
Why AI works: the iteration of simple rules
in a fully-connected architecture imposes Occam’s razor

Thomas Fink
London Institute for Mathematical Sciences, Royal Institution, 22 Albemarle St, London W1S 4BS, UK

(Dated: January 6, 2026)

We show that the repeated application of logics in a globally connected architecture gives rise to
an exponential bias towards simple output functions. It suggests an explanation for why neural
networks and other learning methodologies are biased towards simplicity in the models that they
generate.

Introduction
Artificial intelligence is the most recent chapter in the
long arc of automation. Mechanical automation has
progressed for millennia and electronic automation for
over a century. The novelty of machine learning is that,
instead of using trial and error to find a program that
generates a given output, it seeks to automatically
reverse engineer the program from the output. There is
no unique solution to this problem, because in general a
vast number of programs produce the same output.

What is striking about neural networks and other
learning methodologies is that the reverse-engineered
program that generates the desired output tends to
be simple. In this sense, there is a built-in Occam’s
razor lurking in AI. Just as Occam’s razor prescribes
the simplest explanation that fits the facts, there is an
inclination for deep layered machines to generate the
simplest program that generates the output.

In this paper, we show that the repeated application of
logic functions in a globally connected architecture gives
rise to an exponential bias towards simple functions.

Input-output maps. A broad class of physical, bi-
ological and mathematical input-output maps have
been empirically observed to be biased towards simple
outputs. This was first observed in biological systems,
in which some phenotypes are generated by a vast
number of genotypes, whereas others are much less
designable in this sense. One of the best-studied example
is RNA folding, in which RNA nucleotide sequences
(programs) map to RNA secondary structures (func-
tions). This system is exactly solvable because the space
of conformations can be combinatorially enumerated by
sequences of dots and brackets, indicating hairpins and
loops. The designability of proteins has also attracted
a lot of attention [1]. In small genetic circuits, many
assingments of update rules lead to the same dynamical
behavior. Similar effects have been found in simple
Boolean networks and the self-assembly of polyominoes
[4]. In all cases, the most designable outputs are also the
simplest and most symmetric.

One of the earliest, albeit highly abstracted, studies of
input-output maps is due to Solomonoff. He considered
the probability that a random program fed into some
universal Turing machine generates a given output. A

classic result is that a string of arbitrary length can
be compressed by q bits with probability 1/2q. Thus a
random program is exponentially more likely to generate
simple (in the sense of compressible) outputs.

Composition of logics. There are 22
k

logic functions of
k variables. For n = 2, the 16 logics are given in Fig. 2.
In our notation, a means not a, ab means a and b, a⊕b
means a xor b (exclusive or), and a+b means a or b. In
the fully connected architecture (see Fig. 1), each logic
is a function of the k variables in the layer below it. The
goal of this paper is to understand the distribution of
logics at depth n when we compose the logic functions.

To get a sense of how these logics are composed,
consider the case of k = 2 variables in a network of
depth n = 1. We want to know the distribution of
outputs of f(g1(a, b), g2(a, b). There are 163 ways of
assigning logics to f , g1 and g2, but only 16 possible
outputs. For example, if f = g1 and g2, g1 = a or b,
and g2 = a or b, then f = a xor b. But if instead we
set f = g1 or g2, then f = true. Running through all
4,096 assignments, we find that some functions are more
designable than others, as shown by the numerators in
the n = 1 column of Fig. 2. The spread becomes more
pronounced for network depth n = 2, and so on.

In general there are
(
22

k)nk+1
programs which pro-

k = 2 k = 3 k = 4

n = 0

n = 1

n = 2

n = 3

FIG. 1: Fully connected architectures. In an architecture
of k variables, each logic depends on all k of the variables
below it, each of which in turn depends on the k variables
below it, and so on, down to n levels. This paper is concerned
with the distribution of logics at a given depth n. What we
find is an exponential bias towards simple logics (those with
high or low Hamming weight w), which grows with depth n.

2

duce 22
k

functions. The degeneracy breaks into 2k + 1
classes, which depend only on the Hamming weight of
the logic, that is, the number of 1s in its truth table,
which can range from 0 to 2k. For example, for k = 2,
there are 5 classes, shown in Fig. 2.

Transition matrix and its properties
Transition matrix. Let x(n) be the distribution of the
logic functions at depth n. For convenience let ` = 2k.
There exists an ` − 1 by ` − 1 transition matrix B(k)
such that

x(n) = Bn(k)x(0).

The elements of the matrix B satisfy

Bij =
1

``

(
`

j

)
ij(`− i)`−j .

For example, for k = 2,

B(2) =
1

44

((4
1

)(4
2

)(4
3

)
)(

1133 2123 3113

1232 2222 3212

1331 2321 3311

)
.

Logic Hamming Probability of function
function weight w n = 0 n = 1 n = 2 n = 3

false 0000 0
}

1
16

680
163

261056
165

83663360
167

ab 1000 1

ab 0100 1
ab 0010 1

ab 0001 1

 1
16

216
163

42048
165

8087040
167

a 1100 2
a 0011 2
b 1010 2

b 0101 2
a⊕b 0110 2

a⊕b 1001 2


1
16

168
163

31680
165

6068736
167

a+b 1110 3

a+b 1101 3
a+b 1011 3

a+b 0111 3

 1
16

216
163

42048
165

8087040
167

true 1111 4
}

1
16

680
163

261056
165

83663360
167

FIG. 2: Distribution of logics for two variables. For k =
2 variables, there are 16 logic functions, which can also be
expressed by their binary truth tables. For n = 0, 1, 2 and 3
layers, we show the probability of producing a given function.
It depends only on the Hamming weight w of the function:
the number of 1s in the truth table. So there are 22 + 1 = 5
cases. The first case has w = 0 and contains just the function
false. The second class has w = 1 and contains ab, ab, ab and
ab, and so on. For large n, the probability of true and false
each approach a half, with the other probabilities going to
zero. But this happens slowly compared to the time it takes
to equilibrate to the principle eigenvector of the matrix B (see
Fig. 6).

For k = 3,

B(3)=
1

88



(8
1

)(8
2

)(8
3

)(8
4

)(8
5

)(8
6

)(8
7

)





1177 2167 3157 4147 5137 6127 7117

1276 2266 3256 4246 5236 6226 7216

1375 2365 3355 4345 5335 6325 7315

1474 2464 3454 4444 5434 6424 7414

1573 2563 3553 4543 5533 6523 7513

1672 2662 3652 4642 5632 6622 7612

1771 2761 3751 4741 5731 6721 7711


Eigenvalues. The transition matrix B has `− 1 eigen-

values, where recall ` = 2k. The principal eigenvalue is
λ1 = (`− 1)/` and and the jth eigenvalue is

λj =

j∏
i=1

`− i
`

.

As a reality check, the sum of the eigenvalues is

`−1∑
j=1

λj =

`−1∑
j=1

j∏
i=1

`− i
`

= −2 +
`!

``

∑̀
j=0

`j

j!

=
`!

``

`−1∑
j=1

jj

j!

(`− j)`−j

(`− j)!

=
1

``

`−1∑
j=1

(
`

j

)
jj(`− j)`−j ,

which is precisely the trace of B, as expected.
Bounding the principal eigenvector. The principal

eigenvector of B gives the distribution of the logics (apart
from true and false) in the limit of large network depth

Prob. of funct.
Logic function w n = 0 n = 1

00000000 0 1
256

136761984
2564

00000001, 00000010, 00000100, . . . 1 1
256

40611200
2564

00000011, 00000101, 00000110, . . . 2 1
256

19714688
2564

00000111, 00001011, 00001101, . . . 3 1
256

13086080
2564

00001111, 00001111, 00001111, . . . 4 1
256

11457152
2564

00011111, 00101111, 00110111, . . . 5 1
256

13086080
2564

00111111, 01011111, 01101111, . . . 6 1
256

19714688
2564

01111111, 10111111, 11011111, . . . 7 1
256

40611200
2564

11111111 8 1
256

136761984
2564

FIG. 3: Distribution of logics for three variables. For
k = 3, there are 256 logics, which we express by their binary
truth tables. As in Fig. 2, they are grouped by their Hamming
weight w. For n = 0 and n = 1 layers, we show the probability
of producing each of the functions in the Hamming weight
group.

3

k = 2
n = ∞

0 1 2 3 4

2-2

2-3

2-4

2-5

2-6

Information content (bits)

P
ro
ba
bi
lit
y

k = 3
n = ∞

0 2 4 6 8

2-3

2-5

2-7

2-9

2-11

Information content (bits)

P
ro
ba
bi
lit
y

k = 4
n = ∞

0 4 8 12 16

2-4

2-8

2-12

2-16

2-20

Information content (bits)

P
ro
ba
bi
lit
y

k = 5
n = ∞

0 8 16 24 32

2-5

2-13

2-21

2-29

2-37

Information content (bits)

P
ro
ba
bi
lit
y

k = 6
n = ∞

0 16 32 48 64

2-6

2-22

2-38

2-54

2-70

Information content (bits)

P
ro
ba
bi
lit
y

k = 7
n = ∞

0 32 64 96 128

2-7

2-39

2-71

2-103

2-135

Information content (bits)

P
ro
ba
bi
lit
y

FIG. 4: Likelihood of producing a function with a given Kolmogorov complexity. The top straight curves show the
probability that the output function can be compressed by k bits. The gray region indicates the effective error bars, that is,
the bounds on the principal eigenvector given by eq. (2).

n. We don’t know how to write it down explicitly, but we
can show that it is approximately flat.

In particular, we know that the principal eigenvector
is at least as flat as the column sums of the matrix that
it satisfies. The column sums of B are

`−1∑
j=1

Bij =
1

``

`−1∑
j=1

(
l

j

)
ij(`− i)`−j .

If we extend the bounds in the sum to 0 and `, by the
binomial theorem the sum is just 1. So we know that

`−1∑
j=1

Bij = 1−
(
i

`

)`

−
(
`− i
`

)`

. (1)

This is minimized when i = 1 and i = ` − 1, and maxi-
mized when i = `/2. For even modest values of k, ` = 2k

is large, and the minimum and maximum values of the
sum tend to (1− e)/e and 1. Thus in the limit of large `,

`−1∑
j=1

Bij ∈
[

1− e
e

, 1

]
, (2)

where (1− e)/e is 0.632. So the ratio of the smallest and
largest components of the principal eigenvector of B is
at least (1− e)/e and at most 1. For example, for k = 3,
the minimum and maximum column sums are 0.656 and
0.992. As we shall see, the flatness of the principal eigen-

vector of B is key to our main result, namely, that the
probability that the network function has Kolmogorov
complexity q is constant.
Probability of true and false. The probability of gen-

erating any non-constant function after one layer is the
sum over i of the columns sums given in (1) times the
initial condition, that is,

P (not t or f) =

`−1∑
i=1

Bx(0)

=

`−1∑
i=1

(
`

i

)
/2`
(

1−
(
i

`

)`

−
(
`− i
`

)`)

=
∑̀
i=0

(
`

i

)
/2`
(
1− 2(i/`)`

)
= 1− 2

``2`

∑̀
i=0

i`
(
l

i

)
.

So

P (true) = P (false) =
1

``
1

2`

∑̀
i=0

i`
(
`

i

)
. (3)

The values of the sum are 1, 6, 54, 680, 11000,

4

Asymptotically, eq. (3) is

P (true) ∼ 1√
1 + c

1

(2ec)l
=

0.884

1.5142k
,

where c is the value of the Lambert W function at 1/e.

Comparison with computer experiments
The computational cost of enumerating all possible logic
assignments to a network of k variables with depth n

is formidable: it grows as 2(nk+1)2k . In previous work
[13], we conducted extensive computer experiments for
various values of k and n. In all cases, our theoretical
predictions presented in this paper agree with our
computer experiments.

For k = 2 variables (Fig. 1A), there are 163, 165, 167

and 169 programs for network depths n = 1, 2, 3 and
4. We enumerated all of these configurations and, for
each, determined the network’s logic function. We plot
the probability of obtaining a function with Hamming
weight w in Fig. 5A (points). This exactly matches our
theoretical predictions given by Bn

kx(0) (lines). The
solid line indicates the non-constant logic functions,
and the dotted line indicates the constant ones, namely,
false (w = 0) and true (w = 4). The probabilities
correspond to the values in Fig. 2 times

(
4
w

)
, since there

are
(
4
w

)
logics with a give value of w. As n increases,

the likelihood of true and false approach 1/2, causing the
likelihood of the non-constant functions to fall.

For k = 3 variables (Fig. 1B), there are 2564, 2567

and 25610 programs for network depths n = 1, 2 and
3. For n = 1, we were able to enumerate all of the
configurations. For n = 2 and 3, this is computationally
infeasible, so instead we sampled the configurations. We
randomly assigned one of the 256 logics to each of the
nodes, repeating this a million times. These are plotted
in Fig. 5B (points). We include errors bars, but these are
negligible in comparison to the point size. Our theory
predicts the computer experiments exactly for n = 1
and to within statistical significance for n = 2 and 3.

For k = 4 variables (Fig. 1C), there are 65, 5365 and
65, 5369 programs for network depths n = 1 and 2.
These are too many to enumerate, so we sampled from
the configurations: a million samples for n = 1 and the
same for n = 2. These are plotted in Fig. 5C, again
with errors bars. Once again, our theory predicts the
experiments to within statistical significance.

Discussion
The main result of this paper is that the composition of
logic functions on a fully-connected network architecture
is biased towards simple functions. This bias becomes
stronger as the network becomes deeper. In the limit of
large depth n, the probability that an arbitrary function
can be compressed by s bits is constant, rather than 2−s

as is the case for randomly chosen functions.

Two time scales. As we increase the network depth n,
the simplicity distribution changes in two ways, which
we can think of as independent. The first is that the
non-constant functions (everything apart from true and
false) flatten out, and the second is that true and false
start to dominate. The first happens relatively quickly
and the second happens relatively slowly.

A k = 2
n = 0

n = 1

n = 2

n = 3

n = 4

0 1 2 3 4
0.0

0.1

0.2

0.3

P
ro
ba
bi
lit
y

B k = 3
n = 0

n = 1

n = 2

n = 3

0 2 4 6 8
0.0

0.1

0.2
P
ro
ba
bi
lit
y

C k = 4
n = 0

n = 1

n = 2

0 4 8 12 16
0.0

0.1

0.2

Hamming weight w

P
ro
ba
bi
lit
y

FIG. 5: Computational confirmation of our theory. For
various values of the number of variables k and the network
depth n, we compare our theory (orange lines) with computer
experiment (gray dots). The Hamming weight w is the number
of 1s in the truth table of the logic function. For example, for
k = 2, w(false) = 0, w(ab) = 1, w(a+b) = 3 and w(true) = 4.
A For k = 2, we enumerated all of the configurations up
to network depth n = 4. As n increases, the distribution of
the Hamming weights w flattens for values 1 to 3. But for
w = 0 and w = 1, the probabilities approach 1/2. B For
k = 3, we show exact results for n = 0 and 1, and sample the
configurations for n = 2 and 3.

5

k = 4

n = 0

n = 1

n = 2

n = 4
n = 8

n = 16

n = 32

n = 64

2 4 6 8 10 12 14

0.1

0.01

10-2

Information content (bits)

P
ro
ba
bi
lit
y

k = 6

n = 0

n = 1

n = 3

n = 9
n = 27 n = 81

n = 243

n = 729

n = 2187

0 20 40 60

10-16

10-11

10-6

Information content (bits)

k = 8

n = 0

n = 1

n = 4

n = 16
n = 64
n = 256

n = 1024
n = 4096

n = 16384

-50 0 50 100 150 200 250 300

10-60

10-40

10-20

Information content (bits)

FIG. 6: The simplicity distribution depends on the depth of the network. As the network depth n increases, the
simplicity distribution of the non-constant functions (everything but true and false) flattens out. On a slower time scale, the
probability of true and false start to dominate as they each approach one half, causing the distribution to fall. The orange
curves show the distribution before true and false dominate, and the gray curves show it after they dominate. As the number
of variables k increases, these time scales diverge: the distribution flattens out before it falls.

The two effects are shown in Fig. 6 for different values
of the number of variables k. The orange curves show
the distribution of the non-constant functions when the
probability of true and false are negligible. The gray
curves show the distribution as the probability of true
and false start to dominate, causing the distribution
(which continues to flatten) to descend. For example,
for k = 6, the probability of true for n = 9, 27, 81, 243
and 729 layers is 0.001, 0.056, 0.299, 0.484 and 0.5000,
with the same for false. As k increases, the times scales
for flattening and descending diverge: the distribution
flattens before it descends. We have computationally
confirmed this behavior for up to k = 9.
Related work. This paper reveals a bias towards

simplicity for a fully-connected architecture, in which
the variables in the logic functions are all the same. It is
the theoretical follow-up to a paper about the computa-
tional evidence for a simplicity bias for a fully-connected
architecture and a branching architecture [14].

This paper considers the fully-connected architecture,
In a separate paper [13], we consider the opposite
regime: a regularly branching architecture, in which the
variables in the logic functions are all different.

Open questions. This research raises a number of
open questions. One is the principle eigenvector of the
transition matrix B. Right now we are able to bound the
variation in the components to be within (1−e)/e, which
guarantees its flatness. But we do not have an analytic
form, A second question is a theoretical understanding
of the two time scales described above, in which the
distribution flattens before it descends. This will be tied
to the spectrum of eigenvalues of the transition matrix
B.

[1] J. L. England, E. I. Shakhnovich, Structural determinant
of protein designability, Phys Rev Lett 90, 218101 (2003).

[2] S. E. Ahnert, T. M. A. Fink, Form and function in gene
regulatory networks, J Roy Soc Interface 13, 20160179
(2016).

[3] I. G. Johnston et al., Symmetry and simplicity sponta-
neously emerge from the algorithmic nature of evolution,
P Natl Acad Sci USA 119, e2113883119 (2022).

[4] K. Dingle, C. Q. Camargo, A. A. Louis, Input-output
maps are strongly biased towards simple outputs, Nat
Commun 9, 761 (2018).

[5] T. M. A. Fink and R. Hannam, Biological logics are re-
stricted, arxiv.org/abs/2109.12551.

[6] T. M. A. Fink, On the number of biologically permitted
logics, Nat Rev Genet

[7] N. J. A. Sloane, editor, The On-Line Encyclope-
dia of Integer Sequences, published electronically at
https://oeis.org, 2021.

[8] K. Raman, A. Wagner, The evolvability of programmable
hardware, J Roy Soc Interface 8, 269 (2011).

[9] A. Mozeika, B. Li, D. Saad, The space of functions com-
puted by deep layered machines, Phys Rev Lett 125,
168301 (2020).

[10] T. Fink, F. Sheldon. Number of cycles in the critical
Kauffman model is exponential, Phys Rev Lett, 131,
267402 (2023).

[11] T. Fink, Exact dynamics of the critical Kauffman model
with connectivity one, arXiv:2302.05314.

[12] F. Sheldon, T. Fink Insights from number theory into the
critical Kauffman model with connectivity one, J Phys A,
57, 275003 (2024).

[13] T. Fink Computational evidence that the iteration of
simple rules imposes Occam’s razor (2025).

[14] T. Fink The iteration of simple rules imposes Occam’s
razor: branching architecture, (2025).

