces

In general, group representation theory of a finite group G over the complex numbers C
is not a purely combinatoric subject. It can involve the solution of eigenvalue equations
with roots that may not be integer. Many interesting aspects of irreducible representations
nevertheless have integrality properties. As we mentioned in the introduction, a striking
property is that the dimension of every irrep is a divisor of the order of the group. The
group multiplication table is a discrete and finite object. It is natural to ask if there is
a simple way to go from the group multiplication table to the integer ratios |G|dR for any
group G while working purely with integers. We show in this section that this is indeed
possible and that it involves group multiplications chosen to be of forms determined by two
dimensional surfaces, and that the ratios are reconstructed by collecting the amplitudes of
G-CTST over different genera and performing integer operations on this data.

Take a group G. Let R be a label for its irreps, dR the dimension of the irrep. We
have the following well-known properties:

Number of irreps =
∑
R

d0
R = Number of conjugacy classes, (2.1)

while the sum of squares of the dimensions is∑
R

d2
R = |G| . (2.2)

In G-TQFT2, defined in terms of a sum of equivalence classes of G-bundles, weighted
with inverse automorphism, the following equality is known [16, 18, 19]∑

R

( |G|
dR

)2h−2
= Number of flat G-bundles on surface of genus G

counted with inverse automorphism

– 3 –
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= 1
|G|

∑
g1,g2,··· ,g2h−1,g2h∈G

δ([g1, g2][g3, g4] · · · [g2h−1, g2h]) (2.3)

where [g1, g2] = g1g2g
−1
1 g−1

2 . This equation has also been studied in the mathematical
literature on finite groups and the geometry of surfaces [33, 34].

This follows using Schur’s orthogonality relations for matrix elements in irreducible
representations. For any finite group G, we have

∑
g1,g2∈G

dR∑
b,c,d=1

DR
ab(g1)DR

bc(g2)DR
cd(g−1

1 )DR
de(g−1

2 ) =
( |G|
dR

)2
δae . (2.4)

Consequently

∑
g1,g2,··· ,g2h∈G

χR([g1, g2] · · · [g2h−1, g2h]) =
( |G|
dR

)2h
dR (2.5)

and hence∑
g1,g2,··· ,g2h∈G

δ([g1, g2] · · · [g2h−1, g2h]) = 1
|G|

∑
R

∑
g1,g2,··· ,g2h

dRχR([g1, g2] · · · [g2h−1, g2h])

= |G|
∑
R

( |G|
dR

)2h−2
(2.6)

Zh, the genus h partition function, is then given by

Zh = 1
|G|

∑
g1,g2,··· ,g2h−1,g2h∈G

δ([g1, g2][g3, g4] · · · [g2h−1, g2h])

=
∑
R

( |G|
dR

)2h−2
. (2.7)

This can also be written as

Zh =
∑
P

1
|Aut(P )| (2.8)

where P is a flat G-bundle which can be identified with an equivalence class of tuples
(g1, g2, g3, g4, · · · , g2h−1, g2h) obeying the condition

g1g2g
−1
1 g−1

2 · · · g2h−1g2hg
−1
2h−1g

−1
2h = id. (2.9)

using the equivalence relation

(g1, g2, · · · , g2h−1, g2h) ∼ (gg1g
−1, gg2g

−1, · · · , gg2h−1g
−1, gg2hg

−1) for all g ∈ G (2.10)

Aut(P ) is the subgroup which leaves the tuple fixed and is an automorphism of the flat
G-bundle P , |Aut(P )| is the order of the group. For any group G, the ratio |G|/dR is known
to be an integer. A proof based on properties of algebraic integers is given in [1]. This
means that while each equivalence class of G-bundles contributes, in general, a rational
number to the sum (2.8) the whole sum is an integer. This integrality is not obvious from
a topological point of view. This is discussed in [35].

– 4 –
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2.1 Combinatoric construction of |G|
2

d2
R

Many interesting integral quantities in representation theory have combinatoric construc-
tions. Examples include the dimensions of symmetric group irreps and the Littlewood-
Richardson coefficients. For a general discussion of such problems see [3, 4], For Kronecker
coefficients of symmetric groups, a lattice construction based on ribbon graphs and inte-
ger matrices arising from permutation group multiplications was recently given [10]. Here
we show that the partition functions of G-TQFT2 on genus h surfaces also allow us to
construct the integers |G|

2

d2
R
≡ a2

R by using

• Group multiplications of shape defined by the fundamental groups of surfaces.

• Searching among divisors of integers.

From (2.7), the genus one partition function, Z1, is the number of conjugacy classes,
which we will denote as K. The number of power sums we need to construct the set of
all |G|dR is K. This means we need Z2, Z3, · · · , ZK+1. Using Newton’s identities, we get a
polynomial of degree Z1 = K.

It is convenient to define a matrix X

X = Diag(a2
1, a

2
2, · · · , a2

K) . (2.11)

Using (2.7) we have ∑
R

a2
R = Z2 = trX∑

R

a4
R = Z3 = trX2

...∑
R

a2K
R = ZK+1 = trXK . (2.12)

We use Newton’s identities to convert these to elementary symmetric functions. In language
familiar from the AdS/CFT treatment of branes, consider

F (X,x) = det(x−X) = (x− a2
1)(x− a2

2) · · · (x− a2
K)

= xK − (trX)xK−1 + 1
2((trX)2 − trX2)xn−2 + · · ·+ (−1)K(detX)

= xK − e1(X)xK−1 + e2(X)xK−2 + · · ·+ (−1)KeK(X) (2.13)

The elementary symmetric functions are

e0(X) = 1

e1(X) =
∑
i

Xi

e2(X) =
∑

1≤i<j≤K
XiXj

el(X) =
∑

1≤i1<i2<···<il≤K
Xi1Xi2 · · ·Xil . (2.14)

– 5 –
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It is also useful to define El(X) = (−1)lel(X) which leads to

F (X,x) = xn + E1(X)xn−1 + E2(X)xn−2 + · · ·+ EK−1(X)x+ EK(X)

=
K∑
l=0

xK−lEl(X) . (2.15)

From (2.12) the coefficients of the powers of x are given in terms of G-TQFT2 partition
functions. From (2.13) a2

R are the zeroes of F (X,x), which is viewed as a polynomial in x
with coefficients constructed from G-TQFT2 partition functions as above. So to construct
the aR from group theoretic combinatoric data, we need to solve the polynomial equation

F (X,x) = 0 (2.16)

The elementary symmetric functions can be expressed in terms of traces of X as

ek(X) =
∑
p`k

(−1)k−
∑

i
pi∏

i i
pipi!

∏
i

(trXi)pi

=
∑
p`k

(−1)k−
∑

i
pi∏

i i
pipi!

∏
i

(Zi+1)pi . (2.17)

Here p is a partition of k, with pi parts of length i, so that ∑i ipi = k.

detX =
∑
p`K

(−1)K−
∑

i
pi∏

i i
pipi!

∏
i

(trXi)pi

=
∑
p`K

(−1)K−
∑

i
pi∏

i i
pipi!

∏
i

(Zi+1)pi . (2.18)

If we did not know that the a1, a2, · · · , aK are integers, we would have to solve compli-
cated polynomial factoring algorithms to find them. However, there are simpler algorithms
using this integrality (discussed e.g. at [36]).

The numbers (a2
1, a

2
2, · · · , a2

K) are divisors of detX since F (X,x = 0) = (−1)K detX.
Let

Div0 = Set of divisors of (−1)KF (X,x = 0) . (2.19)

Each of the a2
R is a divisor of (−1)KF (X,x = 0), i.e. an element of Div0. Next note that

(−1)KF (X,x = 1) = ∏
R(a2

R − 1). Let ri be the roots of F (X,x = 1). The a2
i are among

the (ri + 1).

Div1 = Set of divisors of F (X,x = 1) shifted up by 1 . (2.20)

In general

Divl = Set of divisors of F (X,x = l) shifted up by l . (2.21)

– 6 –
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Each element in the list {a2
1, a

2
2, · · · , a2

K} is in the intersection

Div0 ∩Div1 ∩Div2 · · · ∩DivK−1 (2.22)

and the list satisfies ∏
R

(a2
R − l) = (−1)K−lF (X, l)

(2.23)

for all l ∈ {0, 1, · · · ,K − 1}.

Claim. We show that if we take K of these Divisor sets, and impose the above condi-
tions (2.23), we will uniquely determine the list of a2

R.

Proof.

F (X,x) =
K∑
k=0

xK−kEk(X) .

Note that

F (X, 1) = 1 + E1(X) + E2(X) + · · ·+ EK−1(X) + EK(X)
F (X, 2) = 2K + 2K−1E1(X) + 2K−2E2(X) + · · ·+ 2EK−1(X) + EK(X)
F (X, 3) = 3K + 3K−1E1(X) + 3K−2E2(X) + · · ·+ 3EK−1(X) + EK(X)

... (2.24)
F (X,K − 1) = (K − 1)K + (K − 1)K−1E1(X) + · · ·+ (K − 1)EK−1(X) + EK(X) .

Rewrite this as

F (X, 1)− F (X, 0)− 1 = E1(X) + E2(X) + · · ·+ EK−1(X)
F (X, 2)− F (X, 0)− 2K = 2K−1E1(X) + 2K−2E2(X) + · · ·+ 2EK−1(X)
F (X, 3)− F (X, 0)− 3K = 3K−1E1(X) + 3K−2E2(X) + · · ·+ 3EK−1(X)

... (2.25)
F (X,K − 1)− F (X, 0)− (K − 1)K = (K − 1)K−1E1(X) + · · ·+ (K − 1)EK−1(X) .

Note that 
F (X, 1)− F (X, 0)− 1
F (X, 2)− F (X, 0)− 2K

...
F (X,K − 1)− F (X, 0)− (K − 1)K



=


1 1 · · · 1

2K−1 2K−2 · · · 2
...

(K − 1)K−1 (K − 1)K−2 · · · (K − 1)




E1(X)
E2(X)

...
EK−1(X)

 (2.26)

– 7 –
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n K lopt

3 3 6
4 5 6
5 7 7
6 11 9
7 15 7
8 22 36
9 30 36
10 42 25

Table 1. Table showing data for the optimal number of divisor sets to correctly determine the set
of aR for Sn. The table shows results for n = 3 up to n = 10.

This is a linear system of equations giving the F ’s in terms of the E’s. The transformation
matrix is a non-singular Van der Monde matrix, which means that once we have chosen
the a’s to reproduce the correct F (X, 0), F (X, 1), · · · , F (X,K − 1), the E1, · · · , EK−1(X)
are also reproduced.

This completes the construction of the ratios |G|dR from the combinatoric data of G-
TQFT2 amplitudes. A further interesting question is whether equation (2.22) alone is
sufficient (without using (2.23)) to determine the set of aR. At the moment, as described
above, one must determine the elements belonging to the intersection and then use (2.23)
to check that they are correct. Below, we perform some numerical experiments for G = Sn
in which we study only the intersection of the sets of divisors to determine the optimal
l necessary to identify the correct aR. For a given n, we construct F (X, 0). Then we
factorize F (X, 0) into its prime factors. For example, for n = 3, F (X, 0) = 11664, which
factorizes into 24 × 36. Then we use these prime factors, together with the correspond-
ing exponents to build all possible divisors of F (X, 0). In the example above, 2e2 × 3e3

with e2 = {0, 1, 2, 3, 4}, e3 = {0, 1, · · · , 6} will generate all possible divisors. To find all
possible divisors of F (X, 1), we subtract 1 from the number we build and check if it is
a divisor of F (X, 1). We follow a similar process to check if the number we build is a
divisor of F (X, 2), F (X, 3) etc. We keep only the elements that are divisors of the set
{F (X, 0), F (X, 1), · · · , F (X, l)}. In this way we construct the intersection (2.22) but for
arbitrary l. We then check if this generates the correct set of aR. The smallest l value for
which this occurs is denoted by lopt. We performed these calculations for Sn for n = 3 up
to n = 10. The results are shown in table 1.

We note that for Sn it is indeed possible to construct the |G|/dR at least for small
values of n just by studying the intersection of the divisor sets of the F (X, l). We further
note that, for the n values considered, the optimal number of divisor sets l is always less
than 2K.

Finally, we note that the power sums on the l.h.s. of (2.3) have an interpretation in
terms of string theory for a target space which is a disjoint union of points [37–39], which
implies that the algorithm for converting the power sums to the integers ( |G|dR )2 we have

– 8 –
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described has an interpretation as a construction of the string amplitudes for a target space
point from a finite set of string amplitudes for the disjoint union.1

3 Constructing normalized characters from group words and surfaces

Having shown how closed string amplitudes in G-TQFT2/G-CTST are used to construct
the integer ratios |G|/dR and hence the dR, we now consider the construction of characters
χR(g). It turns out that the quantities appearing most directly from G-CTST amplitudes
are an appropriately normalized form of the characters. Let Cp be a conjugacy class of G
and let |Cp| be the number of elements in the conjugacy class. We will denote by Tp the
sum of group elements, in the group algebra C(G)

Tp =
∑
g∈Cp

g (3.1)

Tp is a central element of C(G), i.e. commutes with all elements in C(G). The normalized
characters for Cp are, for g ∈ Cp,

|Cp|χR(g)
dR

= χR(Tp)
dR

. (3.2)

The set of Tp for all conjugacy classes spans the centre Z(C(G)). Another basis for
Z(C(G)) is given by the projectors labelled by irreducible representations R

PR = dR
|G|

∑
g

χR(g)g−1 . (3.3)

The relation between the two bases is a Fourier transformation and plays an important
role in this section. We will start in section 3.1 by giving the key formulae relating am-
plitudes of G-TQFT2 with boundaries to normalized characters, and then describe how
these lead to a combinatoric construction of the characters. Since we restrict the dis-
cussion to combinatoric construction involving group multiplications and investigation of
integer roots of polynomials, the output is the construction of the set of rational normal-
ized characters (which are also integer as we will see) along with a polynomial with integer
coefficients characterizing the non-rational characters which live in finite extensions of the
rational numbers. In section 3.2 we review a standard algorithm used for the construction
of characters. In section 3.3 we explain the link between the standard construction and the
discussion of section 3.1. The link originates from the fact that the higher genus ampli-
tudes used in 3.1 come from gluing 3-holed spheres and makes use of the Fourier transform
on Z(C(G).

3.1 Construction of normalized characters from higher genus surfaces with
boundary

A standard result in G-TQFT2 is that the amplitude for a genus h surface with r distinct
boundaries, where the group element at the boundary is constrained to be in a conjugacy

1We thank Eric Sharpe for bringing these papers to our attention and for discussions on this point.
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class Cp is

∑
R

( |G|
dR

)2h−2 (χR(Tp)
dR

)r
= tr

(
X2h−2Xr

p

)

= 1
|G|

∑
si,ti

∑
σ1.··· ,σr∈Cp

δ

((
h∏
i=1

sitis
−1
i t−1

i

)
σ1 · · ·σr

)
(3.4)

X is a diagonal matrix with diagonal entries equal to |G|dR . We have defined Xp to be the
diagonal matrix with matrix entries

(
χR(Tp)
dR

)
. Fixing h = 1, we get power sums of the

normalised character from combinatoric data.

tr(Xr
p) =

∑
R

(
χR(Tp)
dR

)r
= 1
|G|

∑
s1,t1

∑
σ1.··· ,σr∈Cp

δ(s1t1s
−1
1 t−1

1 σ1 · · ·σr) . (3.5)

This gives the combinatoric data reproducing tr(Xr
p). It is the counting of G bundles

on genus one surfaces with r punctures where the monodromy around each puncture has
the specified conjugacy class. In this way we can construct the characters of all conjugacy
classes, using the same algorithm as in section 2. The problem reduces to solving the
polynomial equation

F (Xp, x) = det(Xp − x) = 0 . (3.6)

As in section 2.1, we can find integer solutions by considering the integer factors of
F (Xp, x = 0), F (Xp, x = 1), · · · . By factoring out the integer factors from F (Xp, x) we
are left with a polynomial PCp(x) for every conjugacy class of a group G. For every group
we can define a polynomial PG(x) which is obtained by taking the product over all the
conjugacy classes ∏

p

PCp(x) (3.7)

and clearing all multiplicities, i.e. replacing any factor p(x)m for m > 1 by p(x). This
polynomial PG(x) is tabulated for non-Abelian groups with order up to 60 in appendix B.
We have produced these polynomials from known character tables but they are in principle
constructible using group multiplications shaped by surfaces with boundaries using (3.5).
Note that for symmetric groups, these polynomials are always one. This is due to the
fact that the normalized characters for symmetric groups are all integers, a fact which was
useful in the ribbon graph lattice algorithm for Kronecker coefficients given recently in [10].

The normalized characters χR(Tp)
dR

are algebraic integers, i.e. roots of a polynomial of
the form xn+a1x

n−1 + · · ·+an, where the leading coefficient 1 and the other coefficients ai
are integers. This is a consequence of the fact that they are eigenvalues of an integer matrix
(Cp) r

q = C r
pq of structure constants of multiplication TpTq = C r

pq Tr. This implies that
the traces trXr

p , which are power sums of the normalized characters are integers. Note that
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the r.h.s. of (3.4) and (3.5) can be expressed as a sum over equivalence classes of tuples
of group elements satisfying the delta function condition. Each equivalence class is a flat
G-bundle and has an automorphism group, consisting of group elements g which fix the
tuple, when acting by conjugation. In the sum, these equivalence classes are weighted by
the inverse order of the automorphism group, so these are in general rational numbers.
Nevertheless, the sums in (3.4) and (3.5) are integer due to the integrality of trXr

p . This
seems to be an interesting, not a priori obvious, property of G-bundles.

It is useful to note that there are known general finite algorithms [40] which produce
all the matrix elements of irreducible representations over C. They work by going over
to the cyclotomic field Qe, where e is the exponent of the group, i.e. the smallest positive
integer such that ge is the identity for all the group elements. Our discussion above works
for each fixed conjugacy class and produces the integer normalized characters along with a
polynomial PCp(x) which defines an algebraic extension of the rational numbers containing
the non-integer normalized characters for that conjugacy class. The non-integer roots will
also live in the field Qep where ep is the smallest positive integer with the property that gep
is the identity for g in the conjugacy class Cp. Typically ep will be much smaller than e.

For the symmetric group, the exponent is∏
p≤n

pbln(n)/ ln(p)c . (3.8)

For a short proof, see [41]. However it is known that the normalized characters are ra-
tional, for example by the Murnaghan-Nakayama construction [2]. It is a useful fact that
if a normalized character is rational, it must be integer. The algorithm for normalized
characters we have described will determine all characters that can be expressed without
field extensions of the rationals. For a general group, once we the integer characters are
determined, we are left with the characters which require an extension of the rationals. It
is worth emphasizing that our discussion in this paper is not focused on finding alterna-
tive efficient computations of characters to known methods, but to describe combinatoric
algorithms that go from group multiplications, of forms determined by two-dimensional
surfaces, equivalently from amplitudes of combinatoric topological string theory, to the
characters. By this route, we get to all the integer characters for any group and to polyno-
mials PCp ,PG, which have leading term 1 and integer coefficients, and which characterise
the non-integer characters. It would be interesting to consider efficient algorithms and
general theoretical characterisation of these polynomials for different choices of G, Cp.

The discussion above has focused on h = 1. If we use h = 0, we have instead

∑
R

d2
R

|G|2
(
χR(Tp)
dR

)r
= tr

(
X−2Xr

p

)
= 1
|G|

∑
σ1.··· ,σr∈Tp

δ(σ1 · · ·σr) . (3.9)

An interesting problem is to devise algorithms which take these weighted power sums of(
χR(Tp)
dR

)
and produce, as output, the normalized characters. It is intriguing that the h = 1

data seems to lend itself to known algorithms we have used above, while the h = 0 case
seems less obvious.
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3.2 Link to Burnside’s construction

Consider the sum
1
|G|

∑
s,t∈G

∑
σ∈Tp

δ(sts−1t−1σ) . (3.10)

The geometric interpretation of this sum is that it gives the number of flat G-bundles on
a torus with a single hole, counted with inverse automorphism. The hole is in state Tp.
Recall that Tp is the sum of all elements in conjugacy class Cp of G.We can replace the sum
over s by a sum over conjugacy classes Cq. The sum over s above replaces t with Tq where
t ∈ Cq. There is also a factor of |G|/|Tq| ≡ |Sym(Cq)|: Sym(Cq) is the subgroup of G which
commutes with g ∈ Cq, and |Sym(Cq)| is the order of this subgroup. The sum over t then
replaces t−1 with Tq′ where t−1 ∈ Cq′ and the sum over σ replaces σ with Tp, so that

1
|G|

∑
s,t∈G

∑
σ∈Tp

δ(sts−1t−1σ) =
∑
q

1
|Tq|

δ(TqTq′Tp) . (3.11)

The right hand side of the last line above has an intuitive geometrical interpretation: it
is the partition function of a three holed sphere with the hole in state Tq glued to the
hole in state Tq′ . The third hole is in state Tp. The delta function is only non-zero when
the product of the class functions Tq, Tq′ and Tp multiply to give the identity, with some
multiplicity. The identity always sits in a conjugacy class of its own.

As we have discussed in detail above, the sum (3.10) produces a sum over the nor-
malized characters. The last equality above demonstrates that the sums defined by the
TQFT are naturally related to the class algebra. This connection has a natural counterpart
in constructions of characters starting from the class algebra [42–44]. Since these known
mathematical algorithms are clearly closely related to the construction of characters from
TQFT, it is worth reviewing them.

The normalized characters of the conjugacy classes

ωRp = χR(Tp)
dR

(3.12)

obey an interesting algebra

ωRpωRq =
∑
r

npqrωRr . (3.13)

The fusion coefficients npqr are integers. The algorithm of Burnside [42] constructs the
characters using only algebra, assuming that the fusion coefficients npqr are known. In
practice the calculation of the npqr can be carried out by multiplication in the group
algebra. The algorithm uses the class matrix Np defined by

(Np)qr = npqr . (3.14)

The class algebra (3.13) implies that ωRr is an eigenvector of the class matrix. Setting the
identity class to be r = 1, we see that

ωR1 = χR(1)
dR

= 1 (3.15)
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so that if we normalize the eigenvectors of the class matrix so that their first entry is 1,
then the pth component of the eigenvector is ωRp. To obtain the characters, we now need
the dimensions dR = χR(1) of each irrep. By using character orthogonality it is easy to
verify that the dimensions are fixed by the sum

∑
r

ωRrωSr
|Tr|

= δRS |G|
χR(1)χS(1) . (3.16)

To summarize, Burnside’s algorithm is

1. Determine the conjugacy classes of G.

2. Compute nrst and hence the class matrices Nr.

3. Compute the eigenvalues of each Nr normalized so that their first entry is 1. This
determines the ωRp.

4. Determine the dimensions dR of the irreps using (3.16).

5. Compute χR(Tp) = ωRpdR.

Subsequent improvements of Burnside’s algorithm were concerned with reducing the com-
putational cost of step 3. See [43, 44] for further details.

3.3 Construction of characters and Fourier transform on the centre of C(G)

The centre of the group algebra Z(C(G)) has two natural bases, related by a Fourier
transform. The first basis {Tp} corresponds to conjugacy classes. The second basis set
{PR} is labelled by irreps. The projectors satisfy

PRPS = δRSPS . (3.17)

A useful property is

TpPR = χR(Tp)
dR

PR . (3.18)

The delta function on the group extends to G and gives an inner product on Z(C(G))

δ(TpTq) = |Tq|δpq′ = |Tq′ |δpq′ = |G|
|Sym(Cq)|

δpq′ = |G|
|Sym(Cq′)|

δpq′ (3.19)

Cq′ is the conjugacy class which contains the inverses of the group elements in the conjugacy
class Cq. The inner product for the projectors is

δ(PRPS) = δRS
d2
R

|G|
. (3.20)

The product in Z(C(G)) in the Tp basis is

TpTq =
∑
r

C r
pq Tr =

∑
r

δ(TpTqTr′)
|Tr|

. (3.21)
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Consider the identity ∑
q

δ(TqT rpTq′)
|Tq|

=
∑
R

|G|δ(PRT rpPR)
d2
R

(3.22)

which follows from taking the trace of T rp in the two bases. We also have
∑
q

TqTq′

|Tq|
= 1
|G|

∑
g1,g2

g1g2g
−1
1 g−1

2 (3.23)

and ∑
R

|G|δ(PRT rpPR)
d2
R

=
∑
R

χR(T rp )
dR

=
∑
R

(
χR(Tp)
dR

)r
. (3.24)

This leads to
1
|G|

∑
g1,g2∈G

δ(g1g2g
−1
1 g−1

2 T rp ) =
∑
R

(
χR(Tp)
dR

)r
= Tr(Xr

p) (3.25)

We have thus recovered the identity (3.5) by taking the trace of T rp in the two bases
for Z(C(G). The diagram in (3.26) illustrates the geometrical nature of the calculation
for‘r = 2:

−→
∑
q

δ(Tq′T 2
p Tq)

1
|Tq|

=
∑
R

δ(PRT 2
pPR) 1(

d2
R
|G|

) . (3.26)

Note that ∑
q

δ(Tq′T 2
p Tq)

1
|Tq|

=
∑
q,r′

δ(Tq′TpC r1
pq Tr1) 1

|Tq|

=
∑
q,r1,r2

C r1
pq C r2

pr1 δ(Tq1Tr2) 1
|Tq|

=
∑
q,r1

(Cp)qr1(Cp)r1
r

= Tr(X̃2
p ) (3.27)

where (X̃p)rq = Cpq
r. From (3.18) we see that the eigenvalues of X̃p are nothing but the

entries of the diagonal matrix Xp we defined in section (3.1).
The connection to Burnside’s algorithm is that the coefficients C r

pq are equal to the
npqr appearing in the product of the normalized characters (3.13). The calculation of the
eigenvalues of (Np)qr = npqr = (X̃p)rq involves the calculation of

det(X̃p − λ) . (3.28)

The coefficients of the powers of λ are elementary symmetric polynomials expressible in
terms of power sums trX̃r

p = trXr
p . These powers appear in

det(X̃p − λ) = det(Xp − λ) . (3.29)

– 14 –



J
H
E
P
0
1
(
2
0
2
2
)
0
7
1

Our discussion in section 3.1 introduced the polynomial det(Xp − λ) as a tool to extract
the diagonal entries of the matrix Xp from the power sums of these entries (a tool which
we also used in section 2 to construct |G|/dR), whereas det(X̃p − λ) arises in Burnside’s
construction from the diagonalization of the matrix of structre constants (Np)qr = Cpq

r.

4 Probability distributions from G-TQFT2 and G-CTST

The formulation of G-TQFT2 as a topological lattice gauge theory with plaquette weight
enforcing the flatness condition can be viewed as a discrete path integral in a two-
dimensional theory, and realizes the axiomatic formulation of TQFT by Atiyah [45]. This
approach to G-TQFT2 is a finite group version of [17] which is known to be equivalent to
the formulation in [19]. The state space associated with a circle boundary is the centre
Z(C(G)) of the group algebra C(G) of G. Using the path integral interpretation, it is
natural to use the partition function for a 2-manifold with for n incoming circle boundaries
and m outgoing circle boundaries to define probabilities for transitions between H⊗n to
H⊗m. As we will see the amplitudes are invariant under exchange of the states in the
tensor factors, so we have transitions from the symmetrised product Sn(H) to Sm(H).
We will write explicit formulae for the probabilities of such transitions within G-TQFT2
and by summing over different genuses with weight g2h−2

st we will get analogous transition
probabilities for G-CTST. The transition probabilities are squares of amplitudes. These
amplitudes in turn have an interesting structure, containing a sum over a label R for
irreducible representations which contribute according to some positive weights. These
positive weights themselves define probability distributions over the irrep labels. These
probability distributions include the Plancherel distribution for finite groups [23] and gen-
eralizations thereof. Following [20] the sum over R formulae for the amplitudes have an
interpretation in terms of a classical ensemble and the irrep labels R provide an example of
Coleman’s α-eigenstates which were used to explain quantum coherence in the context of
wormholes [24, 46]. Building on known structures of G-TQFT2 [25], we will review how the
sum over irrep sectors arises from the gluing relations of G-TQFT2. These are based on the
properties of the algebra Z(C(G)) = H. The existence of two bases for H, one labelled by
conjugacy classes and one labelled by irreps plays a key role in understanding the sectors.
To accommodate the in-out states of the general transition amplitudes between circles, and
take advantage to the gluing relations, it is useful to consider quantum mechanics based
on the state space

∞⊕
n=0

Sn(H) (4.1)

built from the algebra H. This may be viewed as a one-dimensional quantum system
underlying the sum over α-states arising in the amplitudes of G-TQFT2.

4.1 Plancherel distribution for G and geometrical generalizations in G-TQFT2

The Plancherel distribution makes a natural appearance in the sphere partition function,
which is given by the sum

ZS2 =
∑
R

(
d2
R

|G|2
)

= 1
|G|

. (4.2)
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The algorithms in section 3 allow us to use the genus one and higher partition functions
to construct the ratios |G|dR . Using these ratios and the formula above, we can add up to
recover ZS2 . In this sense the higher genus partition functions allow us to reconstruct the
genus zero partition function.

By multiplying with |G| we have

|G|ZS2 =
∑
R

(
d2
R

|G|

)
= 1 . (4.3)

The summands are positive numbers which define the Plancherel distribution. We can give
an interpretation of each probability in terms of disc partition functions. The disc partition
function with boundary condition g ∈ G is proportional to the delta function on the group

|G|ZD2(g) = δ(g) =
∑
R

dRχ
R(g)
|G|

. (4.4)

The disc partition function is defined for group algebra elements ∑g cgg ∈ C(G) as

ZD2

(∑
g

cg

)
=
∑
g

cgZD2(g) . (4.5)

Consider the projector element in C(G) associated with an irrep R

PR = dR
|G|

∑
g

χR(g)g−1 (4.6)

where χR(g) is the character of g ∈ G in irrep R.

ZD2(PR) =
∑
g

dRχ
R(g)
|G|

ZD2(g−1) . (4.7)

Using (4.4) we find

|G|ZD2(PR) = d2
R

|G|
(4.8)

This reproduces the probabilities of the Plancherel distribution for a finite group, directly
from a disc partition function.

The G-TQFT2 perspective on the Plancherel distribution shows that it has a number
of generalizations with a geometric interpretation. These generalizations are motivated by
considering partition functions for surfaces with h handles and b boundaries. The partition
function is

Zh,b;Tp1 ,··· ,Tpb =
∑
R

(
dR
|G|

)2−2h−b
χR(Tp1) · · ·χR(Tpb)

= 1
|G|

δ(Πh−1Tp1 · · ·Tpb) (4.9)
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where Π is the handle-creation operator

Π =
∑
R

( |G|
dR

)2
PR =

∑
g1,g2∈G

g1g2g
−1
1 g−1

2 =
∑
p

TpTp′ |Sym(Cp)| . (4.10)

This partition function is normalized so that it is consistent with natural geometrical
gluing relations as we now explain. Gluing is performed using the inverse cylinder and
the boundary in state Tp = ∑

g∈Cp g is glued to a boundary in state T ′p = ∑
g∈Cp g

−1,
and summing the label p over all the conjugacy classes of G. We can absorb the factors
associated to the inverse of the cylinder in the definition

T ∗p = Tp′

|Tp| |G|
. (4.11)

A basic identity that can be used to perform any gluing is

∑
p

χR(ATp)χS(T ∗pB) =
∑
p

χR(ATp)χS(Tp′B)
|Tp| |G|

= δRSχR(AB) (4.12)

where A and B to belong to C(G) and at least one is in the centre Z(C(G)). It is also
useful to have the gluing equation in terms of projectors:

δ(AB) =
∑
R

δ(APR)δ(PRB) |G|
dR

(4.13)

where we also require A and B to belong to C(G) and at least one is in the centre Z(C(G)).
As an example of some gluing relations, gluing a disc to a b holed sphere gives a sphere
with b− 1 holes

∑
p

ZD2(Tp)Zh,b;Tp1 ,··· ,Tpb−1T
∗
p

= Zh,b;Tp1 ,··· ,Tpb−1
(4.14)

and gluing two holes increases the number of handles by 1 and decreases the number of
boundaries by 2

∑
p

Zh,b;Tp1 ,··· ,Tpb−2TpT
∗
p

= Zh+1,b−2;Tp1 ,··· ,Tpb−2
. (4.15)

As mentioned above, the Plancherel distribution admits a number of interesting gen-
eralizations.

We can consider a G-TFT2 map from n holes to m holes. Associate Tp1 · · ·Tpn to the
initial holes and Tq′1 · · ·Tq′m to the final holes. The relevant partition function, for a surface
with h handles, is given by

Zh,m+n,Tp1 ···TpnT ∗q1 ···T
∗
qm

=
∑
R

(
dR
|G|

)2−2h−m−n
χR(Tp1) · · ·χR(Tpn)χR(T ∗q1) · · ·χR(T ∗qm)
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= . (4.16)

This amplitude naturally defines a probability for a state of n circles with boundary
conditions Tp1 , Tp2 , · · · , Tpn to evolve to a state of m circles with boundary conditions
T ∗q1 , T

∗
q2 , · · ·T

∗
qm . The associated probability is

p(h,m+ n, Tp1 · · ·TpnT ∗q1 · · ·T
∗
qm) =

Zh,m+n,Tp1 ···TpmT ∗q1 ···T
∗
qm
Zh,m+n,Tq1 ···TqmT ∗p1 ···T

∗
pn

Nh,m,Tp1 ···Tpn
.

(4.17)
These are indeed positive and correctly normalized as we explain, allowing a probability
interpretation. This follows because χR(g−1) is the complex conjugate of χR(g) for finite
groups (where any representation can be made unitary): consequently χR(T ∗p ) = χR(Tp)

|G||Tp|
where the normalization is determined by

N2
h,m,Tp1 ···Tpn

=

=

=
∑
n

∑
q1,q2,···qm

Zh,m+n,Tp1 ···TpnT ∗q1 ···T
∗
qm
Zh,m+n,Tq1 ···TqmTp1∗···Tpn∗

(4.18)
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We find that

N2
h,m,Tp1 ···Tpn

= Z2h+m−1,2n;Tp1 ,··· ,Tpn ;T ∗p1 ,··· ,T
∗
pn
. (4.19)

This follows by using ∑
q

χR(Tq)χS(T ∗q ) = δRS . (4.20)

The construction of normalizing probabilities using higher genus partition functions has
been employed in a conformal field theory context in [47] in connection with giant gravitons.
G-TQFT2 provide a simpler realisation of the same concept.

4.2 G-TQFT2 partition functions, baby-universe operators and quantum me-
chanical state space

We have considered how partition functions for surfaces with boundary define amplitudes
and probabilities for transitions between conjugacy class observables. These amplitudes
come from a sum over irreps R. The weights for these different R can themselves be
interpreted as defining a probability distribution. Following the discussion in [20], the
different R can be identified with the α-states of Coleman [24].

Consider the partition function, on a surface of genus h, with n insertions of the form

χR(Tpi)
dR

i = 1, 2, · · · , n (4.21)

and m insertions of the form

χR(T ∗qi)
dR

i = 1, 2, · · · ,m . (4.22)

The partition function is given by

ZΣh,Tp1 ···TpnT
∗
q1 ···T

∗
qm

=
∑
R

(
|G|2

d2
R

)h−1
χR(Tp1)
dR

· · · χR(Tpn)
dR

χR(T ∗q1)
dR

· · ·
χR(Tq∗m)
dR

. (4.23)

This partition function can be represented as the path integral on the surface shown in
figure 1.

By cutting the path integral open, we can get two states. For example, the ket vector

|Tp1 , Tp2 , · · · , Tpn〉 = (4.24)
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Figure 1. Genus h − 1 surface with insertions of elements of the class algebra. A surface with
h = 2 is shown.

belongs to Symk(H), the symmetric product of k copies of H. The ket vector is invariant
under swapping the Tis so that for example

|Tp1 , Tp2 , Tp3 , · · · , Tpn〉 = |Tp2 , Tp1 , Tp3 , · · · , Tpn〉 . (4.25)

This follows directly from the starting point (4.23). We can also define the bra vector

〈T ∗q1 , T
∗
q2 , · · · , T

∗
qm | = (4.26)

which enjoys the same symmetry

〈T ∗q1 , T
∗
q2 , T

∗
q3 , · · · , T

∗
qn | = 〈T

∗
q2 , T

∗
q1 , T

∗
q3 , · · · , T

∗
qm | . (4.27)

The inner product of this bra and ket corresponds to the partition function

〈T ∗q1 , T
∗
q2 , · · · , T

∗
qm |Tp1 , Tp2 , · · · , Tpn〉 = ZΣh,Tp1 ···TpnT

∗
q1 ···T

∗
qm
. (4.28)

We can define a set of commuting operators, which act as follows

T̂a|Tp1 , Tp2 , · · · , Tpn〉 = |Tp1 , Tp2 , · · · , Tpn , Ta〉 . (4.29)

These operators commute thanks to the symmetry (4.25). These are the baby universe
creation operators in this model [20, 24]. Any state in the Hilbert space can be obtained by
acting on the “vacuum state” |0〉, which corresponds to the surface without any boundary
circles. So, for example

|Tp1 , Tp2 , · · · , Tpk〉 = T̂p1 T̂p2 · · · T̂pk |0〉 . (4.30)
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We also have

〈T ∗l1 , T
∗
l2 , · · · , T

∗
lk
| = 〈0|T̂ †l1 T̂

†
l2
· · · T̂ †lk . (4.31)

The Tis and the T †i s commute, which is again a direct consequence of (4.23). This means
that we can simultaneously diagonalize all of these operators. The simultaneous eigenkets
are R states |R〉 which obey

T̂p|R〉 = χR(Tp)
dR

|R〉 (4.32)

i.e. the eigenvalues of the T̂p operators are the normalized characters. These states are the
analog of the α-eigenstates introduced in [24]. Similarly

〈R|T̂ †p =
χR(T ∗p )
dR

〈R| . (4.33)

We will now show that the G-TQFT2 partition function can be interpreted as a sum
over a classical ensemble of theories. The norm of the vacuum state is given by

〈0|0〉 = ZΣh =
∑
R

(
|G|2

d2
R

)h−1

≡ z . (4.34)

To get a correctly normalized distribution we should divide by the norm of the vacuum
state. The partition function is

ZΣh,Tp1 ···TpkT
∗
q1 ···T

∗
ql

= 〈T̂ †q1 · · · T̂
†
ql
T̂p1 · · · T̂pk〉

=
∑
R

(
|G|2

d2
R

)h−1
χR(Tp1)
dR

· · · χR(Tpk)
dR

χR(T ∗q1)
dR

· · ·
χR(T ∗ql)
dR

≡ z
∑
R

pR
χR(Tp1)
dR

· · · χR(Tpk)
dR

χR(T ∗q1)
dR

· · ·
χR(T ∗ql)
dR

(4.35)

where in the last line we pulled out the normalization of the vacuum state and we have
introduced the notation

pR(h) =

(
|G|2
d2
R

)h−1

∑
T

(
|G|2
d2
T

)h−1 . (4.36)

It is obvious that ∑
R

pR(h) = 1 . (4.37)

If we set h = 0 we find that

pR(h = 0) = d2
R

|G|
(4.38)

which is the Plancherel measure.

– 21 –



J
H
E
P
0
1
(
2
0
2
2
)
0
7
1

Notice that we can write the partition function (4.35) as follows∑
R

pROp1,p2,··· ,pl;q1,··· ,ql(R) (4.39)

which illustrates the fact that we can interpret the partition function as computing observ-
ables in a classical ensemble of theories. This interpretation has been discussed in [20].

From the point of view discussed above the weight pR(h = 0) is the normalized version
of the weight ( |G|

2

d2
R

)h−1 for the normalized characters in (4.35). We observed earlier that
the Plancherel distribution can be understood in terms of the amplitude for transition from
the vacumm to disc (4.8). Generalizing this observation, the partition function for genus h
with one boundary and with insertion of the central element PR at the boundary is given
by

Zh,1,PR = 1
|G|

δ(ΠhPR) =
(
|G|2

d2
R

)h−1

. (4.40)

We can use the gluing relation (4.13) to write the partition function as a sum over R-sectors

ZΣh,Tp1 ···TpkT
∗
q1 ···T

∗
ql

= 1
|G|

δ(ΠhTp1 · · ·TpkT
∗
q1 · · ·T

∗
ql

)

=
∑
R

δ(ΠhPR) |G|
d2
R

δ(PRTp1 · · ·TpkT
∗
q1 · · ·T

∗
ql

)

=
∑
R

( 1
|G|

δ(ΠhPR)
) |G|2
d2
R

δ(PRTp1 · · ·TpkT
∗
q1 · · ·T

∗
ql

) . (4.41)

This shows that the sum over R-sectors in (4.35) can be interpreted geometrically by cutting
the genus h transition surface from the in and out circles, along a circle which separates
the handles from the in-out states. On this circle we insert a complete set of projectors PR
which span H = Z(C(G)). The equality (4.41) is illustrated below:

=
∑
R

. (4.42)

It is useful to note that a central role is played in the above discussion by the alge-
bra Z(C(G)). We can define a topological quantum mechanics by taking as state space
H = Z(C(G)). This state space is a complex vector space, but equipped with additional
structures. It has an associative product. There is a map δ : H → C which is defined by
using the delta function on the group and extending to the group algebra (and its centre)
by linearity. We can define an inner product

g

(∑
g1

ag1g1,
∑
g2

bg2g2

)
=
∑
g1,g2

(ag1)∗bg2δ(g1g
−1
2 ) . (4.43)
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On the projector basis the inner product is

g(PR, PS) = δRS
d2
R

|G|
. (4.44)

Thus the inner product is non-degenerate and H is indeed a Hilbert space. The transition
probabilities considered earlier in this section are maps from

Sn(H)→ Sm(H) (4.45)

defined using the algebra multiplication in H and the delta function map δ : H → H. The
state spaces H and

∞⊕
n=0

Sn(H) ≡ S∞(H) (4.46)

provide the complete framework for computing the amplitudes and probabilities consid-
ered and may be usefully thought of as defining a one-dimensional topological quantum
mechanical system encoding amplitudes of G-TQFT2/G-CTST and holographically dual
to the two-dimensional theory. The topological nature is reflected in the fact that we have
not chosen a non-vanishing Hamiltonian to define a time evolution, and all the interesting
amplitudes, probabilities and their inter-relations are encoded in the overlaps involving the
interesting elements of H such as the conjugacy class observables Tp, the projectors PR and
the handle creation operator Π. The baby-universe creation operators (4.29) are operators
on S∞(H).

4.3 Probabilities in G-CTST

In G-CTST it is natural to consider the partition function that results if we sum over all
possible h values. The resulting partition function continues to have an interpretation as
an ensemble average. If we sum over genera, then the norm of the ground state is

〈0|0〉 =
∞∑
h=0

ZΣhg
2h−2
st =

∞∑
h=0

∑
R

( |G|2
d2
R

)h−1
g2h−2
st (4.47)

where gst is the string coupling. There is a sum over h for each R, each of which looks like
a geometric progression, with radius

r = |G|
2g2
st

d2
R

. (4.48)

The sum over h converges as long as

g2
st <

d2
R

|G|2
. (4.49)

Performing the geometric sum, we find

〈0|0〉 =
∑
R

d2
R

|G|2g2
st

1− |G|
2g2
st

d2
R

=
∑
R

d4
R

g2
st|G|2(d2

R − |G|2g2
st)

. (4.50)
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Notice that the condition ensuring that the geometric sum converges also ensures that the
norm of 〈0|0〉 is positive.

The partition function is

ZΣTp1 ···TpnT
∗
q1 ···T

∗
qm

= 〈T̂ †q1 · · · T̂
†
qm T̂p1 · · · T̂pn〉

=
∑
R

∞∑
h=0

(
|G|2

d2
R

)h−1
χR(Tp1)
dR

· · · χR(Tpn)
dR

χR(T ∗q1)
dR

· · ·
χR(T ∗qm)
dR

≡ z
∑
R

∞∑
h=0

pR
χR(Tp1)
dR

· · · χR(Tpn)
dR

χR(T ∗q1)
dR

· · ·
χR(T ∗qm)
dR

(4.51)

where

pR =
(∑

T

d4
T

g2
st|G|2(d2

T − |G|2g2
st)

)−1
d4
R

g2
st|G|2(d2

R − |G|2g2
st)

. (4.52)

It is obvious that ∑
R

pR = 1 . (4.53)

Again, we can write the partition function as

ZΣTp1 ···TpkT
∗
q1 ···T

∗
ql

〈0|0〉 =
∑
R

pR〈0|T̂ †q1 · · · T̂
†
ql
T̂p1 · · · T̂pk |0〉 (4.54)

which illustrates the fact that we can interpret the partition function as computing observ-
ables in a classical ensemble of theories. As in section 4.2 the amplitudes and probabilities
considered and their inter-relations can expressed within a topological quantum mechanics
based on H and S∞(H).

5 S-duality for G-CTST

The calculations performed in sections 2 and 3 have established that G-CTST provides a
construction of the dimensions dR and the characters of the irreducible representations of
any finite group. These constructions are examples of Fourier transforms, valid for general
groups, between representation theory data and group-combinatoric data. In this section
we will show that the same methods can be used to give an interpretation for sums of
positive powers of the dimensions of irreducible representations, including for example∑

R

d4
R (5.1)

in terms of G-TQFT2 with defects, for any finite group G. Further, we will argue that this
construction is intimately related to the S-duality transformation of G-CTST.

The group algebra C(G) has an inner product

〈g1|g2〉 = δ(g1g
−1
2 ) . (5.2)
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Consider the algebra

C(G)⊗ C(G) . (5.3)

There is an operator X acting on the algebra as a projector, whose image has dimension∑
R d

4
R. The projector X is defined by

X =
∑
R

PR ⊗ PR PR = dR
|G|

∑
g∈G

χR(g)g−1 . (5.4)

Indeed, a straight forward computation gives

Tr(X) =
∑

g1,g2∈G
〈g1, g2|X|g1, g2〉

=
∑
R

∑
g1,g2

δ(g−1
1 PRg1)δ(g−1

2 PRg2)

=
∑
R

|G|2δ(PR)δ(PR)

=
∑
R

d2
R

∑
g1∈G

χR(g1)δ(g−1
1 )

∑
g2∈G

χR(g2)δ(g−1
2 )

=
∑
R

d4
R (5.5)

providing a construction of the sum (5.1). This is a partition function on a product of
two tori, each of which has a single boundary. To see this, note that the geometrical
interpretation of the delta functions is as follows

= δ(g−1
1 PRg1)δ(g−1

2 PRg2) . (5.6)

Summing over g1 and g2 closes the cylinders into tori

∑
R

=
∑
R

∑
g1

δ(g−1
1 PRg1)

∑
g2

δ(g−1
2 PRg2) =

∑
R

d4
R .

A simple extension of the logic above can be used to give a formula for ∑R d
2k
R for any

positive integer k. In this case the operator playing the role of X is given by∑
R

PR ⊗ PR ⊗ · · · ⊗ PR (5.7)

where there are k factors in the tensor product.
There is an alternative description for X, which does not explicitly use the projectors

PR. We will give a description of this for the case where G is symmetric group Sn, where
known facts about the centre of Z(C(Sn)) allow a concrete discussion. We will make use of
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Tk ∈ Z(C(Sn)) given by summing all permutations with a single non-trivial cycle of length
k. This alternative description follows by exploiting the fact that conjugacy classes labelled
by partitions of n provide a basis for the centre of the group algebra C(Sn), denoted as
Z(C(Sn)) [49]. It turns out that a subset of these basis elements, those given by Tk with
k ≤ k∗(n), will generate Z(C(Sn)) [49]. k∗(n) is a (not explicitly known) function of n
whose form is determined by the degeneracies in the characters of Sn. The projectors
PR associated with irreducible representations of Sn also generate Z(C(Sn)), so it is not
surprising that these two possibilities exist. The alternative formula for X follows by noting
that the null space of H

H =
k∗(n)∑
k=1

(Tk ⊗ 1− 1⊗ Tk) (5.8)

is the image of X. To see why this is the case, note that Tk is in Z(C(Sn)), so that any
state belonging to an irreducible representation R is an eigenstate of Tk with eigenvalue
determined by R. If two states have the same eigenvalue for each Tk with k ≤ k∗(n), they
must belong to the same irrep. Thus, states in the null space of H are sums of tensor
products of states, where each term tensors pairs of states that belong to the same irrep.
This is clearly equal to the image of X. In order to apply this construction of X to general
G-TQFT2, we need to develop the results analogous to those of [49] for other G, i.e. identify
sets of generating conjugacy class sums for the centre Z(C(G)). These generating sets can
be chosen to be appropriate sets of conjugacy bbc news classes with small sizes.

This completes the discussion of the construction problem for positive power sums of
dR. We now explain the relevance of these constructions to the S-dual of G-CTST. Consider
the sum of genus h G-TQFT2 partition functions weighted by powers of the string coupling,
which defines the partition function Z(gst) of G-CTST

Z(gst) =
∞∑
h=0

g2h−2
st ZΣh =

∞∑
h=0

g2h−2
st

∑
R

( |G|
dR

)2h−2
=
∑
R

d2
R

|G|2g2
st

1
(1− g2

st|G|2/d2
R) . (5.9)

Defining the dual string coupling g̃st = g−1
st we have

Z(g̃st) =
∑
R

d4
Rg̃

4
st

|G|2(g̃2
std

2
R − |G|2) . (5.10)

Studying this expression for small values of the dual coupling, defines a new S-dual
expansion

Z(g̃st) = −
∑
R

∞∑
n=0

g̃2+2n
st

d4+2n
R

|G|4+2n ≡
∑
h

chg̃
2h−2
st . (5.11)

We see immediately that the dual partition function is written in terms of positive power
sums of dR and that the genus of the surfaces being summed is

h = 2 + 2n . (5.12)

For example, the term with n = 0 is precisely the product of two tori described above.
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5.1 Singularities of the partition function G-CTST as a function of string
coupling

It is instructive to consider the analytic structure of Z(g2
st) in the general complex g2

st plane
and identify how group theoretic data appears in the singularity structure, i.e. the poles
and residues of Z(gst). To describe the simplest connections, it is convenient to consider
the sum over genuses from h = 1 to infinity, which we denoted as Z1+(g2

st) We will find that
this partition function has poles at g2

st = a−2
R with aR ≡ |G|dR . It is possible for two distinct

irreps to have the same dimension, so that we can have aR = aR′ , even when R 6= R′.
Denote the distinct values of a−2

R by vi. The multiplicity mvi , of vi is given by the residue
of the pole at vi. These assertions are easily established with a simple computation

Z1+(g2
st) =

∞∑
h=1

g2h−2
s Zh =

∞∑
h=1

∑
R

( |G|
dR

)2h−2
g2h−2
s

=
∑
R

1
(1− a2

Rg
2
s)

=
∑
R

a−2
R

(a−2
R − g2

s)

=
i∗∑
i=1

−v2
imvi

(g2
s − v2

i )
(5.13)

where there are a total of i∗ distinct vi values. Given the exact analytic form of the partition
function, it is possible to generate a number of expansions, valid for different values of the
coupling. The expansion shown on the first line of (5.13) above is for weak coupling, when
the string coupling is smaller than all of the vi. Notice that dimensions of irreps are raised
to negative powers. The strong coupling expansion is valid when the string coupling is
larger than all of the vi. In this case, the expansion is

Z1+(g2
st) = −

i∗∑
i=1

v2
imvi

(g2
s − v2

i )

= −
i∗∑
i=1

v2
imvi

g2
s

∞∑
n=0

(
v2
i

g2
s

)n

= −
∑
R

d2
R

|G|2g2
s

∞∑
n=0

(
d2
R

|G|2g2
s

)n
. (5.14)

Notice that dimensions of irreps are now raised to positive powers.
There are other possibilities that generalize the weak coupling and strong coupling

expansions. Choose the index i so that the v2
i are ordered, i.e. v2

1 < v2
2 < · · · < v2

i∗ . The
more general expansions we could consider are obtained by choosing a value of the string
coupling g2

s which is greater than v2
1 but smaller than v2

i∗ . These more general expansions
can not be written as power expansions in either g2

s or its inverse, but rather they are
Laurent expansions in g2

s . To develop these expansions, introduce the two sets i< and i>
defined by

i< = {i|v2
i < g2

s} i> = {i|v2
i > g2

s} . (5.15)
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The most general expansion of the partition function can now be written as

Z1+(g2
st) =

∞∑
h=1

∑
i∈i<

mviv
2−2h
i g2h−2

s −
∞∑
h=1

∑
i∈i>

mviv
2+2h
i g−2−2h

s . (5.16)

Note that when i< is empty we reproduce the strong coupling expansion of section 5 and
when i> is empty we reproduce the weak coupling expansion.

6 Finiteness relations in G-TQFT2

In this section, we describe relations between amplitudes in G-TQFT2/G-CTST due to
the finiteness of G. The relations we describe are focused on amplitudes for closed sur-
faces and surfaces with boundary. They depend on the dimension of the centre Z(C(G))
which we denote as K. We have seen the key role played by matrices of size K in the
sections 2 and 3 on the construction of representation theoretic data from group multi-
plication combinatorics shaped by the amplitudes. The algebra Z(C(G)) has also been
prominent in the description of probability distributions associated with G-TQFT2 and
G-CTST in section 4. In this section, we describe universal finite K relations. We draw
on some mathematical analogies between G-TQFT2 and the BPS sectors of AdS5/CFT4,
based on the fact that the partition functions of G-TQFT2 are expressible in terms of
traces of powers of a matrix. This allows us to define a simple inner product, such that the
finite K relations appear as null states in the inner product. The inner product contains a
large K factorization which fails when 1/K corrections are taken into account. The failure
of factorization has a geometrical interpretation in terms of a mixing between surfaces with
different numbers of connected components. We give a 2D topological field theory formu-
lation of the inner product by coupling G-TQFT2 to TQFT2 based on symmetric group
algebras. We describe this coupled topological field theory as C(G)× (C(S))∞ TQFT2.

6.1 Finite K relations from null states of an inner product

Pick a finite group G and let K be the number of conjugacy classes. It determines a matrix
X = Diag(|G|2/d2

R) of size K. G−TQFT2 associates to a surface of genus h the partition
function

ZΣh = trXh−1 ≡ Zh . (6.1)

A disconnected surface has a partition function which is a product over the connected
components, e.g. with two components we

Z(Σh1 × Σh2) = trXh1−1trXh2−1 . (6.2)

This can be computed by lattice TQFT2 on the two surfaces [17, 19].
The finite K relations ensure that higher genus connected partition functions can be

written in terms of linear combinations of partition functions for disconnected surfaces.
This is a consequence of the Cayley Hamilton relations, which state that any matrix X
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obeys its own eigenvalue equation. We have, using the elementary symmetric polynomials
ek(X) described in section 2

XK +
K∑
k=1

(−1)kek(X)XK−k = 0 . (6.3)

Multiply this with X l for any positive integer l

XK+l +
K∑
k=1

(−1)kek(X)XK−k+l = 0 . (6.4)

Taking a trace on both sides, we have

tr(XK+l) +
K∑
k=1

(−1)kek(X)tr(XK−k+l) = 0 . (6.5)

For l = 1, this gives trXK+1 as a linear combination of products of traces of lower powers
of X than the K’th power. Writing the elementary symmetric functions ek(X) in terms of
traces of X using (2.17), we obtain the trace relation

trXK+1 =
K∑
k=1

trXK−k+1∑
p`k

(−1)1+
∑

i
pi∏

i i
pipi!

∏
i

(trXi)pi . (6.6)

For example if K = 3 we have

trX4 = trXtrX3 − 1
2(trX2 + (trX)2)trX2 + 1

6(2trX3 + 3trX2trX + (trX)3)trX . (6.7)

The relation (6.6) implies that the genus K + 2 partition function ZK+2 = tr(XK+1) can
be expressed in terms of products of smaller genus partition functions

ZK+2 =
K∑
k=1

ZK−k+2
∑
p`k

(−1)1+
∑

i
pi∏

i i
pipi!

∏
i

(Zi+1)pi . (6.8)

To obtain this result we have used the expression for the partition functions in terms
of traces.

These equations raise the interesting question of how to describe the finite K relations
among G-TQFT2 amplitudes in generality. The matrix form of the partition function
Zh = tr(Xh−1) relates this question to the description of finite N effects in the AdS/CFT
correspondence [50–52], specifically the half-BPS sector of string theory in AdS5×S5 which
corresponds to N = 4 super-Yang-Mills theory with U(N) gauge group. Such finite N
effects are associated with the very rich physics of the stringy exclusion principle and giant
gravitons [27, 53]. The half-BPS states of N = 4 SYM for U(N) gauge group correspond
(by the operator-state correspondence of CFT) to multi-traces of a complex matrix Z. An
orthogonal basis for these states using the free field inner product in the U(N) theory is
labelled by Young diagrams [30]. If we consider gauge invariant states (multi-traces) of
dimension n, i.e. containing n copies of Z, in the range n > N , there is subspace of the

– 29 –



J
H
E
P
0
1
(
2
0
2
2
)
0
7
1

vector space of these trace operators which vanishes due to finite N relations (Cayley-
Hamilton relations discussed above). A linear basis for these vanishing states is labelled
by Young diagrams R with first column of length greater than N . These are null states
for the N -dependent inner product for multi-trace structures which comes from free field
U(N) theory.

In order to answer the question of a systematic description of finite K relations for
a group G with K conjugacy classes, using the above technical perspectives from the
mathematics of the stringy exclusion principle in AdS/CFT, it is convenient to introduce
an abstract polynomial algebra P(ω1, ω2, · · · ). This is a vector space over C. ωk corresponds
to a topological surface of genus k + 1. We have a generator ω1 for a surface of genus 2,
a generator ω2 for a surface of genus 3 etc. A monomial ωk1

1 ω
k2
2 · · ·ω

kl
l corresponds to a

disjoint union of k1 genus two surfaces, k2 genus 3 surfaces, up to kl genus l + 1 surfaces.
These finite monomials form a basis for the vector space P(ω1, ω2, · · · ). The vector space
P(ωi) is endowed with a product defined as the product of these monomials. G-TQFT2
associates to the monomial

G-TQFT2 : ωk1
1 ω

k2
2 · · ·ω

kl
l → Σ×k1

2 × Σ×k2
3 · · ·Σkl

l+1 → (trX)k1(trX2)k2 · · · (trX l)kl

(6.9)

where X is a K ×K diagonal matrix, with entries labelled by irreps R of G, and taking
values |G|dR . AdS5/CFT4 associates to the same monomials half-BPS states corresponding
to matrix traces

AdS5/CFT4 : ωk1
1 ω

k2
2 · · ·ω

kl
l → (trZ)k1(trZ2)k2 · · · (trZ l)kl (6.10)

where Z = X1 + iX2 and X1, X2 are two of the 6 hermitian matrices of U(N) N = 4 SYM.
The parameter N in the AdS5/CFT4 context is analogous to K in the case of G-TQFT2.

The computation of 2-point functions of general holomorphic trace of dimension n in
N = 4 SYM with another general anti-homolomorphic trace defines an inner product on
the space of traces. The outcome of the computation can be expressed using permutations
in the symmetric group Sn. Consider the 2-point function

〈(trZ)p1(trZ2)p2 · · · (trZ l)pl(trZ†)q1(tr(Z†)2)q2 · · · (tr(Z†)l)qm〉 (6.11)

where the holomorphic operator has a trace structure specified by the exponents
(p1, p2, · · · pl) ≡ p, and the anti-holomorphic operator has a trace structure specified by
(q1, q2, · · · , qm) ≡ q. For fixed dimension n, we have n = ∑

i ipi = ∑
i iqi. p and q are

partitions of n, which also correspond to conjugacy classes of Sn. The 2-point function
determines the inner product [30]

〈(trZ)p1(trZ2)p2 · · · (trZ l)pl(trZ†)q1(tr(Z†)2)q2 · · · (tr(Z†)l)qm〉

= n!
|Cp||Cq|

∑
σ1∈Cp

∑
σ2∈Cq

∑
σ3∈Sn

δ(σ1σ2σ3)NCσ3 (6.12)
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where Cσ3 is the umber of cycles in σ3. The Schur-basis of gauge invariant operators are
labelled by Young diagrams Y with n boxes

χY (Z) = 1
n!

∑
σ∈Sn

χY (σ)Oσ(Z) (6.13)

where

Oσ(Z) = Zi1iσ(1)
· · ·Zinσ(n) . (6.14)

The two point function in the Schur basis is given by

〈χY1(Z)χY2(Z†)〉 = δY1,Y2fY1 . (6.15)

The normalization factor fY for a Young diagram is a polynomial in N equal to

fY =
∏
(i,j)

(N − i+ j) (6.16)

where (i, j) are row and column labels of the boxes in the Young diagram Y . The norm
of all Young diagram states with Y having more than N rows vanishes and in fact the
polynomials χY (Z) are identically zero for Z of size N . Thus the inner product (6.12)
for trace structures encodes finite N relations on traces in the form of null states for an
inner product.

We give the algebra P(ωi) an inner product depending on a parameter K of the form
familiar from the matrix combinatorics (6.12) of the half-BPS sector in AdS5/CFT4:

〈ωp1
1 ω

p2
2 · · · |ω

q1
1 ω

q2
2 · · · 〉 = n!

|Cp||Cq|
∑
σ1∈Cp

∑
σ2∈Cq

∑
σ3∈Sn

δ(σ1σ2σ3)KCσ3 . (6.17)

With this inner product, all the finite K relations are null states and can be expressed in
terms of Schur Polynomials of X. Using the G-TQFT2 map, this corresponds to an inner
product between surfaces ∏i Σ×pii+1 and ∏i Σqi

i+1, with n = ∑
i ipi = ∑

i iqi. The Schur basis
for algebra P(ωi) is obtained by replacing

χY (X) = 1
n!
∑
p`n

1
|Cp|

χY (Tp)
∏
i

tr(Xi)pi → χY (ω) = 1
n!
∑
p`n

1
|Cp|

χY (Tp)
∏
i

(ωi)pi . (6.18)

The inner product in the Schur basis is

〈χY1(ω)|χY2(ω)〉 = fY1δ
Y1Y2 . (6.19)

Factorization and 1/K corrections to factorization: the inner product (6.17) fac-
torizes in the leading large K limit. In this limit the dominant term comes from the case
where σ3 has the maximum number of cycles, i.e. Cσ3 = n and σ3 is the identity permuta-
tion. In this case, Cp = Cq and the inner product is non-zero only when p and q describe
the same trace structure. At subleading orders in K, other permutations σ3 contribute and
the precise departures from p = q are encoded in permutation products. In the G-TQFT2
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interpretation of the inner product, the factorization means that different monomials in
ωi, which correspond to surfaces with different numbers of connected components, are or-
thogonal at large K and there are corrections to this factorization at sub-leading orders in
1/K. In the context of AdS5/CFT4, the departures from factorization formed an important
argument in guiding the identification of CFT operators for giant gravitons [30, 31].

The inner product we have considered is not the unique inner product that is compat-
ible with the finite K relations. Other possible inner products are determined by Casimirs
as follows

〈ωp1
1 ω

p2
2 · · · |ω

q1
1 ω

q2
2 · · · 〉 = n!

|Cp||Cq|
∑
σ1∈Cp

∑
σ2∈Cq

∑
σ3∈Sn

δ(σ1σ2σ3C)KCσ3 (6.20)

We have inserted a Casimir element C for U(K) - expressed in terms of the group algebra
of Sn. The existence of this map relies on Schur-Weyl duality and plays an important role
in the string theory of 2D Yang Mills theory [55–57] as well as AdS5/CFT4 [48, 49].

This will still be diagonal in the Schur basis and would give a different normalisation
of the 2-point function, modified by presence of the Casimir. The 2-point function in the
Schur basis is now

〈χY1(ω)|χY2(ω)〉 = fY1
χY1(C)
dY1

(6.21)

6.2 Finiteness relations and C(G)× (C(S))∞ two dimensional topological field
theory

In the above discussion, we have found it useful to introduce a simple inner product for a
polynomial algebra of Riemann surfaces, which captures the finite K relations G-TQFT2.
The simplest inner product coincides with an inner product we have seen in the half-BPS
sector of N = 4 SYM, but variations of the inner product which also capture the finite
K relations are also described. A natural question is: how do we interpret these inner
products as a construction within Dijkgraaf-Witten theory? Closely related to Dijkgraaf-
Witten theory is the open-closed topological field theory developed by Moore and Segal [25].
In [25] the amplitudes of Dijkgraaf-Witten theory for closed surfaces and surfaces with
boundary are interpreted in terms of the centre of the associative algebra C(G) which is
equipped with a trace map which is the trace in the regular representation. There is also
an extension to open strings which uses C(G) and not just its centre, but we will not make
extensive use of the open string sector in this paper.

Consider the central element Ŷh ∈ Z(C(G))

Ŷh = Πh (6.22)

where

Π =
∑

g1,g2∈G
g1g2g

−1
1 g−1

2 =
∑
R

|G|2

d2
R

PR . (6.23)
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As discussed in section 4, Π can be viewed as a handle-creation operator. In terms of the
handle creation operator, the partition function for genus h is

ZΣh = 1
|G|

δ(Ŷh) (6.24)

This partition function also has an expansion, in terms of Young diagrams, as

ZΣh =
∑
R

( |G|
dR

)2(h−1)
= trXh−1 (6.25)

where

X = Diag
(
|G|2

d2
R

)
(6.26)

The handle creation operator Ŷh has an expansion in terms of central class elements Tµ as
follows

Ŷh =
∑
p

δ(ŶhTp)
T ′p
|Cp|

=
∑
p

( 1
|G|

δ(YhTp)
)
T ′p |Sym Cp| . (6.27)

An important consequence of this expansion is that it can be used to develop an instructive
geometrical interpretation. The delta function is proportional to the partition function on
a genus h surface with a disc removed, Σh,1, with

ZΣh,1;Tp = 1
|G|

δ(ŶhTp) . (6.28)

The cylinder partition function defines an inner product

Zcyl(Tp, Tq) = 1
|G|

δ(TpTq) = δCp,Cq′
|Sym(Cp)|
|G|

= δCp,Cq′
1
|Cp|

. (6.29)

Given the expansion (6.27), we can interpret Ŷh, as a state in the Hilbert space Z(C(G))
corresponding to the genus h surface with one boundary. Recalling that

1
|G|

δ(·) (6.30)

is the function on Z(C(G)) given by disc partition function, we can interpret (6.24) as the
gluing of the disc to the genus h surface minus a hole, as illustrated below

Π =
∑

g1,g2∈G
g1g2g

−1
1 g−1

2

→ Ŷh = Πh ∈ Z(C(G))

(Z(C(G)))∗ 3 1
|G|

δ(·) ←
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→

1
|G|

δ(Ŷh) = Z(Σh) . (6.31)

Developing the above discussion for a disconnected surface Σh1×Σh2×· · ·ΣhL we find

ZΣh1×Σh2×···×ΣhL = ZΣh1
ZΣh2

· · ·ZΣhL

=
( 1
|G|

δ ⊗ 1
|G|

δ ⊗ · · · ⊗ 1
|G|

δ

)(
Ŷh1 ⊗ · · · ⊗ ŶhL

)
. (6.32)

This has the interpretation of gluing k discs to k surfaces of genera h1, h2, · · · , hk, each
with a disc removed. The cut-and-paste operation produces the partition function from
an element of (Z(C(G)))⊗L corresponding to an element of (Z(C(G)))∗⊗L. Diagrammati-
cally, (6.32) can be represented as

−→

...
...

...
...

1
|G|

δ ⊗ 1
|G|

δ · · · ⊗ 1
|G|

δ Πh1 ⊗Πh2 · · · ⊗ Πhk −→ 1
|G|k

δ(Πh1) · · · δ(Πh1) .

We have described an inner product for disconnected surfaces which accounts for the
finite K relations. This used symmetric groups Sn for varying n, which is equal to the
number of connected components in the surface being considered. Note that the formula
for the inner product is itself given in terms of a delta function on the group algebra C(Sn),
which is suggestive of a permutation-TQFT2 interpretation of the inner product. The
link between the combinatorics and correlators of U(N) gauge theories, as well as theories
involving products of U(Na), with symmetric group TQFT2 has been studied systematically
in [54, 58]. Building on these results, we show here how the inner product (6.17) for G-
TQFT2 amplitudes can be given a geometrical interpretation by coupling the Z(C(G))
theory to a theory based on the algebra

∞⊕
n=0

(C(Sn)) . (6.33)
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We will call this algebra (CS)∞. The construction we describe is based on TQFT2 for the
algebra

Z(C(G))⊗ (CS)∞ . (6.34)

The first important ingredient in the construction of this theory is a cylinder which maps
central elements in Z(C(G)) to permutations Πh → (1, . . . , h− 1).

Consider the composition

. (6.35)

The cylinder is a transition amplitude that takes in Πh1 and produces a permutation

. (6.36)

This defines a transition between Πh1 ∈ Z(C(G)) and a permutation. Thus, the cylinder
is something that is defined in Z(C(G))⊗ (CS)∞.

The formulae developed above can be used to give a diagrammatic interpretation to
the inner product

〈tr(Xh1−1)tr(Xh2−1) · · · tr(Xhk−1)tr(Xh′1−1)tr(Xh′2−1) · · · tr(Xh′l−1)〉 (6.37)

= n!
|Ch1,··· ,hk ||Ch′1,··· ,h′l |

∑
σ1∈Ch1h2···hk

∑
σ2∈Ch′1h

′
2···h

′
l

∑
σ3∈S∑

i
hi

δ(σ1σ2σ3)KCσ3 .

On the r.h.s. above the notation Ca1a2···al stands for the conjugacy class of permutations
with cycle lengths given by a1 − 1, a2 − 1, · · · , al − 1. The above inner product is non-zero
if and only if ∑i(hi − 1) = ∑

i(h′i − 1). The partition function of the three holed sphere in
Sn TQFT2 of flat bundles, with boundary permutations σ1, σ2, σ3 is

=
∑
γ1,γ2

δ(γ1σ1γ
−1
1 γ2σ2γ

−1
2 σ−1

3 ) (6.38)

ensures that σ3 lies in the product of the conjugacy class of [σ1] and the conjugacy class
[σ2]. By introducing a unit defect as in [54] we have

= δ(σ1σ2σ
−1
3 ) (6.39)

we set σ3 = σ1σ2. The inner product (6.37) can now be expressed in terms of diagrams.
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Figure 2. The interpretation of the inner product (6.40) in terms of diagrams. Here σ1 =
(1, 2, · · · , h1−1), σ2 = (h1, h1 +1, · · · , h2−2) and σ1 ◦σ2 = (1, 2, · · · , h1−1)(h1, h1 +1, · · · , h2−2).
There are similar formulas for the primed permutations. The unit defect ensures that σ1 ◦ σ2 is a
specific permutation and not a sum over a conjugacy class. C3 is the number of cycles in σ3 and
σ ◦ ψ is the outer products of permutations σ and ψ.

Figure 3. The interpretation of the inner product (6.40) in terms of diagrams.

For clarity and because the generalization is immediate, consider the simpler formula

〈tr(Xh1−1)tr(Xh2−1)tr(Xh′1−1)tr(Xh′2−1))〉 (6.40)

= n!
|Ch1,h2 ||Ch′1,h′2 |

∑
σ1∈Ch1h2

∑
σ2∈Ch′1h

′
2

∑
σ3∈S∑

i
(hi−1)

δ(σ1σ2σ3)KCσ3

In terms of diagrams the formula (6.40) is displayed in figure 2. The inner product is non-
vanishing if and only if h1 +h2 = h′1 +h′2. An more complete picture incuding the coupling
between the G-TQFT2 and the symmetric group sector ( using the cylinder (6.36)) to write
the inner product in terms of the TFT of the (CS)∞⊗Z(C(G)) algebra. This provides an
interpretation for the inner product as an amplitude on a 2-complex, as given in figure 3.

6.3 Extensions of the finiteness discussion for closed surfaces

The discussion of the last subsection has related high genus surfaces without boundaries
to disjoint unions of lower genus surfaces, again without boundaries. In this section we
generalize this discussion first to surfaces with boundaries but fixed genus h = 1, which
involves the matrix Xp, and then to surfaces that have both multiple boundaries and any
genus, which involves the pair X,Xp.
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Figure 4. The surface shown has genus h = 2 with k = 3 boundaries.

6.3.1 One-matrix finite K relations for Xp

By using the matrix X above, we have described relations between high genus surfaces
and disjoint unions of lower genus surfaces. Similar relations hold for Xp, where p is a
conjugacy class. This will relate trXK+1

p with products of lower traces. Recalling (3.5)
in section 3 the l.h.s. is the partition function of a surface of one with K + 1 holes each
carrying the conjugacy class p. The r.h.s. is for disjoint unions of genus one but with fewer
boundaries. The trace relation (6.6), expressed in terms of the matrix Xp of normalized
characters for a conjugacy class p, is

trXK+1
p =

K∑
k=1

trXK−k+1
p

∑
p`k

(−1)1+
∑

i
pi∏

i i
pipi!

∏
i

(trXi
p)pi . (6.41)

Since these traces are partition functions for surfaces with boundary conditions labelled by
p, we have a relation

Z(Σ
h=1;C×(K+1)

p
) =

K∑
k=1

Z(Σ
h=1;C×(K−k+1)

p
)
∑
p`k

(−1)1+
∑

i
pi∏

i i
pipi!

∏
i

(Z(Σ
h=1;C×(i)

p
))pi . (6.42)

6.3.2 2-matrix finite K relations

The partition function for a genus h surface, with k one-dimensional boundaries, each
having the boundary condition that the holonomy around the boundary circle is in the
conjugacy class Cp is given by

Z(Σh;Cp,··· ,Cp) = Z(Σh;C×kp ) = tr(Xh−1Xk
p ) (6.43)

where X and Xp are commuting diagonal matrices, with diagonal entries labelled by irre-
ducible representations R of G

X = Diag
( |G|
dR

)
Xp = Diag

(
χR(Tp)
dR

)
. (6.44)

The finiteness of K means that partition functions at high h and high k are expressible in
terms of products of traces of lower powers. For example consider

Z(Σh=K+1;C×K+1
p

) = tr((XXp)K+1) . (6.45)
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The equation (6.41) with Xp → XXp implies a finite K relation relating this boundary
partition function to lower boundary partition functions as follows

Z(Σ
h=K+1;C×(K+1)

p
) =

K∑
k=1

Z(Σ
h=K−k+1;C×(K−k+1)

p
)
∑
p`k

(−1)1+
∑

i
pi∏

i i
pipi!

∏
i

Z(Σh=i;C×ip )pi .

(6.46)
The systematic finite K relations can be obtained using multi-symmetric functions.

For ease of notation, we will write Xp = Y , so we are dealing with traces of two commuting
matrices X,Y . There is a trace basis of functions of these two diagonal matrices, which is
labelled by a sequence [q] ≡ [(q11, q12), (q21, q22), · · · , (qM1, qM2)] with qi1, qi2 ∈ N0 where
N0 is the set of natural numbers extended to include 0: (N)0 = {0, 1, 2, · · · }. When∑

i

q1i = q1∑
i

q2i = q2 (6.47)

q is said to be a vector partition of (q1, q2). In the first instance, it is useful to consider K �
M, qi1, qi2 so that all these sequences give a linearly independent set of multi-symmetric
functions

T[q] = tr(Xq11Y q12)tr(Xq21Y q22) · · · tr(XqM1Y qM2) . (6.48)

We will now introduce a second basis, which has an interpretation using coherent states in
many-boson systems [59]. For our purposes, this second basis is particularly useful as it
clarifies the origin of the finite K relations. Since X and Y commute, they can be simul-
taneously diagonalized. Denote their eigenvalues as xi and yi i = 1, · · · ,K respectively. In
terms of these eigenvalues we motivate the second basis as follows. Consider

T[(1,0),(0,1)] = Tr(X)Tr(Y ) =
K∑
i=1

K∑
j=1

xiyj

=
K∑

i 6=j=1
xiyj +

K∑
i=1

xiyi

= M[(1,0),(0,1)] +M[(1,1)] . (6.49)

Notice that there are two sums in the first term above, and the indices for the two do not
collide. It is natural to interpret the first term above as a two particle state, with one of
the particles having an “x” excitation and the second a “y” excitation. The second term
is a single particle state, which has both “x” and “y” excited. See the original article [59],
where this interpretation is developed in detail, for more background. In general we have

M[q] =
∑
σ∈SK

xq11
σ(1)y

q21
σ(1)x

q12
σ(2)y

q22
σ(2) · · ·x

q1M
σ(M)y

q2M
σ(M) . (6.50)

An important feature of this formula, is that there are now M sums on the r.h.s. and
their indices never collide. There is a linear transformation from the functions T[q] to the
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polynomials M[q] [59]

T[q] = C r
q M[r] . (6.51)

There is also an inverse transformation

M[q] = C̃ r
q T[r] . (6.52)

There is a connection between the matrices C, the inverse matrices C̃ and set partitions.
The inversion of C uses general theorems about set partitions that form a partially ordered
set, as explained in section 4.3 of [59]. For the present discussion it suffices to use the fact
that the inverse exists and the matrices C, C̃ are independent of K. This is analogous to the
fact that the transformation between Schur polynomials and traces in the 1-matrix case is
independent of matrix size and only depends on n, the degree of the traces being considered.

To illustrate the above discussion we consider two examples. For the first example, we
consider the setting introduced in (6.49) above, corresponding to operators T[q] constructed
using a single X and a single Y . There are two possible vector partitions

[q1] = [(0, 1), (1, 0)] [q2] = [(1, 1)] . (6.53)

The matrices C and C̃ are given by

C =
[

1 1
0 1

]
C̃ =

[
1 −1
0 1

]
. (6.54)

The matrix C is easily read from (6.49) and it should be clear that C is always upper
triangular. For a more interesting example, consider operators constructed using two X’s
and a single Y . In this case there are a total of four possible vector partitions

[q1] = [(0, 1), (1, 0), (1, 0)]
[q2] = [(0, 1), (2, 0)]
[q3] = [(1, 0), (1, 1)]
[q4] = [(2, 1)] (6.55)

and the matrices C and C̃ are

C =


1 1 1 1
0 1 0 1
0 0 1 2
0 0 0 1

 C̃ =


1 −1 −1 2
0 1 0 −1
0 0 1 −2
0 0 0 1

 . (6.56)

Using the second M[q] basis the finite K cutoff is easily appreciated. The key idea is
that as soon as we have more than K sums, since X and Y are K ×K matrices, there is
no way to avoid repeating indices in the sums and hence the corresponding M[q] vanishes.
The linear combinations of traces which vanish at finite K are obtained by setting to zero
the M[q] corresponding to vector partitions q with M > K parts.

– 39 –



J
H
E
P
0
1
(
2
0
2
2
)
0
7
1

The finite K relations that we have described above are universal in the sense that
they will be present for any group G. It is also possible that there are additional relations
that rely on specific properties of the group G being considered. A simple example to
illustrates the point arises for the case of an Abelian group G. In this case every irreducible
representation is one dimensional so that matrix X in (6.44) is proportional to the identity
matrix. This implies new relations including, for example

Tr(X)2 = KTr(X2) (6.57)

We can introduce an inner product on the traces which is the projector for the M[q]
within the bound. It is expressible in terms of the matrices CC̃. We will leave a discussion
of the general inner product on diagonal matrices compatible with the cut-off to the future.

7 2D/3D holography and factorization puzzle

Following the formulation of the stringy exclusion principle [53], the integrality and finite-
ness of parameters, such as N in SN (X) symmetric group orbifold CFTs or N in U(N)
N = 4 SYM have played an important role in understanding aspects of the holographic
duality map. In this paper, we have studied in detail the relations between amplitudes of
G-TQFT2 which follow from the finiteness of the dimension of the centre (denoted K) of
the group algebra of G. Since the closed string amplitudes for connected and disconnected
surfaces are expressible in terms of powers of traces of a matrix X of size K, there are
universal relations depending on K which follow from properties of multi-traces of finite
matrices much as in AdS5/CFT4. The trace structures of multi-traces can be encoded in
permutations: these arise from permutations of matrix indices which result in the traces.
Permutation combinatorics plays a central role in the mapping from gauge invariant op-
erators to giant gravitons in the half-BPS sector [30] and beyond [59, 61–66, 68, 69] (for
a review see [70]). As explained in section 6.1 the finite K relations in G-TQFT2 can be
expressed as null states in inner products defined using permutations. This naturally leads
to a formulation of these inner products in terms of a C(G)×(C(S))∞ TQFT2 (section 6.2).
Here we discuss the possibility that this C(G) × (C(S))∞-TQFT2 has a 3D holographic
dual and in this scenario consider the factorization puzzle around the interpretation of
2D/3D holography in the presence of wormholes [32]. The puzzle concerns 3D holographic
quantum gravitational theories which have a disconnected boundary consisting of multiple
surfaces. If there is an AdS/CFT set-up, the expectation is that the CFT partition function
factorizes while from the bulk it is expected that the existence of a common bulk leads
to a non-factorizing partition function. Recent discussions of the puzzle include [71–74].
Here we give a different perspective on the puzzle based on the constructions in this paper
which does not rely on ensembles or randomness but rather on the distinction between
different types of observables within a hypothetical holographic dual of the constructions
given earlier in the paper.

We consider the scenario where the C(G) × (C(S))∞-TQFT2 theory, as used in the
finiteness section 6, has a 3D holographic dual. The theory contains probabilities for
multiple circles going to multiple cirlces as in section 4: the transitions can proceed via fixed
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genus surfaces in G-TQFT2. Cutting the surfaces to excise a disc and inserting projectors
PR calculates the probabilities for the R-sectors which weight the boundary conditions
on the circles. By considering observables involving the (C(S))∞ sector (see figure 6.2),
we construct the inner products between in- and out- closed surface states. These inner
products have a factorization property at largeK but there are 1/K corrections which cause
mixing between surfaces. This is a G-TQFT2 analog of the failure of large N factorization
of traces which was observed to have important implications for the AdS/CFT map for
large operators [31].

The scenario of C(G) × (C(S))∞-TQFT2 having a holographic dual which includes
wormholes is one where ensembles are not necessary to accommodate the existence of
wormholes, but rather different choices of observables within a single quantum theory lead
to amplitudes which factorize or not. Observables involving just the Tp observables asso-
ciated to conjugacy classes Cp (as used in section 4) do factorize, since the Tp observables
can be inserted on disjoint surfaces and the independent boundary partition functions
computed for example using the lattice formulation of G-TQFT2. By realising G as mon-
odromy groups of covering spaces as in [34] the Tp observables can be interpreted in terms
of winding string sectors along the lines of [55]. Observables involving the handle creation
operators Π in Z(C(G)) (6.23) which typically involve many different conjugacy classes,
coupled to the (C(S))∞ sector ( as in section 6.2) capture transition amplitudes between
surfaces, which factorize at large K but have 1/K corrections to factorization. The distinc-
tion between the Tp observables associated with fixed conjugacy classes and the observables
such as the projectors PR which are sums over all conjugacy classes weighted by characters
has played an important role in AdS5/CFT4 where the Tp for symmetric groups can be
associated to perturbative graviton states or low order multipole moments of the gravity
field [75] while the PR can be associated to giant gravitons [30]. This is used in [75] to
formulate a model of information loss in the simplified set-up of half-BPS states of N = 4
SYM and their gravitational duals [76]. The ability of the Tp to distinguish the different PR
has led to a detailed study of the centre of the symmetric group algebra [49] and associated
Hamiltonians play a role in constructing Kronecker coefficients using ribbon graphs [10].
Here we are adding to the class of interesting large operators relevant to holographic dis-
cussions the operators Π which create handles in G-TQFT2 or G-CTST. In fact this raises
the interesting question of the interpretation in terms of LLM geometries in AdS5/CFT4 of
the Π operators for symmetric groups. The characterisation of small operators accessible to
effective field theory and larger operators that can for example create black holes or access
long-time evolution in black hole evaporation is important for holographic discussions of
the black hole information paradox (see e.g. [77]).

To summarise we are addressing the puzzle [32], subject to the assumption that there
is a gravitational 3D holographic dual for TQFT2 based on C(G) × (C(S))∞ of the kind
we have described, which accounts for universal finiteness relations of G-TQFT2 as null
states in an inner product. Assuming such a dual exists, it is plausible that the intricate
map between observables and topological interpretations in the C(G)× (C(S))∞, allowing
both factorizing and non-factorizing amplitudes, would have an analog in the bulk.

G-TQFT2 on a surface Σ has close relations to 3D topological theory on Σ × S1

based on lattice constructions for quantizing Chern Simons theory [78–80]. A general
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discussion of lattice topological field theory with Hopf algebras extending these works has
been given [81, 82], which also encompasses the Kitaev model developed for applications
in quantum computing [83]. An interesting question is whether these constructions can be
used to gain insights on a possible holographic dual of TQFT2 based on C(G)× (C(S))∞
and its implications for the factorization puzzle.

8 Summary and outlook

In this paper, we have developed links between group theoretic computational algorithms
for dimensions and characters of finite groups G and G-TQFT2. We observed, in particu-
lar, that the integer ratios (|G|/dR)2, where dR is the dimension of irreducible rep R can be
constructed by combinatoric algorithms which take as input the amplitudes of G-TQFT2
on surfaces. These ratios enter the expansion of the handle creation operator in the basis
of projection operators for the centre of the group algebra, Z(C(G)). The relation between
the projector basis and the conjugacy class basis of Z(C(G)) plays a key role in the algo-
rithms as well as the geometrical gluing properties that define G-TQFT2. Summing the
amplitudes of G-TQFT2 weighted by a string coupling defines combinatoric topological
string theory [20, 21], which we call G-CTST. We studied S-duality and the analytic struc-
ture of G-CTST as a function of the string coupling, connecting these to group theoretic
combinatoric data.

The two-dimensional path integral interpretation of G-TQFT2, which is evident in
its topological lattice formulation and is also central to its understanding as an example
realizing Atiyah’s axioms of TQFT, leads to the definition of a number of probability
distributions. We described these and their inter-relations. This discussion included the
Plancherel distribution for finite groups in mathematics [23] and made contact, by regarding
the 2D theory as a model for 2D wormholes along the lines of [20], with Coleman’s α-states
of wormhole physics [24]. We explained that the Hilbert space structure of Z(C(G)) = H
and the associated tower of symmetrised tensor products

S∞(H) =
∞⊕
n=0

Sn(H) (8.1)

can be viewed as a topological quantum mechanics underlying these probability
distributions.

We have encoded the finite K relations in G-TQFT2/G-CTST using an inner prod-
uct (one of a family of possible inner products) on a polynomial algebra of surfaces. The
definition of this inner product draws on the fact that G-TQFT2 amplitudes can be ex-
pressed in terms of traces of powers of matrices of size K, which is equal to the dimension
of Z(C(G)). This allows us to exploit the mathematics of finite N effects in AdS5/CFT4
involving U(N) gauge theory, which inform the physics of giant gravitons. These finite N
effects are encoded in inner products based on symmetric group combinatorics, which arises
since permutations are used to contract indices of matrices to build U(N) gauge invari-
ants. This led to a geometrical interpretation of the inner product by coupling G-TQFT2
to TQFT for a tower of symmetric group algebras

(C(S))∞ ≡
∞⊕
n=0

C(Sn) . (8.2)
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We have considered the scenario where all the observables of the coupled TQFT2 theory
of involving C(G) × (C(S))∞ have a 3D holographic dual. In this scenario we discussed
the factorization puzzle of [32]. The coupled TQFT2 contains both factorising and non-
factorising amplitudes for products of surfaces, depending on the choice of observables.
Assuming it has a 3D holographic dual, there would be both types of amplitudes in the
bulk theory, with appropriate (possibly subtle) choice of boundary conditions.

The physical and mathematical aspects of our discussion should admit generalizations
based on enlarging the considerations from the centre Z(C(G)) to the full group algebra
C(G), and considering the full open-closed theory [25]. Using the links to group-theoretic
algorithms of the kind we have developed (which each come with their computational com-
plexity characteristics), it will be interesting to investigate to what extent the interplay
between wormholes, computational complexity and hierarchies of Hilbert spaces which
played a role in this paper generalizes to higher dimensional wormhole physics. In partic-
ular, it will be very interesting to make contact with discussions of complexity and black
holes [84].

The reconstruction of representation theoretic quantities from group multiplication
data which formed the focus of the first part of the paper is closely related to the concept
of representation theory as a tool for non-Abelian Fourier transforms for groups. Combi-
natoric Topological String Theory (G-CTST) seems to be an interesting toolkit for geo-
metrical constructive algorithms realising Fourier transforms in group theory. It raises the
question of whether physical string theories could be interpreted in an analogous manner
as providing the data for the construction of appropriate transforms, yet to be described.
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A Normalized characters

The algorithm outlined in section 2.1 can also be used to construct normalized charac-
ters of Tp, where p labels the conjugacy class Cp of group G. By knowing the quantities
tr(Xr

p), which are sums over the group irreps of powers of the normalized characters, the
algorithm describes how to construct the individual normalized characters by looking for
the intersection of the sets of divisors of the polynomials F (Xp, x = 0), F (Xp, x = 1) and
so on. In this appendix we generate sequences for the normalized characters of Tp, where p
labels the conjugacy classes of the symmetric group Sn, summed over the irreps of Sn for
n = 1, 2, 3, · · · , 20. Table 2 shows the sums over normalized characters for T(3), T(2,2) T(5),
and T(n).

n
∑
R
χR(T(3))
dR

∑
R
χR(T(2,2))

dR

∑
R
χR(T(5))
dR

∑
R
χR(T(n))

dR

1 0 0 0 0
2 0 0 0 0
3 3 0 0 3
4 12 7 0 0
5 42 31 40 40
6 99 118 265 0
7 231 309 1080 1260
8 462 772 3270 0
9 882 1642 8900 72576
10 1596 3391 20600 0
11 2772 6348 45360 6652800
12 4620 11779 91440 0
13 7524 20317 177540 889574400
14 11949 34849 325475 0
15 18480 56923 581380 163459296000
16 28182 92314 997670 0
17 42108 144178 1676000 39520825344000
18 62139 224425 2733785 0
19 90216 338611 4384100 12164510040883200
20 129690 509153 6875830 0

Table 2. Table listing the sequences of sums of normalized characters of Tp, where p label conjugacy
classes of the symmetric group Sn. We consider the conjugacy classes p = (3), (2, 2), (5) and (n)
for n = 1 up to n = 20. The final column shows the normalized character for T(3) for n = 3, the
normalized character for T(5) for n = 5 and so on. These quantities for even n are all zero.
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B Non-Abelian groups up to size 60

Group Size P

S3 6 1
D8 8 1
Q8 8 1
D10 10 x2 + x− 1

C3 : C4 12 x2 + 9
A4 12 x2 + 4x+ 16
D12 12 1
D14 14 x3 + x2 − 2x− 1

(C4×C2) : C2 16 x2 + 4
C4 : C4 16 x2 + 4
C8 : C2 16

(
x2 + 1

) (
x2 + 4

)
D16 16 x2 − 2
QD16 16 x2 + 2
Q16 16 x2 − 2

C2×D8 16 1
C2×Q8 16 1

(C4×C2) : C2 16 x2 + 1
D18 18 x3 − 3x+ 1

C3× S3 18
(
x2 − 3x+ 9

) (
x2 − x+ 1

) (
x2 + x+ 1

)
×
(
x2 + 2x+ 4

) (
x2 + 3x+ 9

)
(C3×C3) : C2 18 1

C5 : C4 20
(
x2 + 25

) (
x2 − x− 1

) (
x2 + x− 1

)
C5 : C4 20 x2 + 25
D20 20

(
x2 − x− 1

) (
x2 + x− 1

)
C7 : C3 21

(
x2 + x+ 2

) (
x2 + 7x+ 49

)
D22 22 x5 + x4 − 4x3 − 3x2 + 3x+ 1

C3 : C8 24
(
x2 + 1

) (
x2 + 4

) (
x2 + 9

) (
x4 + 81

)
SL(2,3) 24

(
x2 − 2x+ 4

) (
x2 + 2x+ 4

) (
x2 + 4x+ 16

)
C3 : Q8 24 x2 − 3
C4× S3 24

(
x2 + 1

) (
x2 + 4

) (
x2 + 9

)
D24 24 x2 − 3

C2× (C3 : C4) 24 x2 + 9
(C6×C2) : C2 24 x2 + 3

C3×D8 24
(
x2 − 2x+ 4

) (
x2 − x+ 1

) (
x2 + x+ 1

) (
x2 + 2x+ 4

)
C3×Q8 24

(
x2 − 2x+ 4

) (
x2 − x+ 1

) (
x2 + x+ 1

) (
x2 + 2x+ 4

)
S4 24 1

C2×A4 24
(
x2 − 4x+ 16

) (
x2 + 4x+ 16

)
C2×C2× S3 24 1

D26 26 x6 + x5 − 5x4 − 4x3 + 6x2 + 3x− 1
(C3×C3) : C3 27

(
x2 + x+ 1

) (
x2 + 3x+ 9

)
C9 : C3 27

(
x2 + x+ 1

) (
x2 + 3x+ 9

)
C7 : C4 28

(
x2 + 49

) (
x3 − x2 − 2x+ 1

) (
x3 + x2 − 2x− 1

)
D28 28

(
x3 − x2 − 2x+ 1

) (
x3 + x2 − 2x− 1

)
Continued on next page
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Group Size P

C5× S3 30
(
x4 − 3x3 + 9x2 − 27x+ 81

)
×
(
x4 − x3 + x2 − x+ 1

) (
x4 + x3 + x2 + x+ 1

)
×
(
x4 + 2x3 + 4x2 + 8x+ 16

)
×
(
x4 + 3x3 + 9x2 + 27x+ 81

)
C3×D10 30

(
x2 − 5x+ 25

) (
x2 + x− 1

) (
x2 + x+ 1

) (
x2 + 2x+ 4

)
×
(
x2 + 5x+ 25

) (
x4 − x3 + 2x2 + x+ 1

)
D30 30

(
x2 + x− 1

) (
x4 − x3 − 4x2 + 4x+ 1

)
(C4×C2) : C4 32 x2 + 4

C8 : C4 32
(
x2 + 1

) (
x2 + 4

)
(C8×C2) : C2 32

(
x2 + 1

) (
x2 + 4

) (
x4 + 16

)
(C2×C2×C2) : C4 32 x2 + 16

(C8 : C2) : C2 32 x2 + 16
C2 . ((C4×C2) : C2) 32 x2 + 16

(C8×C2) : C2 32
(
x2 − 2

) (
x2 + 2

) (
x2 + 4

) (
x2 + 16

)
Q8 : C4 32

(
x2 − 2

) (
x2 + 2

) (
x2 + 4

) (
x2 + 16

)
(C4×C4) : C2 32

(
x2 + 1

) (
x2 + 4

) (
x2 + 16

) (
x2 − 2x+ 2

) (
x2 + 2x+ 2

)
C4 : C8 32

(
x2 + 1

) (
x2 + 4

) (
x4 + 16

)
C8 : C4 32

(
x2 + 2

) (
x2 + 16

)
C8 : C4 32

(
x2 − 2

) (
x2 + 16

)
C4 . D8 = C4 . (C4×C2) 32

(
x2 − 2

) (
x2 + 1

) (
x2 + 2

) (
x2 + 16

)
C16 : C2 32

(
x2 + 1

) (
x2 + 4

) (
x4 + 1

) (
x4 + 16

)
D32 32

(
x2 − 2

) (
x4 − 4x2 + 2

)
QD32 32

(
x2 − 2

) (
x4 + 4x2 + 2

)
Q32 32

(
x2 − 2

) (
x4 − 4x2 + 2

)
C2× ((C4×C2) : C2) 32 x2 + 4

C2× (C4 : C4) 32 x2 + 4
(C4×C4) : C2 32

(
x2 + 1

) (
x2 + 4

)
C4×D8 32

(
x2 + 1

) (
x2 + 4

)
C4×Q8 32

(
x2 + 1

) (
x2 + 4

)
(C2×C2×C2×C2) : C2 32 1

(C4×C2×C2) : C2 32 x2 + 4
(C2×Q8) : C2 32 x2 + 4

(C4×C2×C2) : C2 32 x2 + 4
(C4×C4) : C2 32 x2 + 4

(C2×C2) . (C2×C2×C2) 32 x2 + 4
(C4×C4) : C2 32 x2 + 4
(C4×C4) : C2 32 1

C4 : Q8 32 1
C2× (C8 : C2) 32

(
x2 + 1

) (
x2 + 4

)
(C8×C2) : C2 32

(
x2 + 1

) (
x2 + 4

) (
x4 + 1

)
C2×D16 32 x2 − 2
C2×QD16 32 x2 + 2
C2×Q16 32 x2 − 2

(C8×C2) : C2 32
(
x2 − 2

) (
x2 + 1

) (
x2 + 2

)
C8 : (C2×C2) 32 1
(C2×Q8) : C2 32 1

Continued on next page
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Group Size P

C2×C2×D8 32 1
C2×C2×Q8 32 1

C2× ((C4×C2) : C2) 32 x2 + 1
(C2×C2×C2) : (C2×C2) 32 1

(C2×Q8) : C2 32 1
D34 34 x8 + x7 − 7x6 − 6x5 + 15x4 + 10x3 − 10x2 − 4x+ 1

C9 : C4 36
(
x2 + 81

) (
x3 − 3x− 1

) (
x3 − 3x+ 1

)
(C2×C2) : C9 36

(
x2 − x+ 1

) (
x2 + x+ 1

) (
x2 + 3x+ 9

) (
x2 + 4x+ 16

)
×
(
x6 + 64x3 + 4096

)
D36 36

(
x3 − 3x− 1

) (
x3 − 3x+ 1

)
C3× (C3 : C4) 36

(
x2 + 9

) (
x2 − 3x+ 9

) (
x2 − 2x+ 4

)
×
(
x2 − x+ 1

) (
x2 + x+ 1

) (
x2 + 2x+ 4

)
×
(
x2 + 3x+ 9

) (
x4 − 9x2 + 81

)
(C3×C3) : C4 36 x2 + 81
(C3×C3) : C4 36 x2 + 81

S3× S3 36 1
C3×A4 36

(
x2 − x+ 1

) (
x2 + x+ 1

) (
x2 + 3x+ 9

) (
x2 + 4x+ 16

)
C6× S3 36

(
x2 − 3x+ 9

) (
x2 − 2x+ 4

) (
x2 − x+ 1

) (
x2 + x+ 1

)
×
(
x2 + 2x+ 4

) (
x2 + 3x+ 9

)
C2× ((C3×C3) : C2) 36 1

D38 38 x9+x8−8x7−7x6+21x5+15x4−20x3−10x2+5x+1
C13 : C3 39

(
x2 + 13x+ 169

) (
x4 + x3 + 2x2 − 4x+ 3

)
C5 : C8 40

(
x2 + 1

) (
x2 + 4

) (
x2 + 25

) (
x2 − x− 1

) (
x2 + x− 1

)
×
(
x4 + 625

) (
x4 + 3x2 + 1

)
C5 : C8 40

(
x2 + 25

) (
x4 + 625

)
C5 : Q8 40

(
x2 − x− 1

) (
x2 + x− 1

) (
x4 − 5x2 + 5

)
C4×D10 40

(
x2 + 1

) (
x2 + 4

) (
x2 + 25

) (
x2 − x− 1

)
×
(
x2 + x− 1

) (
x4 + 3x2 + 1

)
D40 40

(
x2 − x− 1

) (
x2 + x− 1

) (
x4 − 5x2 + 5

)
C2× (C5 : C4) 40

(
x2 + 25

) (
x2 − x− 1

) (
x2 + x− 1

)
(C10×C2) : C2 40

(
x2 − x− 1

) (
x2 + x− 1

) (
x4 + 5x2 + 5

)
C5×D8 40

(
x4 − 2x3 + 4x2 − 8x+ 16

) (
x4 − x3 + x2 − x+ 1

)
×
(
x4 + x3 + x2 + x+ 1

)
×
(
x4 + 2x3 + 4x2 + 8x+ 16

)
C5×Q8 40

(
x4 − 2x3 + 4x2 − 8x+ 16

) (
x4 − x3 + x2 − x+ 1

)
×
(
x4 + x3 + x2 + x+ 1

)
×
(
x4 + 2x3 + 4x2 + 8x+ 16

)
C2× (C5 : C4) 40 x2 + 25
C2×C2×D10 40

(
x2 − x− 1

) (
x2 + x− 1

)
C7 : C6 42

(
x2 − 7x+ 49

) (
x2 + 7x+ 49

)
C2× (C7 : C3) 42

(
x2 − 7x+ 49

) (
x2 − x+ 2

) (
x2 + x+ 2

) (
x2 + 7x+ 49

)
C7× S3 42

(
x6 − 3x5 + 9x4 − 27x3 + 81x2 − 243x+ 729

)
×
(
x6 − x5 + x4 − x3 + x2 − x+ 1

)
×
(
x6 + x5 + x4 + x3 + x2 + x+ 1

)
×
(
x6 + 2x5 + 4x4 + 8x3 + 16x2 + 32x+ 64

)
×
(
x6 + 3x5 + 9x4 + 27x3 + 81x2 + 243x+ 729

)
Continued on next page
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Group Size P

C3×D14 42
(
x2 − 7x+ 49

) (
x2 + x+ 1

) (
x2 + 2x+ 4

)
×
(
x2 + 7x+ 49

) (
x3 + x2 − 2x− 1

)
×
(
x6 − x5 + 3x4 + 5x2 − 2x+ 1

)
D42 42

(
x3 + x2 − 2x− 1

) (
x6 − x5 − 6x4 + 6x3 + 8x2 − 8x+ 1

)
C11 : C4 44

(
x2 + 121

) (
x5 − x4 − 4x3 + 3x2 + 3x− 1

)
×
(
x5 + x4 − 4x3 − 3x2 + 3x+ 1

)
D44 44

(
x5 − x4 − 4x3 + 3x2 + 3x− 1

)
×
(
x5 + x4 − 4x3 − 3x2 + 3x+ 1

)
D46 46 x11 + x10 − 10x9 − 9x8 + 36x7 + 28x6 − 56x5

−35x4 + 35x3 + 15x2 − 6x− 1
C3 : C16 48

(
x2 + 1

) (
x2 + 4

) (
x2 + 9

) (
x4 + 1

) (
x4 + 16

)
×
(
x4 + 81

) (
x8 + 6561

)
(C4×C4) : C3 48

(
x2 + 2x+ 5

) (
x2 + 16x+ 256

)
C8× S3 48

(
x2 + 1

) (
x2 + 4

) (
x2 + 9

) (
x4 + 1

) (
x4 + 16

) (
x4 + 81

)
C24 : C2 48

(
x2 + 1

) (
x2 + 4

) (
x2 + 36

) (
x4 + 9

)
C24 : C2 48

(
x2 − 3

) (
x2 + 2

) (
x4 + 4x2 + 1

)
D48 48

(
x2 − 3

) (
x2 − 2

) (
x4 − 4x2 + 1

)
C3 : Q16 48

(
x2 − 3

) (
x2 − 2

) (
x4 − 4x2 + 1

)
C2× (C3 : C8) 48

(
x2 + 1

) (
x2 + 4

) (
x2 + 9

) (
x4 + 81

)
(C3 : C8) : C2 48

(
x2 − 3

) (
x2 + 1

) (
x2 + 3

) (
x2 + 4

) (
x2 + 36

)
C4× (C3 : C4) 48

(
x2 + 1

) (
x2 + 4

) (
x2 + 9

)
(C3 : C4) : C4 48

(
x2 − 3

) (
x2 + 1

) (
x2 + 3

) (
x2 + 4

) (
x2 + 36

)
C12 : C4 48

(
x2 − 3

) (
x2 + 36

)
(C12×C2) : C2 48

(
x2 − 3

) (
x2 + 1

) (
x2 + 3

) (
x2 + 4

) (
x2 + 36

)
(C3×D8) : C2 48

(
x2 − 18

) (
x2 + 12

)
(C3 : Q8) : C2 48

(
x2 + 12

) (
x2 + 18

)
(C3×Q8) : C2 48

(
x2 + 12

) (
x2 + 18

)
C3 : Q16 48

(
x2 − 18

) (
x2 + 12

)
(C6×C2) : C4 48

(
x2 + 3

) (
x2 + 36

)
C3× ((C4×C2) : C2) 48

(
x2 + 4

) (
x2 − 2x+ 4

) (
x2 − x+ 1

) (
x2 + x+ 1

)
×
(
x2 + 2x+ 4

) (
x4 − 4x2 + 16

)
C3× (C4 : C4) 48

(
x2 + 4

) (
x2 − 2x+ 4

) (
x2 − x+ 1

) (
x2 + x+ 1

)
×
(
x2 + 2x+ 4

) (
x4 − 4x2 + 16

)
C3× (C8 : C2) 48

(
x2 + 1

) (
x2 + 4

) (
x2 − 2x+ 4

) (
x2 − x+ 1

) (
x2 + x+ 1

)
×
(
x2 + 2x+ 4

) (
x4 − 4x2 + 16

)
×
(
x4 − x2 + 1

)
C3×D16 48

(
x2 − 2

) (
x2 − 4x+ 16

) (
x2 − 2x+ 4

) (
x2 − x+ 1

)
×
(
x2 + x+ 1

) (
x2 + 2x+ 4

)
×
(
x2 + 4x+ 16

) (
x4 + 2x2 + 4

)
C3×QD16 48

(
x2 + 2

) (
x2 − 4x+ 16

) (
x2 − 2x+ 4

) (
x2 − x+ 1

)
×
(
x2 + x+ 1

) (
x2 + 2x+ 4

)
×
(
x2 + 4x+ 16

) (
x4 − 2x2 + 4

)
C3×Q16 48

(
x2 − 2

) (
x2 − 4x+ 16

) (
x2 − 2x+ 4

) (
x2 − x+ 1

)
×
(
x2 + x+ 1

) (
x2 + 2x+ 4

)
×
(
x2 + 4x+ 16

) (
x4 + 2x2 + 4

)
C2 . S4 = SL(2,3) . C2 48 x2 − 18
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GL(2,3) 48 x2 + 18
A4 : C4 48

(
x2 + 4

) (
x2 + 36

)
C4×A4 48

(
x2 + 1

) (
x2 + 9

) (
x2 + 16

) (
x2 − 4x+ 16

)
×
(
x2 + 4x+ 16

) (
x4 − 16x2 + 256

)
C2× SL(2,3) 48

(
x2 − 4x+ 16

) (
x2 − 2x+ 4

) (
x2 + 2x+ 4

) (
x2 + 4x+ 16

)
((C4×C2) : C2) : C3 48

(
x2 + 1

) (
x2 + 4

) (
x2 − 4x+ 16

) (
x2 − 2x+ 4

)
×
(
x2 + 2x+ 4

) (
x2 + 4x+ 16

) (
x4 − 4x2 + 16

)
C2× (C3 : Q8) 48 x2 − 3
C2×C4× S3 48

(
x2 + 1

) (
x2 + 4

) (
x2 + 9

)
C2×D24 48 x2 − 3

(C12×C2) : C2 48
(
x2 − 3

) (
x2 + 1

) (
x2 + 3

) (
x2 + 4

)
D8× S3 48 1

(C4× S3) : C2 48 x2 + 9
Q8× S3 48 1

(C4× S3) : C2 48 x2 + 9
C2×C2× (C3 : C4) 48 x2 + 9
C2× ((C6×C2) : C2) 48 x2 + 3

C6×D8 48
(
x2 − 2x+ 4

) (
x2 − x+ 1

) (
x2 + x+ 1

) (
x2 + 2x+ 4

)
C6×Q8 48

(
x2 − 2x+ 4

) (
x2 − x+ 1

) (
x2 + x+ 1

) (
x2 + 2x+ 4

)
C3× ((C4×C2) : C2) 48

(
x2 + 1

) (
x2 − 2x+ 4

) (
x2 − x+ 1

) (
x2 + x+ 1

)
×
(
x2 + 2x+ 4

) (
x4 − x2 + 1

)
C2× S4 48 1

C2×C2×A4 48
(
x2 − 4x+ 16

) (
x2 + 4x+ 16

)
(C2×C2×C2×C2) : C3 48 x2 + 16x+ 256

C2×C2×C2× S3 48 1
D50 50

(
x2 + x− 1

)
×
(
x10−10x8+35x6+x5−50x4−5x3+25x2+5x−1

)
C5×D10 50

(
x2 + x− 1

) (
x4 − 5x3 + 25x2 − 125x+ 625

)
×
(
x4 − 3x3 + 4x2 − 2x+ 1

) (
x4 + x3 + x2 + x+ 1

)
×
(
x4 + 2x3 + 4x2 + 3x+ 1

) (
x4+2x3+4x2+8x+16

)
×
(
x4 + 5x3 + 25x2 + 125x+ 625

)
(C5×C5) : C2 50 x2 + x− 1

C13 : C4 52
(
x2 + 169

) (
x6 − x5 − 5x4 + 4x3 + 6x2 − 3x− 1

)
×
(
x6 + x5 − 5x4 − 4x3 + 6x2 + 3x− 1

)
C13 : C4 52

(
x2 + 169

) (
x3 + x2 − 4x+ 1

)
D52 52

(
x6 − x5 − 5x4 + 4x3 + 6x2 − 3x− 1

)
×
(
x6 + x5 − 5x4 − 4x3 + 6x2 + 3x− 1

)
D54 54

(
x3 − 3x+ 1

) (
x9 − 9x7 + 27x5 − 30x3 + 9x+ 1

)
C3×D18 54

(
x2 − 9x+ 81

) (
x2 − x+ 1

) (
x2 + x+ 1

)
×
(
x2 + 2x+ 4

) (
x2 + 9x+ 81

) (
x3 − 3x+ 1

)
×
(
x6 + 3x4 + 2x3 + 9x2 + 3x+ 1

)
C9× S3 54

(
x2 − 3x+ 9

) (
x2 − x+ 1

) (
x2 + x+ 1

) (
x2 + 2x+ 4

)
×
(
x2 + 3x+ 9

) (
x6 − 27x3 + 729

) (
x6 − x3 + 1

)
×
(
x6 + x3 + 1

) (
x6 + 8x3 + 64

) (
x6 + 27x3 + 729

)
(C3×C3) : C6 54

(
x2 − 9x+ 81

) (
x2 − 3x+ 9

) (
x2 + 3x+ 9

)
×
(
x2 + 6x+ 36

) (
x2 + 9x+ 81

)
Continued on next page
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C9 : C6 54
(
x2 − 9x+ 81

) (
x2 − 3x+ 9

) (
x2 + 3x+ 9

)
×
(
x2 + 6x+ 36

) (
x2 + 9x+ 81

)
(C9×C3) : C2 54 x3 − 3x+ 1

((C3×C3) : C3) : C2 54
(
x2 − 3x+ 9

) (
x2 + x+ 1

) (
x2 + 3x+ 9

)
C2× ((C3×C3) : C3) 54

(
x2 − 3x+ 9

) (
x2 − x+ 1

) (
x2 + x+ 1

) (
x2 + 3x+ 9

)
C2× (C9 : C3) 54

(
x2 − 3x+ 9

) (
x2 − x+ 1

) (
x2 + x+ 1

) (
x2 + 3x+ 9

)
C3×C3× S3 54

(
x2 − 3x+ 9

) (
x2 − x+ 1

)
×
(
x2 + x+ 1

) (
x2 + 2x+ 4

) (
x2 + 3x+ 9

)
C3× ((C3×C3) : C2) 54

(
x2 − 9x+ 81

) (
x2 − x+ 1

)
×
(
x2 + x+ 1

) (
x2 + 2x+ 4

) (
x2 + 9x+ 81

)
(C3×C3×C3) : C2 54 1

C11 : C5 55
(
x2 + x+ 3

) (
x4 + 11x3 + 121x2 + 1331x+ 14641

)
C7 : C8 56

(
x2 + 1

) (
x2 + 4

) (
x2 + 49

) (
x3 − x2 − 2x+ 1

)
×
(
x3 + x2 − 2x− 1

) (
x4 + 2401

) (
x6+5x4+6x2+1

)
C7 : Q8 56

(
x3 − x2 − 2x+ 1

) (
x3 + x2 − 2x− 1

)
×
(
x6 − 7x4 + 14x2 − 7

)
C4×D14 56

(
x2 + 1

) (
x2 + 4

) (
x2 + 49

) (
x3 − x2 − 2x+ 1

)
×
(
x3 + x2 − 2x− 1

) (
x6 + 5x4 + 6x2 + 1

)
D56 56

(
x3 − x2 − 2x+ 1

) (
x3 + x2 − 2x− 1

)
×
(
x6 − 7x4 + 14x2 − 7

)
C2× (C7 : C4) 56

(
x2 + 49

) (
x3 − x2 − 2x+ 1

) (
x3 + x2 − 2x− 1

)
(C14×C2) : C2 56

(
x3 − x2 − 2x+ 1

) (
x3 + x2 − 2x− 1

)
×
(
x6 + 7x4 + 14x2 + 7

)
C7×D8 56

(
x6 − 2x5 + 4x4 − 8x3 + 16x2 − 32x+ 64

)
×
(
x6 − x5 + x4 − x3 + x2 − x+ 1

)
×
(
x6 + x5 + x4 + x3 + x2 + x+ 1

)
×
(
x6 + 2x5 + 4x4 + 8x3 + 16x2 + 32x+ 64

)
C7×Q8 56

(
x6 − 2x5 + 4x4 − 8x3 + 16x2 − 32x+ 64

)
×
(
x6 − x5 + x4 − x3 + x2 − x+ 1

)
×
(
x6 + x5 + x4 + x3 + x2 + x+ 1

)
×
(
x6 + 2x5 + 4x4 + 8x3 + 16x2 + 32x+ 64

)
(C2×C2×C2) : C7 56 x6 + 8x5 + 64x4 + 512x3 + 4096x2 + 32768x+ 262144

C2×C2×D14 56
(
x3 − x2 − 2x+ 1

) (
x3 + x2 − 2x− 1

)
C19 : C3 57

(
x2 + 19x+ 361

) (
x6 + x5 + 2x4 − 8x3 − x2 + 5x+ 7

)
D58 58 x14 + x13 − 13x12 − 12x11 + 66x10 + 55x9 − 165x8

−120x7 + 210x6 + 126x5 − 126x4 − 56x3

+28x2 + 7x− 1
C5× (C3 : C4) 60

(
x2 + 9

) (
x4 − 3x3 + 9x2 − 27x+ 81

)
×
(
x4 − 2x3 + 4x2 − 8x+ 16

) (
x4 − x3 + x2 − x+ 1

)
×
(
x4 + x3 + x2 + x+ 1

) (
x4 + 2x3 + 4x2 + 8x+ 16

)
×
(
x4 + 3x3 + 9x2 + 27x+ 81

)
×
(
x8 − 9x6 + 81x4 − 729x2 + 6561

)
C3× (C5 : C4) 60

(
x2 + 25

) (
x2 − 5x+ 25

) (
x2 − 2x+ 4

) (
x2 − x− 1

)
×
(
x2 − x+ 1

) (
x2 + x− 1

) (
x2 + x+ 1

)
×
(
x2 + 2x+ 4

) (
x2 + 5x+ 25

) (
x4 − 25x2 + 625

)
×
(
x4 − x3 + 2x2 + x+ 1

) (
x4 + x3 + 2x2 − x+ 1

)
Continued on next page
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C15 : C4 60
(
x2 + 225

) (
x2 − x− 1

) (
x2 + x− 1

)
×
(
x4 − x3 − 4x2 + 4x+ 1

) (
x4 + x3 − 4x2 − 4x+ 1

)
A5 60 x2 − 4x− 16

C3× (C5 : C4) 60
(
x2 + 25

) (
x2 − 5x+ 25

) (
x2 − x+ 1

) (
x2 + x+ 1

)
×
(
x2 + 4x+ 16

) (
x2 + 5x+ 25

) (
x4 − 25x2 + 625

)
C15 : C4 60

(
x2 + 225

) (
x2 − x+ 4

)
S3×D10 60

(
x2 − 3x− 9

) (
x2 − x− 1

)
×
(
x2 + x− 1

) (
x2 + 2x− 4

) (
x2 + 3x− 9

)
C5×A4 60

(
x2 + 4x+ 16

) (
x4 − x3 + x2 − x+ 1

)
×
(
x4 + x3 + x2 + x+ 1

) (
x4 + 3x3 + 9x2 + 27x+ 81

)
×
(
x4 + 4x3 + 16x2 + 64x+ 256

)
×
(
x8−4x7+64x5−256x4+1024x3−16384x+65536

)
C6×D10 60

(
x2 − 5x+ 25

) (
x2 − 2x+ 4

) (
x2 − x− 1

) (
x2 − x+ 1

)
×
(
x2 + x− 1

) (
x2 + x+ 1

) (
x2 + 2x+ 4

)
×
(
x2 + 5x+ 25

) (
x4 − x3 + 2x2 + x+ 1

)
×
(
x4 + x3 + 2x2 − x+ 1

)
C10× S3 60

(
x4 − 3x3 + 9x2 − 27x+ 81

)
×
(
x4 − 2x3 + 4x2 − 8x+ 16

)
×
(
x4 − x3 + x2 − x+ 1

) (
x4 + x3 + x2 + x+ 1

)
×
(
x4 + 2x3 + 4x2 + 8x+ 16

)
×
(
x4 + 3x3 + 9x2 + 27x+ 81

)
D60 60

(
x2 − x− 1

) (
x2 + x− 1

) (
x4 − x3 − 4x2 + 4x+ 1

)
×
(
x4 + x3 − 4x2 − 4x+ 1

)
C Mathieu groups

Having presented the polynomials for first 60 non-Abelian groups, it is illustrative to at-
tempt the other extreme of very large, non-trivial groups. Naturally, the Sporadics come to
mind; these have become very much studied recently in the context of partition functions
in quantum field theories. Whilst the sizes of these groups could become astronomical, the
number of conjugacy classes is very tame. For instance, the Monster, with size ∼ 1054, has
only 194 classes.

Thus, extracting our polynomials for all 26 Sporadics is relatively easy. Of course, the
one for the Monster is still a bit too long to present. Nevertheless, for the two most famous
Sporadics in physics, viz, Mathieu 24 and 23, we have

PM24 =
(
x2 − 388608x+ 302032355328

) (
x2 − 11264x+ 253755392

)
×
(
x2 + 5888x+ 69337088

) (
x2 + 11264x+ 253755392

)
×
(
x2 + 11776x+ 277348352

) (
x2 + 13824x+ 1146617856

)
×
(
x2 + 17664x+ 624033792

) (
x2 + 70656x+ 19969081344

)
×
(
x2 + 129536x+ 33559150592

) (
x2 + 259072x+ 134236602368

)
(C.1)

PM23 =
(
x2 − 16192x+ 524361728

) (
x2 + 576x+ 1990656

) (
x2 + 736x+ 1083392

)
×
(
x2 + 1035x+ 3213675

) (
x2 + 2944x+ 34668544

) (
x2 + 16192x+ 524361728

)
.
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