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Non-reciprocal topological solitons in active 
metamaterials
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From protein motifs1 to black holes2, topological solitons are pervasive nonlinear 
excitations that are robust and can be driven by external fields3. So far, existing driving 
mechanisms all accelerate solitons and antisolitons in opposite directions3,4. Here we 
introduce a local driving mechanism for solitons that accelerates both solitons  
and antisolitons in the same direction instead: non-reciprocal driving. To realize  
this mechanism, we construct an active mechanical metamaterial consisting of 
non-reciprocally coupled oscillators5–8 subject to a bistable potential9–14. We find that 
such nonlinearity coaxes non-reciprocal excitations—so-called non-Hermitian skin 
waves5–8,15–22, which are typically unstable—into robust one-way (anti)solitons. We 
harness such non-reciprocal topological solitons by constructing an active waveguide 
capable of transmitting and filtering unidirectional information. Finally, we illustrate 
this mechanism in another class of metamaterials that shows the breaking of 
‘supersymmetry’23,24 causing only antisolitons to be driven. Our observations and 
models demonstrate a subtle interplay between non-reciprocity and topological 
solitons, whereby solitons create their own driving force by locally straining the 
material. Beyond the scope of our study, non-reciprocal solitons might provide an 
efficient driving mechanism for robotic locomotion25 and could emerge in other 
settings, for example, quantum mechanics26,27, optics28–30 and soft matter31.

Non-reciprocal active matter consists of local, non-reciprocal and 
non-conservative interactions15–17. It is described by odd, namely 
asymmetric, or non-Hermitian matrices and tensors. Such materials 
exist across a wide range of scales, from electron transport19–21,32–34, 
electronics35, optomechanics36 and photonics22,37 to colloids38, driven 
emulsions39, biophysics40, mechanics5,7,41,42, robotics25 and traffic43. 
The non-Hermitian skin effect is a striking wave phenomenon occur-
ring in non-reciprocal active matter. It has been observed in quantum 
mechanics18–21, mechanics5–8, photonics22 and optomechanics29,30 in 
which waves are unidirectionally amplified and have a spectrum that 
is extremely sensitive to boundary conditions.

Most studies have, however, focused on the linear regime in which 
non-Hermitian skin waves inexorably diverge or die out (Fig. 1a,b).  
A natural question is whether nonlinearities can be leveraged to stabi-
lize wave phenomena in non-Hermitian systems15. Mechanical meta-
materials are a natural platform on which to address this question. In 
particular, topological solitons in dissipative settings have been shown 
to be protected against damping and to robustly guide energy and 
information9–14,44. But, so far, they have only been studied under the 
effect of constant external driving, which immutably drives solitons and 
antisolitons in opposite directions. The only exception is the case of the 
passive stiffness gradient44,45 that pushes solitons and antisolitons in the 
same direction. Yet the lack of translation invariance causes a gradual 
loss of energy and limits scalability beyond a few unit cells (Methods).

Here we discover a subtle interplay between non-reciprocity and 
topological solitons that enables robust transmission of unidirectional 

signals. Topological solitons impose a local strain gradient. Coinci-
dentally, non-reciprocity injects momentum proportionally to strain 
gradients. Therefore, non-reciprocal topological solitons induce their 
own driving force and push themselves in a direction that is independ-
ent of their topological charge. Furthermore, we show that soliton and 
antisoliton velocities can be independently tuned by the nonlinearity of 
the metamaterial, which enables the material to show robust waveguid-
ing and filtering properties. Finally, we extend our findings to another 
type of metamaterial—the Kane–Lubensky chain6,23,24—in which only 
antisolitons drive themselves. Our findings show how nonlinearities 
can be harnessed to promote topological excitations that stabilize the 
inertial dynamics of non-conservative systems25,38,40,46.

Our active mechanical metamaterial shown in Fig. 1c consists of 50 
3D-printed rotating arms that are elastically coupled by rubber bands 
and positioned such that the ith oscillator experiences a torque τi = 
κ(θi+1 + θi−1 − 2θi) (Methods). By coupling the torque on each oscillator 
antisymmetrically to the angle deviation of its neighbours according 
to τ κ θ θ= ( − )i i i

a a
−1 +1  the system acquires a non-reciprocal response5,6,8. 

Here τi
a denotes the active torque on the ith oscillator, κa represents 

the non-reciprocal coupling strength and θi is the angle deviation from 
the rest state. In practice, this force rule means that actuating a pair of 
oscillators from the left causes an amplified response to the right, 
whereas the same actuation from the right causes the opposite 
response on the left (Fig. 1a and Supplementary Video 1).

At the linear level, a finite oscillator chain shows non-Hermitian skin 
modes that amplify unidirectionally at all frequencies and exponentially 
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localize towards the edge at a rate dependent on κa (refs. 20,21,33,47). 
In principle, this amplification imparts the metamaterial with an 
intrinsically unidirectional response. Yet in practice, its waveguiding 
capabilities are severely restricted, as waves either blow up or die out 
unless non-reciprocity and damping are meticulously tuned (Fig. 1b 
and Supplementary Video 1).

To tame skin waves in the (strongly) nonlinear regime and turn them 
into topological solitons, we create a bistable potential by attaching 
magnets to the oscillator arms and to a periodic substrate (Fig. 1c). In 
this configuration, each oscillator now has two stable states in which 
the magnetic, elastic and active torques balance instead of the single 
rest state in the linear case. When two bistable elements are coupled 
together and κa is sufficiently large, switching stable states in one oscil-
lator arm induces a transition in its neighbouring oscillator whereas 
performing the reverse action does not bring about a switch. Crucially, 
owing to the bistable potential, the transition lasts even after the input 
displacement is removed (Fig. 1d), contrary to the linear case.

When a switch is applied in an extended system of oscillators, a 
domino effect occurs that gives rise to a unidirectional transition 
wave with a distinctly soliton-like profile. The velocity of this travel-
ling topological soliton, separating domains of left- and right-oriented 
oscillator arms, depends on κa (Fig. 1e). However, unlike toppling domi-
noes and two-level systems with transition waves10,13,14,44,48, applying 
a reverse switch also induces a transition wave travelling at the same 
velocity, owing to the local injection of energy. This behaviour endows 

our metamaterials with robust unidirectional waveguiding capabili-
ties, which we demonstrate by transmitting a message encoding the 
word ‘ODD’ in Morse from one edge of the material to the other, with-
out loss of amplitude or information (Fig. 2a). This distinctive ability 
to continuously send trains of solitons and antisolitons provides an 
advantage over metamaterials based on constant driving13,14, which 
have to be reinitialized by an antisoliton before a new soliton can be 
sent. (In addition, these data demonstrate that non-reciprocal solitons 
and antisolitons can maintain their velocity over long distances. This 
property would be hard to achieve in the absence of non-reciprocal 
driving. Solitons and antisolitons could be sent in the same direction 
with carefully suited initial conditions, but they would irremediably 
slow down because of unavoidable dissipative effects).

We experimentally investigate the response to solitons and antisoli
tons seeded at the edge of the chain for a range of the non-dimensional 
activity η κ κ D= 2 /a , where D is the dimensionless amplitude of the 
bistable potential (Methods) and find three regimes (Fig. 2b). Below a 
threshold at ∣η∣ = η−, the active torque is not strong enough to over
come the hold of the magnetic potential and the soliton does not  
propagate into the material. For stronger non-reciprocity, excitations  
start to move spontaneously and acquire a velocity proportional  
to η, until a second threshold at ∣η∣ = η+ is reached. At this point,  
(anti)solitons accelerate to the speed of sound (Methods) and any 
further increase in the activity causes the excitations to become unsta-
ble and delocalize.
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Fig. 1 | Non-reciprocal topological solitons. a, Non-reciprocal response of 
two coupled oscillators in the linear regime: actuation from the left induces  
a positive torque on the right whereas the actuation imposed from the right 
causes a negative torque on the left. The system returns to its equilibrium 
when the input displacement is removed. b, When a chain of non-reciprocally 
coupled oscillators is perturbed, a wavepacket forms that is either unstable 
(purple) or dampened (green) depending on the balance between injected 
and dissipated energy. c, The active metamaterial consisting of 50 elastically 
coupled motorized rotors: the picture shows half of the metamaterial for  
ease of visualization. When a magnet is added to the rotor tip and a periodic 

potential is generated by evenly spaced magnets, transition waves delimited 
by (anti)solitons can propagate along the chain. d, In the presence of periodically 
spaced magnets, each oscillator now has two stable configurations 
corresponding to the minima of the bistable potential. Switching the left 
configuration causes the right unit to follow suit whereas the same switch 
from the right does not propagate to the left. e, When a soliton is seeded from 
the edge, it rapidly acquires a steady state velocity. The velocity increases  
with non-reciprocal coupling strength κa. Data shown in b and e correspond to 
κa = 1.6 × 10−3 Nm rad−1 (purple) and κa = 2.2 × 10−3 Nm rad−1 (green). Scale bar, 5 cm.
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To rationalize our observations, we model the multistable active 
metamaterial with a non-reciprocal Frenkel–Kontorova chain:

ϕ ϕ ϕ ϕ
η

ϕ ϕ Γϕ D ϕ¨ = + − 2 −
2

( − ) − − sin( ) (1)i i i i i i i i−1 +1 +1 −1
̇

Here, ϕ = 2π + πi
θ
θ

i

d
 denotes the ith oscillator angle normalized by 

the magnet spacing θd = 1 rad and shifted by π whereas the non- 
dimensional parameters η and Γ represent the non-reciprocity and  
dissipation (see Methods for details). For the range of amplitudes  
−π < ϕi < 3π considered here, the force deriving from the bistable poten-
tial is well approximated by a sinusoidal function (see Supplementary 
Information for details) with amplitude D. (In this range of amplitudes, 
we could equivalently model the nonlinear potential by a quartic poten-
tial; however, we will use later on the integrable nature of the sine– 
Gordon equation (the left hand side of equation (2)) so opt for a sinu-
soidal potential). The Frenkel–Kontorova model is known to host soliton 
solutions49 that require a minimum energy to overcome the Peierls–
Nabarro barrier to move along the lattice. Models driven by a constant 
field have also been considered50 in which solitons and antisolitons move 
in opposite directions, contrary to the observations reported here.

We calibrate the experimental parameters with compression and 
oscillation experiments (Methods and Supplementary Information) 
and find Γ = 1.3 ± 0.3 and D = 1.2 ± 0.3. With these values, we numeri-
cally integrate equation (1) and find that it captures quantitatively and 
without free fit parameters the experimentally observed soliton veloc-
ity, the Peierls–Nabarro barrier and threshold of instability (Fig. 2b).  
A phase diagram reveals the ubiquity and tunability of unidirectionally 

travelling solitons (Fig. 2c), confirming that the velocity generically 
increases with activity and decreases with dissipation.

To get a better analytical understanding of the system, we now probe 
the continuum limit where the lattice spacing is much smaller than the 
periodicity of the potential49, the Peierls–Nabarro barrier decreases 
and eventually disappears (Extended Data Fig. 1). Here, the model of 
equation (1) yields the sine–Gordon equation with an extra term that 
breaks spatial inversion symmetry and a dissipative term:
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Numerical integration of equation (2) confirms the linear depend-
ence of the velocity on the ratio between non-reciprocity and damping 
for ∣η∣/Γ < 1 (Fig. 2d). When this ratio exceeds 1, equation (2) becomes 
unstable and high wavenumber radiative modes are amplified, although 
the wavefront velocity does not exceed the speed of sound (Fig. 2e and 
see Methods for stability analysis).

By treating the non-reciprocal and damping terms perturbatively and 
using the inverse scattering transform (Methods), we analyse the time 
evolution of the (anti)soliton profile given by ϕ = ± 4arctan exp x vt

v

−

(1 − )2
, 

known to be a solution to the standard sine–Gordon equation. We find 
a dynamical equation for the (anti)soliton velocity as a function of the 
ratio between non-reciprocity and damping.
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Fig. 2 | Solitons and antisolitons travel in the same direction. a, 
Experimental kymograph of soliton and antisoliton excitations from the edge 
propagating at equal and constant velocity along the material at intervals that 
encode the word ODD in Morse for κa = 1.6 × 10−3 Nm rad−1. b, The (anti)soliton 
velocity observed experimentally and in simulation for a range of the 
non-dimensional activity η. The solid line shows data from the non-reciprocal 
Frenkel–Kontorova model simulated with the experimental parameters Γ = 1.3 
and D = 1.2. The shaded areas denote regions bounded by thresholds η± where 
the metamaterial is unstable (light red) and where the (anti)soliton remains 
static (grey). The relative error of the velocity was smaller than 2%, found by 

averaging over n = 3 runs for each datapoint. c, Phase diagram of the Frenkel–
Kontorova model as a function of the rescaled non-reciprocity and viscous 
damping. The dashed line at Γ0 = 1.3 corresponds to the viscous damping in the 
experiment. Notice that the jump in soliton velocity diminishes as Γ increases, 
eventually vanishing in the overdamped limit. d, Soliton velocity as a function 
of the ratio η/Γ between activity and damping in the continuum model of 
equation (2) found by numerical integration. The red and green lines show the 
steady state velocity as predicted by the stable and unstable fixed points of 
equation (3), respectively. e, Phase diagram for solitons in the odd sine–Gordon 
equation, demonstrating velocity dependence on η/Γ.
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Here, v denotes the soliton velocity normalized by the speed of sound 
(Methods). Equation (3) describes how solitons accelerate to a steady 
state velocity given by the stable fixed point v = η/Γ below the threshold 
of instability. Beyond the threshold, there is a transcritical bifurcation 
where this fixed point becomes unstable. Another fixed point at the 
speed of sound v = 1 then becomes stable, confirming numerical results 
(Fig. 2d). In conclusion, the existence of non-reciprocal topological 
solitons is underpinned by stable fixed points, no matter how strong 
the non-reciprocal gain is. Notably, these topological solitons affect 
the physics of the non-Hermitian skin waves. They impose a gradient of 
strain, which in turn maintains a local non-reciprocal drive, no matter  
what the ratio between non-reciprocity and loss η/Γ is. This localized 
non-reciprocal driving confines non-Hermitian skin waves to the 
near vicinity of the soliton and hence nullifies the strong-sensitivity 
of the non-Hermitian skin effect to boundary conditions (Extended  
Data Fig. 5).

At this point, we note that sine–Gordon solitons driven by a constant 
force f have been studied extensively in the integrable systems litera-
ture51 and more recently in the mechanical metamaterials literature9–14. 
Under constant driving, solitons and antisolitons move in opposite 
directions. For example, a positive constant driving pushes both soli-
tons and antisolitons up, which drives the soliton backwards and the 
antisoliton forwards (Fig. 3a). By contrast, the non-reciprocal driving 
mechanism is the consequence of a subtle interplay between topo-
logical solitons and non-reciprocity. On the one hand, topological 
(anti)solitons induce a local gradient of strain that is robust and whose 
sign is controlled by the topological charge of the soliton. On the other 
hand, non-reciprocal driving injects momentum proportionally to the 

gradient of strain. Therefore, solitons locally induce their own driving 
force, of the form ϕ x∂ ∝ sechx , which precisely matches the discrete 
eigenmode of the spectrum of linear perturbations to the soliton pro-
file52. Hence when η > 0, this driving leads to an effective force that 
pushes the soliton (antisoliton) down (up). In turn, these two opposite 
forcings drive both solitons and antisolitons forward even though they 
have opposite topological charges.

Combining both drives grants control over soliton and antisoliton 
velocities individually. Repeating the inverse scattering transform  
on equation (2) plus a constant f (Methods) adds an extra term to  
equation (3):

v
Γ η f ηΓ

Γ f
=

± − + π /16 +

+ π /16
. (4)

f

±

π
4

2 2 2 2

2 2 2

Here, v+ and v− denote the soliton and antisoliton velocities, 
respectively, which depart from one another as the constant driving 
f is increased (Fig. 3b). Experimentally, we realize this by biasing the 
periodically spaced magnets with respect to the oscillators (Fig. 3c) 
by an offset δ. This introduces an asymmetry in the bistable potential 
equivalent to the addition of a constant driving term (Fig. 3d). As δ is 
increased, we find that solitons and antisolitons now move at different 
terminal velocities in accordance with equation (4) and the Frenkel–
Kontorova model (Fig. 3e).

With differing velocities, solitons and antisolitons can now meet 
and collide (Fig. 3f), contrary to the case of purely non-reciprocal  
driving, in which solitons and antisolitons move at the exact same  
velocity. In the presence of damping, such collisions have been shown 
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Fig. 3 | Independent control of solitons and antisolitons. a, A sketch 
comparing the effect of constant driving f (top) and non-reciprocal driving 
−∂xϕ (bottom) on soliton (left) and antisoliton (right) profiles in the sine–
Gordon model. Black solid lines and dashed lines indicate the profile at times t 
and t + dt, respectively. Magenta lines show the different driving fields, the 
magenta arrows indicate the discrete eigenmode of the soliton perturbation 
and green arrows show the resulting direction of propagation of the (anti)
soliton. b, Velocity based on the continuum prediction of equation (4) for 
solitons (blue) and antisolitons (red) versus constant force f, for a non-reciprocity 
fixed at η = 0.5. c, A shift in the magnet position by an offset δ generates an 
asymmetric potential towards the left stable state. d, Experimentally measured 
onsite potential versus angle of the rotor for δ = 0 mm (black) and δ = 4 mm 
(orange). e, Experimental measurements of the terminal velocity of solitons 

(blue crosses) and antisolitons (red) versus the constant force f. The black  
lines denote the numerical data given by the Frenkel–Kontorova model of 
equation (1) with an added constant force term (see Methods for details). The 
relative error of the velocity was smaller than 2%, found by averaging over  
n = 3 runs for each datapoint. f, Solitons and antisolitons collide leading to 
annihilation for f = 0.4. g, Unidirectional nonlinear filter. Connecting two 
chains with opposite bias δ = ± 3 mm together creates a low-pass filter for (anti)
soliton excitations. The kymograph shows soliton and antisolitons excited at 
increasing time intervals. If the interval between soliton and antisolitons is 
smaller than some threshold, the signal annihilates before reaching the 
interface. At sufficiently large intervals, the signals are recovered at the 
intervals on the other end of the chain. The data of e–g were taken at a 
non-reciprocity of η = 1.1.
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to annihilate51,53,54, unlike their integrable counterparts3. Likewise, 
in our case, collisions result in annihilation of both excitations as a 
result of damping (Extended Data Fig. 7), a phenomenon that one can  
exploit for various waveguiding applications.

We demonstrate this functionality by connecting a chain with a 
positively biased potential of +δ a chain with a negative bias −δ. When 
solitons and antisolitons are excited from the edge at small time inter-
vals, the excitation with a higher velocity will catch up and annihilate 
before the interface between the two subsystems is reached. However, 
when the time interval is large enough, solitons and antisolitons do not 
catch up to each other, and arrive at the receiving end of the chain at 
the same intervals (Fig. 3g).

Finally, we generalize our findings to another setting: the Kane–
Lubensky chain, which is known to host ϕ4 solitons with zero energy 
whereas antisolitons have finite energy as a result of the half-breaking 
of the supersymmetry between these modes23,24. We extend this model 
to a non-reciprocal setting6 and focus on the overdamped regime (see 
Methods for details). We see that in the presence of non-reciprocity, 
solitons stay still (Fig. 4a) whereas antisolitons move (Fig. 4b). This 
asymmetry occurs because solitons do not stretch springs whereas 
antisolitons do. The elastic energy of the antisolitons hence is finite 
and shows small oscillations as the antisolitons travel (Fig. 4c, inset). 
These oscillations happen because of the existence of a minute  
Peierls–Nabarro barrier that the antisoliton can overcome when driven 
by a small amount of non-reciprocity (Fig. 4c). In conclusion, besides 
the broken symmetry between the solitons and antisolitons, the Kane–
Lubensky chain reveals the same mechanism as in the case considered 
earlier, whereby non-reciprocal antisolitons sustain their own driving 
by imposing a local gradient of strain.

In summary, we have investigated how non-reciprocity and bistability 
can combine to stabilize excitations in an active mechanical metama-
terial. This allows us to predict, control and manipulate the dynamic 
behaviour of non-reciprocal topological solitons. It is an open question 
how the incommensurate phase of the Frenkel–Kontorova model and 
more generally geometric frustration55 and non-topological solitons 
such as breathers are affected by non-reciprocal driving. An interesting 
question is whether our findings have any bearing on defect dynamics 
in odd materials such as those reported in suspensions made of rotating 
particles, which interact non-reciprocally by virtue of hydrodynamic 
interactions38,40. In the context of soft robotics, non-reciprocal topo-
logical solitons could provide exciting new avenues for autonomous 
and adaptable locomotion25. More broadly beyond soft matter, it would 
be fascinating to realize non-reciprocal topological solitons in super-
conducting circuits56, quantum gases27 and optical microcavities29,30.
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Fig. 4 | Non-reciprocal solitons in the Kane–Lubensky chain. a, Soliton in  
the Kane–Lubensky chain remaining still in the presence of non-reciprocity  
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non-reciprocity for η = 1 × 10−4. c, Steady state velocity of the soliton (blue) and 
antisoliton (red) as a function of non-reciprocity η. The inset shows the total 
elastic energy V versus time for η = 1 × 10−4. See Methods for details.
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Methods

Experimental methods
Our active mechanical waveguide shown in Fig. 1c consists of 50  
3D-printed rotating arms (with moment of inertia I = 6.2 ± 1.0 × 
10−6 kg m2) that are elastically coupled by rubber bands and positioned 
with a lattice spacing a = 6 cm. The rotating arms are coupled mechani-
cally to a d.c. torque motor equipped with an angular decoder and a 
microcontroller that communicates with neighbouring units to pro-
duce an external torque according to τa = κa(θi−1 − θi+1), identical to the 
experimental setup of ref. 5. To probe the response shown in Fig. 1b, 
the system is excited at the edge by a short pulse of torque generated 
by the d.c. motor. The bistable potential shown in the inset of Fig. 2 was 
constructed by attaching neodymium magnets to the tips of the oscilla-
tor arms and periodically spaced on an external substrate at distance of 
x cm from the rotor centre such that the potential minima are separated 
by an angle θd = 1 rad (Extended Data Fig. 2a). Although our metamate-
rial only supports two such minima, the results of the main text extend 
straightforwardly to the higher topological charge excitations that 
could potentially be generated and leveraged for more complex wave-
guiding in a multistable metamaterial, for example, by using more intri-
cate magnet layouts57. Extended Data Fig. 6 shows simulations proving 
that solitons with larger topological charges show the same robustness 
as the ones we investigate experimentally. The travelling solitons shown 
in Fig. 1d,e were generated by initializing the chain with all sites sitting 
in the same minimum with the exception of the edge oscillator before 
turning on the non-reciprocal term. The Morse code message of Fig. 2 
was generated by manually switching the oscillator arm at the edge 
from one stable state to the other at short (1 s) and long (3 s) intervals.

Calibration of model parameters. We model the active oscillator 
chain with a Frenkel–Kontorova model containing inertial, elastic, 
non-reciprocal, viscous, potential terms and constant force terms:




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By using the following substitutions, we find the non-dimensional 
form of equation (1):
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The elastic coupling κ = 4.2 ± 1.0 × 10−3 Nm rad−1 (Extended Data 
Fig. 2b) and the magnetic potential amplitude B = 5.1 ± 1.0 × 10−4 Nm rad−1 
(Extended Data Fig. 2a) were calibrated by measuring the torques ver-
sus angle deviation on an Instron torsion testing machine. The relation 
between the magnet offset δ and the equivalent external force E was 
found in the same way (Extended Data Fig. 2d,e). The viscous dissipa-
tion was found to be γ = 2.0 ± 0.5 × 10−4 Nm s rad−1 by fitting the oscil-
lation amplitude decay after an initial perturbation (Extended Data 
Fig. 2c). Shear bending forces in the elastic neighbour coupling were 
measured to be an order of magnitude smaller than the stretching 

forces in an earlier study5 and were thus neglected. The speed of sound 
can be estimated through the lattice space a as c a κ I= / . Notice that 
after time and space rescaling (6) and taking the continuum limit 
(below) the speed of sound is one: c = 1. We remark here that equation (1) 
has also been investigated58 in the context of the spontaneous forma-
tion of unstable π solitons, but no experimental realizations have been 
investigated to our knowledge.

Numerical methods
Non-reciprocal Frenkel–Kontorova and sine–Gordon equations. To 
verify the validity of the microscopic model, we found steady state 
(anti)soliton velocities by integrating equation (1) with a velocity Ver-
let routine for a chain of length N = 512 and using the parameter values 
and initial conditions as described above. For the ensuing dynamics, 
the sum of absolute angle deformation was used as a measure to dif-
ferentiate diverging and dying out solutions from travelling soliton 
solutions. To find the soliton position, the field was then fitted to the 
continuum soliton solution given by ϕ = ± 4arctan exp x vt

v

−

(1 − )2
 at each 

timestep, from which the steady state velocity as shown in Fig. 2a,b was 
extracted by a linear fit. In the continuum, the predicted steady state 
velocity given by equation (3) were verified by integrating equation (2) 
with the PyPDE package59 using the soliton solutions to the odd sine–
Gordon equation as an initial condition on a grid of length L = 50,  
spatial discretization N = 512 and timestep dt = 10−4.

Non-reciprocal Kane–Lubensky chain. Consider the Kane–Lubensky 
chain depicted in Extended Data Fig. 4 and discussed in Fig. 4 of the 
main text. This chain was first introduced in the context of topological 
insulators60 and subsequently investigated in the nonlinear regime23,24, 
where it was demonstrated to host solitons and antisolitons. Crucially 
solitons and antisolitons do not have the same energy: the existence 
of solitons does not require stretching any bonds whereas the anti-
solitons do. Such discrepancy has been proved to be associated to a 
half-breaking of the supersymmetry between the corresponding field 
equations, which are a supersymmetric version of the ϕ4 model24. The 
Kane–Lubensky chain has also been investigated in the non-reciprocal 
linear regime6 where it shows a non-Hermitian bulk-edge correspond-
ence associated to the non-Hermitian skin effect. Here, we consider 
simultaneously the nonlinear and non-reciprocal regime of the Kane–
Lubensky chain and ask how non-reciprocity drives solitons and anti-
solitons. With the parametrization introduced in Extended Data Fig. 4, 
the position of rotor n is given by r θ θ= (cos , sin )n n n  and therefore  
because the rotors are staggered, the length of the spring connecting 
rotor n to rotor n + 1 is

ℓ p rc rc rs rs= ( − + ) + ( − ) , (7)n n n n n+1
2

+1
2

where c θ= cosn n and s θ= sinn n. Straining the springs induces then the 
elastic energy ℓ ℓV k= ( /2)∑ ( − )n

N
n=1

−1
0

2, where N is the number of rotors 
making up the chain, ℓ0 the rest length of the springs and k the spring 
constant, which we fix to k = 1 without loss of generality. In the recipro-
cal case, the torque on each rotor n is given by τ V θ τ τ= −∂ /∂ = +n n n

L
n
Relastic , 

where ℓ ℓ ℓτ θ= −( − )∂ /∂n
R

n n n0  is the torque exerted by the right adjacent 
spring and τ θ= −( − )∂ /∂n

L
n n n−1 0 −1ℓ ℓ ℓ  is the torque exerted by the left 

adjacent spring. Here, we introduce non-reciprocity by adding an active 
term that introduces an asymmetry between these two torques 
τ η τ τ= ( − )n n

L
n
Ractive , where η is the strength of the non-reciprocity. In the 

linear limit, such active forces precisely match those considered in  
ref. 6. We then solve numerically the overdamped dynamics of such a 
chain given by the equations of motion
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We consider two cases: (1) that of a soliton and (2) that of an anti-
soliton initially in the middle of the chain. We use the NDSolve solver 
of Mathematica and choose the following set of parameters N = 99, 
p = 1, r = 0.5 and ℓ p r θ= + 4 sin0

2 2 2
0 , where θ0 = π/2 + 0.7 for the 

soliton and θ0 = π/2 − 0.7 for the antisoliton. To prepare initial condi-
tions, we first initialize the left half of the chain with θn = (π − (−1)nθ0), 
the middle rotor with θ(N−1)/2 = π/2 and the right half of the chain with 
θn = −(−1)nθ0. We then let the system relax under overdamped dynam-
ics and use the relaxed configuration as an initial condition. The 
results are shown in Fig. 4 of the main text. As solitons do not stretch 
any spring, non-reciprocal driving is not able to drive them and they 
remain still. Only antisolitons are driven by non-reciprocity. Also, 
because the Peierls–Nabarro barrier is very small61, the threshold 
reciprocity to accelerate the antisoliton is also very small.

Theoretical methods
Continuum limit. The continuum limit of equation (1) is found by let-
ting ϕi become a continuous function ϕ(x) of space x ∈ [0, Na], where 
N is the number of units. Approximating finite differences by a Taylor 
expansion according to ϕi+1 − ϕi ≈ aϕx + a2ϕxx/2 and substituting terms 
in the discrete model of equation (1) then leads to equation (2) under 
rescaling of the spatial variable x x→ a

D
 and time t → t

D
. In these units 

the speed of sound is c = 1.
We note here that earlier work treats a special case of equation (2) 

where the model parameters η and Γ are spatially varying functions 
and the systems described are not translationally invariant. Conse-
quently, the (anti)soliton kinetic energy is not constant but gradu-
ally vanishes as it travels along the stiffness grading45 or the potential 
grading44. This decrease in velocity precludes the possibility of effi-
cient waveguiding when these systems are scaled up. In addition, we 
emphasize here that systems with stiffness or potential grading are 
inherently constrained to a finite size as practical limitations on mate-
rial properties and manufacturing forbid gradings from becoming  
arbitrarily small.

Stability analysis. That solitons are stable does not guarantee that all 
solutions to equation (2) are (Extended Data Fig. 3a). The threshold of 
stability of radiative modes can be predicted by analysing the stabil-
ity of perturbations around the soliton profile travelilng at the speed 
of sound (defined in the unperturbed linear system), in the limit of 
v → 1. The dispersion relation for such solutions yields the following 
complex frequencies (see the section ‘Perturbative excitations’ below 
for details):

Ω
iΓ

k Γ ikη= −
2

± 1 + − ( /2) + . (9)±
2 2

The growth rates of perturbations given by ΩIm( )±  become positive 
for |η| ≥ Γ starting with the highest wavenumbers k (Extended Data 
Fig. 3b). Numerical integration of equation (2) in the supersonic limit 
confirms the generation of exponentially amplified high wavenumber 
modes (Extended Data Fig. 3a). These unstable modes indicate that 
non-reciprocal topological solitons driven beyond the speed of sound 
can no longer dissipate sufficiently, causing excess energy to build up 
exponentially: reminiscent of the sonic boom experienced by an object 
breaking the sound barrier.

As the speed of sound in a material is inversely proportional to 
its mass density, solitons are expected to always be stable in the 
overdamped limit, as we show by repeating the above analysis (see 
the ‘Perturbative excitations’ section below). Because we are con-
cerned here with the small amplitude limit and only describe (anti)
solitons of topological charge ±1, a non-reciprocal ϕ4 model should 
also suffice to capture soliton dynamics. In the Supplementary Infor-
mation, we treat this model perturbatively and show that the main  
results hold.

Inverse scattering transform. In this chapter, we briefly describe the 
derivation of equation (3). To be more general, we also include a con-
stant driving term, so equation (2) takes the following form
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In case R[ϕ] = 0, the equation turns out to be integrable and its  
solutions can be found by the inverse scattering procedure62. Namely, 
one has to first find a scattering matrix for the linear problem whose 
potential depends on the field configuration ϕ and its derivatives in 
the initial moment of time

T x λ
x

UT x λ
d ( , )

d
= ( , ) (11)±
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where the 2 × 2 matrix U depends on the spectral parameter λ
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2

and solutions T± are specified by their behaviour at x → ± ∞. They are 
called the Jost solutions and differ from each other by multiplication 
on the constant scattering or transfer matrix T(λ)
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For example, a soliton profile parametrized by a real positive para
meter κ has a form

ϕ x t γ t( , ) = −4arctan(e / ( )), (14)x κ κ( +1/ )/2

where evolution of γ(t) is given by

γ t γ( ) = e , (15)t κ κ− ( −1/ )/2
0

gives the following Jost solutions at t = 0

T

λ iκ
λ iκ

λ iκ
λ iκ

=
Σ

1 + e

+
−

−e

e
−
+

e (16)
ξ

ξ

ξ

iσ x λ
λ+ 2

− −1
43
2

































T

λ iκ
λ iκ

λ iκ
λ iκ

=
Σ

1 + e

1 −
+
−

e

−
+

e 1
e . (17)

ξ

ξ

ξ

iσ x λ
λ− 2

− −1
43
2

Here, the constant matrix Σ and parameter κ are given by
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and γe = −e /ξ x κ κ(1+ )/(2 )
0

2
. If γ0 < 0 such a solution is called a soliton and 

if γ0 > 0, it is an antisoliton. In both cases the corresponding transfer 
matrix is diagonal

a λ
λ iκ
λ iκ

b λ( ) =
−
+

, ( ) = 0, (19)

The quantity γ0 should be regarded as additional scattering data, 
defined in the general situation as a proportionality coefficient between 
the first column of T− and the second column of T+ for the spectral 
parameter λk that is a zero of the a(λ) in the upper half plane, that is 
a λ λ( ) = 0, Im > 0k k
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The dynamics of the scattering data is extremely simple
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2

After this evolution, the time dependence of the profile can be recov-
ered via the inverse scattering transformation62.

For R[ϕ] ≠ 0 for one-soliton case we can use perturbation theory in 
the adiabatic approximation, which means that the form of the profile 
still reads as equation (14), but the evolution (15) is modified along with 
the other soliton’s parameters. More precisely, one can demonstrate 
the following evolution of the transfer matrix
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Here R z R ϕ z σ[ ] = [ ( )] 3
̂ , the dot means derivative over a spectral para

meter λ and the right part of equations (24) and (25) should be evaluated 
at λ = iκ. Using equations (16) and (17), we obtain

κ
t

Γκ κ
κ

ηκ
f γ κ

κ
d
d

= −
( − 1)

+ 1
− −

π sgn( )

2 1 +
(26)

2

2
0

2

2

γ
t

κ
κ

γ
γ γ κ

κ κ
κ
t

d
d

=
1 −

2
−

log( )
2

1 −
(1 + )

d
d

(27)
2 2 2

2

Once γ and κ are found the profile can be recovered from equa-
tion (14). Notice that only the appearance of the force f makes a dis-
tinction between soliton and antisoliton. Let us focus on γ0 > 0 and 
introduce new variables

γ
κ κ

X t W t
κ κ

log =
+ 1/

2
( ), ( ) =

2
+ 1/

. (28)c

which leads to the following form of the profile

ϕ x t
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





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with γ0 included in Xc(0). Dynamics for Xc(t) allows us to define the 
velocity
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4
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here vη = η/Γ. The critical points can be easily found from equation (26)

η Γ η Γ κ
f

κ+ − ( − ) −
π
2

= 0. (32)2

The answer for soliton will result in flipping the sign of the force. This 
way, we obtain the following velocities for the soliton and antisoliton:

For the antisoliton:
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For the soliton:
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Notably, in the absence of the force f, there is no difference in the 
finite velocity for the soliton or antisoliton

v v η Γ= = / . (36)+ −

Perturbative excitations. Let us also discuss the role of perturbative 
excitations on top of the soliton-like profile ϕk. By shifting ϕ → ϕk + ϕ in 
equation (10) and keeping only linear terms in ϕ, we obtain

ϕ ϕ η ϕ Γ ϕ ϕ ϕV G∂ − ∂ + ∂ + ∂ + = + (37)t x x t
2 2

here the driving G and the potential V are local functions and do 
not play a role in the continuous spectrum, but might be responsi-
ble for the localized bound states modes that we extensively studied 
in ref. 52. So, for the continuous spectrum, we study the following  
equation

ϕ ϕ η ϕ Γ ϕ ϕ∂ − ∂ + ∂ + ∂ + = 0. (38)t x x t
2 2

The plane wave ansatz

ϕ x t( , ) = e (39)ikx iΩt−

with real k, leads to the following equation for Ω

Ω iΩΓ ikη k+ − − − 1 = 0, (40)2 2

which gives the following frequencies

Ω
iΓ

k Γ ikη= −
2

± 1 + − ( /2) + . (41)±
2 2

The stability regions are defined by the condition iΩ ΩRe(− ) = Im < 0. 
Notice that as k k Ω Ω→ − , Im → Im+ −. In Extended Data Fig. 3c, we plot 
the imaginary parts of Ω± for various values of η for Γ = 1, showing that 
for ∣η∣ > Γ there will be an instability region, namely for



k
Γ

η Γ
>

−
(42)2 2

∣ ∣

either Ω+ or Ω− will have a positive imaginary part.
In the overdamped regime, where ϕ∂t

2  can be neglected the disper-
sion simplifies to

Ω k
η
Γ

i
k

Γ
= −

1 + (43)
2

such that the imaginary part is always negative, meaning that solitons 
are always stable.
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Extended Data Fig. 1 | Dependence of the Peierls-Nabarro barrier on  
the nondimensional amplitude D and initial conditions in the Frenkel- 
Kontorova model. (abc) The Peierls-Nabarro barrier, regime of instability and 
(anti)soliton velocities as the continuum limit is approached as a function of 
the unnormalized non-reciprocity η D  and damping DΓ . As the discreteness 
parameter D becomes smaller, the line separating stable from unstable 
solutions approaches Γ = η as predicted for the continuum. The initial 
condition used corresponds to the experimentally used soliton with single 

lattice spacing width. In addition, the Peierls-Nabarro barrier gradually 
decreases and (d) eventually goes to zero, provided that the initial soliton 
shape also becomes less discrete49. (e) When the activation amplitude ϕ0 of the 
experimental initial condition is changed, the Peierls-Nabarro barrier also 
changes but for large enough amplitudes, it becomes constant. (f) When instead 
of an initial activation angle, an edge oscillator is initialized with some radial 
velocity ϕ̇0, the Peierls-Nabarro barrier remains constant.



Extended Data Fig. 2 | Calibration of experimental parameters. (a) The 
nonlinear potential generated by the periodically spaced magnets, as measured 
with an Instron torsion testing machine. Red line represents the sinusoidal fit 
used to calibrate the magnetic potential amplitude B. (b) Instron measurement 
of the elastic forces experienced by a single oscillator connected to two 
neighboring oscillators. Red line shows the smoothed data and green dashed 
lines show linear fits around the two potential minima, denoting the elastic 

coupling strength κ. (c) Oscillation of a single oscillator elastically coupled to 
two neighbors, used to measure the viscous damping coefficient γ. (d) The 
biased potential for different amounts of bias δ. (e) The difference between the 
potential minima ΔV between the two uneven minima plotted versus the bias δ. 
A linear fit establishes the relation between the bias and δ the effective external 
force E it corresponds to.
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Extended Data Fig. 3 | Stability of the soliton. (a) Snapshots of a soliton in  
the unstable regime showing the destabilization of high wavenumber modes, 
found numerically for η = 1.1 and Γ = 1. (b) Growth rates ΩIm( ) of perturbations 
around the soliton solution for various wavenumbers given by Eq. (9). The dotted 
line at ΩIm( ) marks the transition between decaying and growing solutions, 

with high wavenumbers being the first to become unstable as the threshold of 
stability η = Γ is crossed. (c) Dependence of ΩIm( )±  on the wavenumber k for  
Γ = 1 and η = 0.5 (red) and η = 1.5 (blue). In the latter case, modes in the regions 

ΩIm( ) > 0+  become unstable at k η= ± Γ/ − Γ2 2  given by the dashed lines.



Extended Data Fig. 4 | Kane-Lubensky chain. Sketch of the Kane-Lubensky 
chain and its notation conventions.
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Extended Data Fig. 5 | Insensitivity of non-reciprocal solitons to boundary 
conditions. Although at a linear level, the non-Hermitian skin effect causes the 
energy spectrum to change radically upon changing boundary conditions, 
nonreciprocal solitons are insensitive to the boundary as their topological 
charge protects them from amplifying exponentially in space. (a) Simulation  
of a single Frenkel-Kontorova soliton driven by non-reciprocity (η = 1.1, Γ = 1.3, 
D = 1.2) under antiperiodic boundary conditions. (b) Simulation of a Frenkel- 
Kontorova soliton-antisoliton pair driven by non-reciprocity (η = 1.1, Γ = 1.3, 
D = 1.2) under periodic boundary conditions. Neither periodic, antiperiodic or 
the open boundary conditions used in the main text affect the stability and 
velocity of the (anti)soliton.



Extended Data Fig. 6 | Solitons with higher topological charge. (a) Simulation 
of a staircase of Frenkel-Kontorova solitons under the influence of non-reciprocity 
(η = 1.1, Γ = 1.3, D = 1.2). As in the single soliton case, (anti)solitons with higher 
topological charge travel undisturbed at the same steady state velocity.
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Extended Data Fig. 7 | Effect of non-reciprocal driving and damping on  
the collision of sine-Gordon solitons. (a) In the absence of both driving and 
damping, solitons and antisolitons pass through each other without interacting. 
(b) For nonzero damping, soliton and antisoliton annihilate and the resulting 
non-topological solution dissipates away. (c) With only non-reciprocity turned 
on, both excitations still pass through each other unhindered but are also 
rendered unstable. (d) Dissipation and non-reciprocity can balance, giving rise 
to non-reciprocal breather solutions.
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