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We show that the repeated application of logics in a globally connected architecture gives rise to
an exponential bias towards simple output functions. It suggests an explanation for why neural
networks and other learning methodologies are biased towards simplicity in the models that they

generate.

Introduction

Artificial intelligence is the most recent chapter in the
long arc of automation. Mechanical automation has
progressed for millennia and electronic automation for
over a century. The novelty of machine learning is that,
instead of using trial and error to find a program that
generates a given output, it seeks to automatically
reverse engineer the program from the output. There is
no unique solution to this problem, because in general a
vast number of programs produce the same output.

What is striking about neural networks and other
learning methodologies is that the reverse-engineered
program that generates the desired output tends to
be simple. In this sense, there is a built-in Occam’s
razor lurking in AI. Just as Occam’s razor prescribes
the simplest explanation that fits the facts, there is an
inclination for deep layered machines to generate the
simplest program that generates the output.

In this paper we do two things. First, we give a
mathematical formula for the distribution of the global
function for k variables and depth n (see Fig. 1). This is
confirmed by computer experiments that we did in prior
work [13]. Second, we show that as the network depth n
increases, the network function becomes exponentially
biased towards simple functions.

Input-output maps. A broad class of physical, bi-
ological and mathematical input-output maps have
been empirically observed to be biased towards simple
outputs. This was first observed in biological systems,
in which some phenotypes are generated by a vast
number of genotypes, whereas others are much less
designable in this sense. One of the best-studied example
is RNA folding, in which RNA nucleotide sequences
(programs) map to RNA secondary structures (func-
tions). This system is exactly solvable because the space
of conformations can be combinatorially enumerated by
sequences of dots and brackets, indicating hairpins and
loops. The designability of proteins has also attracted
a lot of attention [1]. In small genetic circuits, many
assingments of update rules lead to the same dynamical
behavior. Similar effects have been found in simple
Boolean networks and the self-assembly of polyominoes
[4]. In all cases, the most designable outputs are also the
simplest and most symmetric.

One of the earliest, albeit highly abstracted, studies of
input-output maps is due to Solomonoff. He considered
the probability that a random program fed into some
universal Turing machine generates a given output. A
classic result is that a string of arbitrary length can
be compressed by ¢ bits with probability 1/2%. Thus a
random program is exponentially more likely to generate
simple (in the sense of compressible) outputs.

Composition of logics. There are 22" logic functions of
k variables. For n = 2, the 16 logics are given in Fig. 2.
In our notation, @ means NOT a, ab means a AND b, a®b
means a XOR b (exclusive or), and a+b means a OR b. In
the fully connected architecture (see Fig. 1), each logic
is a function of the k variables in the layer below it. The
goal of this paper is to understand the distribution of
logics at depth n when we compose the logic functions.

To get a sense of how these logics are composed,
consider the case of kK = 2 variables in a network of
depth n = 1. We want to know the distribution of
outputs of f(gi(a,b),g2(a,b). There are 16° ways of
assigning logics to f, g1 and go, but only 16 possible
outputs. For example, if f = ¢g; AND g2, g1 = a OR b,
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FIG. 1: Fully connected architectures. In an architecture
of k variables, each logic depends on all k of the variables
below it, each of which in turn depends on the k variables
below it, and so on, down to n levels. This paper is concerned
with the distribution of logics at a given depth n. What we
find is an exponential bias towards simple logics (those with
high or low Hamming weight w), which grows with depth n.



and ¢go = @ OR b, then f = a XOR b. But if instead we
set f = g1 OR go, then f = true. Running through all
4,096 assignments, we find that some functions are more
designable than others, as shown by the numerators in
the n = 1 column of Fig. 2. The spread becomes more
pronounced for network depth n = 2, and so on.

)’nk+1

In general there are (22k programs which pro-

duce 22" functions. The degeneracy breaks into 2% + 1
classes, which depend only on the Hamming weight of
the logic, that is, the number of 1s in its truth table,
which can range from 0 to 2*. For example, for k = 2,
there are 5 classes, shown in Fig. 2.

Transition matrix and its properties

Transition matriz. Let x(n) be the distribution of the
logic functions at depth n. For convenience let ¢ = 2F.
There exists an ¢ — 1 by £ — 1 transition matrix B(k)
such that

x(n) = B"(k)x(0). (1)
Logic  Hamming Probability of function
function weight w n=0n=1 n=2 n=3
1 680 . 261056 . 83663360
false 0000 0 } 14 1883 ,.201056 , 83603360
ab 1000 1
ab 0100 1 L1, 216, 42048 8087040
ab 0010 1 ‘16 ‘163 " 16° ©167
ab 0001 1
a 1100 2
a 0011 2
b 1010 2 6L 168 31680 . 6068736
b 0101 2 16 ‘163 77 16° T
a®b 0110 2
asb 1001 2
a+b 1110 3
a+b 1101 3 oLl 4216, 42048 |, 8087040
a+b 1011 3 6 ties I tIe
a+b 0111 3
true 1111 4 } 1k 1080 26105 5663300

FIG. 2: Distribution of logics for two variables. For
k = 2 variables, there are 16 logic functions, which can also
be expressed by their binary truth tables. For n =0, 1, 2 and
3 layers, we show the probability of producing the functions.
Thus for n = 0 the probability of producing ab, ab, @b and @b
is /16 for each, and 4 - /16 for any of them. The probability
depends only on the Hamming weight w of the function, that
is, the number of 1s in the truth table. For large n, the prob-
ability of true and false each approach a half, with the other
probabilities going to zero. But this happens slowly compared
to the time it takes to equilibrate to the principle eigenvector
of the matrix B (see Fig. 6).

The elements of the matrix B satisfy

1 . .
B =5 (€> (0 — i),

J

1133 2123 3113
(421) 1232 2222 3212 3
(3)) \ 123t 2321 3311

For example, for k = 2,

For k = 3,
(?) 1177 9167 3157 4147 5137 glo7 7117
) 1275 226° 325¢ 4246 5236 6226 7%1°
1 (2 1375 2365 3355 4345 5335 6325 7315
B(3)278 i) 1474 2464 3454 4444 5434 6424 7414
8 (i) 1573 2563 3553 4543 5533 6523 7513
(g) 1672 2662 3652 4642 5632 6622 7612

(B) 1771 2761 3751 4741 5731 6721 7711

Eigenvalues. The transition matrix B has ¢ — 1 eigen-
values, where recall £ = 2¥. The principal eigenvalue is
A1 = (£ —1)/¢ and and the jth eigenvalue is

i
v=11 el‘

i=1

Prob. of funct.

Logic function w n=>0 n=1

00000000 0 15 1.130761084
00000001, 00000010, ... 1 sz g. 40611200
00000011, 00000101, ... 2 28l 2510714088
00000111, 00001011, ... 3 565 56-12055080
00001111, 00001111, ... 4 705 7011357152
00011111, 00101111, ... 5 56555  56-13080080
00111111, 01011111, ... 6 285t 2819718088
01111111, 10111111, ... 7 8355 g. 40611200

11111111 8 g 13676. 984

FIG. 3: Distribution of logics for three variables. For
k = 3, there are 256 logics, which we express by their binary
truth tables. As in Fig. 2, they are grouped by their Hamming
weight w. For n = 0 and n = 1 layers, we show the probability
of producing each of the functions in the Hamming weight
group.
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FIG. 4: Likelihood of producing a function with a given Kolmogorov complexity. The top straight curves show the
probability that the output function can be compressed by k bits. The gray region indicates the effective error bars, that is,

the bounds on the principal eigenvector given by eq. (3).

As a reality check, the sum of the eigenvalues is
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which is precisely the trace of B, as expected.

Bounding the principal eigenvector. The principal
eigenvector of B gives the distribution of the logics (apart
from true and false) in the limit of large network depth
n. We don’t know how to write it down explicitly, but we
can show that it is approximately flat.

In particular, we know that the principal eigenvector
is at least as flat as the column sums of the matrix that
it satisfies. The column sums of B are

1 =
N . NO—
ZBij = 672 (j_)zj(ﬁ—z) 7.
j=1 Jj=1

If we extend the bounds in the sum to 0 and ¢, by the

binomial theorem the sum is just 1. So we know that

S () (7). e

This is minimized when ¢ = 1 and ¢ = ¢ — 1, and maxi-
mized when i = £/2. For even modest values of k, £ = 2"
is large, and the minimum and maximum values of the
sum tend to (1 —e)/e and 1. Thus in the limit of large ¢,
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where (1 —e)/e is 0.632. So the ratio of the smallest and
largest components of the principal eigenvector of B is
at least (1 —e)/e and at most 1. For example, for k = 3,
the minimum and maximum column sums are 0.656 and
0.992. As we shall see, the flatness of the principal eigen-
vector of B is key to our main result, namely, that the
probability that the network function has Kolmogorov
complexity ¢ is constant.

Probability of true and false. The probability of gen-
erating any non-constant function (not true or false) at
depth n = 1 is the sum over i of the columns sums given

1), 3)



in (2) times the initial condition, that is,
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Soatn=1,
11, (0
P(true) = P(false) = 75t ;iz <z>’ (4)
where recall £ = 2F. Asymptotically, this is

1 1 0.884
VI+c(2ec)t  1.5142F°

where c is the value of the Lambert W function at 1/e.

P(true) ~

Comparison with computer experiments

The computational cost of enumerating all possible
logic assignments on a network of width £ and depth
n is formidable: it grows as 22k7 which is the number
of assignments per node, to the power nk 4 1, which is
the number of nodes in the network. In previous work
[13], we conducted extensive computer experiments for
various values of k& and n. In all cases, our computer
experiments agree with our theoretical predictions.

For k = 2 variables (Fig. 1A), there are 163,16, 167
and 16° programs for network depths n = 1,2,3 and
4. We enumerated all of these configurations and, for
each, determined the network’s global function. We plot
the probability of obtaining a given function in Fig.
5A (points), where we group together functions with
the same Hamming weight w. This exactly matches
our theoretical predictions. The solid line indicates the
probabilities of the non-constant logic functions (eq. (1))
and the dotted line true (w = 4) and false (w = 0) (eq.
(4)) The probabilities correspond to the values in Fig. 2.
As n increases, the likelihood of true and false approach
/2, causing the likelihood of the non-constant functions
to fall.

For k = 3 variables (Fig. 1B), there are 256%, 2567
and 256'° programs for network depths n = 1,2 and
3. For n = 1, we were able to enumerate all of the
configurations. For n = 2 and 3, this is computationally
infeasible, so instead we sampled the configurations.
We randomly assigned one of the 256 logics to each
of the nodes and then determined the global function,
repeating this a million times. These are plotted in
Fig. 5B (points). We include errors bars, but these are
negligible in comparison to the point size. Our theory

predicts the computer experiments exactly for n = 1
and to within statistical significance for n = 2 and 3.
We also show our n = 4 predictions for comparison. As
n increases, true and false again dominate, causing the
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FIG. 5: Computational confirmation of our theory. We
compare our theory (orange lines) with computer experiment
(gray dots) for various values of k (the number of variables)
and n (the network depth). The y-axis measures the proba-
bility of obtaining a given function, where we group together
functions with the same Hamming weight w, which is the
number of 1s in its truth table. For example, for k& = 2, the
probabilities correspond to the values in Fig. 2. A For k = 2,
we enumerated all of the configurations up to network depth
n = 4. As n increases, the distribution of the non-constant
functions flattens out. But for true and false (w = 0 and
w = 4), the probabilities approach 1/2. B For k = 3, we show
exact results for n = 0 and 1, and sample the configurations
for n = 2. For k = 4, we show exact results for n = 0, and
sample the configurations for n = 1 and 2.



non-constant functions to fall.

For k = 4 variables (Fig. 1C), there are 65,536° and
65,536° programs for network depths n = 1 and 2.
These are too many to enumerate, so we sampled from
the configurations: a million samples for n = 1 and the
same for n = 2. These are plotted in Fig. 5C, again
with errors bars. Once again, our theory predicts the
experiments to within statistical significance. We also
show our n = 3 and 4 predictions for comparison.

Discussion

The main result of this paper is that the composition of
logic functions on a fully-connected network architecture
is biased towards simple functions. This bias becomes
stronger as the network becomes deeper. In the limit of
large depth n, the probability that an arbitrary function
can be compressed by s bits is constant, rather than 27°
as is the case for randomly chosen functions.

Two time scales. As we increase the network depth n,
the simplicity distribution changes in two ways, which
we can think of as independent. The first is that the
non-constant functions (everything apart from true and
false) flatten out, and the second is that true and false
start to dominate. The first happens relatively quickly
and the second happens relatively slowly.

The two effects are shown in Fig. 6 for different values
of the number of variables k. The orange curves show
the distribution of the non-constant functions when the
probability of true and false are negligible. The gray
curves show the distribution as the probability of true
and false start to dominate, causing the distribution
(which continues to flatten) to descend. For example,
for k = 6, the probability of true for n = 9, 27, 81, 243
and 729 layers is 0.001, 0.056, 0.299, 0.484 and 0.5000,
with the same for false. As k increases, the times scales
for flattening and descending diverge: the distribution
flattens before it descends. We have computationally
confirmed this behavior for up to k = 9.

Related work. This paper reveals a bias towards
simplicity for a fully-connected architecture, in which
the variables in the logic functions are all the same. It is
the theoretical follow-up to a paper about the computa-
tional evidence for a simplicity bias for a fully-connected
architecture and a branching architecture [14].

This paper considers the fully-connected architecture,
In a separate paper [13], we consider the opposite

regime: a regularly branching architecture, in which the
variables in the logic functions are all different.

Open questions. This research raises a number of
open questions. One is the principle eigenvector of the
transition matrix B. Right now we are able to bound the
variation in the components to be within (1—e)/e, which
guarantees its flatness. But we do not have an analytic
form, A second question is a theoretical understanding
of the two time scales described above, in which the
distribution flattens before it descends. This will be tied

to the spectrum of eigenvalues of the transition matrix
B.
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FIG. 6: The simplicity distribution depends on the depth of the network. As the network depth n increases, the
simplicity distribution of the non-constant functions (everything but true and false) flattens out. On a slower time scale, the
probability of true and false start to dominate as they each approach one half, causing the distribution to fall. The orange
curves show the distribution before true and false dominate, and the gray curves show it after they dominate. As the number
of variables k increases, these time scales diverge: the distribution flattens out before it falls.



