
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uexm20

Experimental Mathematics

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/uexm20

Murmurations of Elliptic Curves

Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver & Alexey Pozdnyakov

To cite this article: Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver & Alexey Pozdnyakov
(04 Aug 2024): Murmurations of Elliptic Curves, Experimental Mathematics, DOI:
10.1080/10586458.2024.2382361

To link to this article:  https://doi.org/10.1080/10586458.2024.2382361

© 2024 The Author(s). Published with
license by Taylor & Francis Group, LLC

Published online: 04 Aug 2024.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uexm20
https://www.tandfonline.com/journals/uexm20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10586458.2024.2382361
https://doi.org/10.1080/10586458.2024.2382361
https://www.tandfonline.com/action/authorSubmission?journalCode=uexm20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=uexm20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10586458.2024.2382361?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10586458.2024.2382361?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/10586458.2024.2382361&domain=pdf&date_stamp=04 Aug 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/10586458.2024.2382361&domain=pdf&date_stamp=04 Aug 2024


EXPERIMENTAL MATHEMATICS
2024, VOL. 00, NO. 0, 1–13
https://doi.org/10.1080/10586458.2024.2382361

Murmurations of Elliptic Curves

Yang-Hui Hea,b, Kyu-Hwan Leec,d, Thomas Olivere, and Alexey Pozdnyakovf

aLondon Institute for Mathematical Sciences, Royal Institution, London, UK; bDepartment of Mathematics, City, University of London, London, UK;
cDepartment of Mathematics, University of Connecticut, Storrs, CT, USA; dKorea Institute for Advanced Study, Seoul, Republic of Korea; eUniversity of
Westminster, London, UK; fDepartment of Mathematics, University of Connecticut, Storrs, CT, USA

ABSTRACT
We investigate the average value of the Frobenius trace at p over elliptic curves in a fixed conductor range with
given rank. Plotting this average as p varies over the primes yields a striking oscillating pattern, the details of
which vary with the rank. Based on this observation, we perform various data-scientific experiments with the
goal of classifying elliptic curves according to their ranks.
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1. Introduction

Elliptic curves are important objects in number theory, not only in their own right, but also for the crucial role they have played in a
range of developments. A significant example is Fermat’s Last Theorem, which was a consequence of the modularity of elliptic curves
conjectured by Taniyama, Shimura, and Weil, and established by Andrew Wiles [20]. Despite extensive studies, there are still many
open problems in the theory of elliptic curves, the most celebrated example of which is perhaps the Birch and Swinnerton-Dyer (BSD)
conjecture.

The BSD conjecture is concerned with the ranks of elliptic curves. If E is an elliptic curve over Q, then, by the Mordell–Weil
theorem, we know that the rational points of E form a finitely generated abelian group. Though the torsion part of the abelian group
is relatively well understood, the rank of the free part is still mysterious. In particular, there is no general algorithm to compute the
rank of an elliptic curve, and we do not know whether or not it can be arbitrarily large.

The BSD conjecture relates the rank of an elliptic curve (an aspect of its algebraic structure) to an analytic property of its L-function.
For Re(s) � 0, the L-function of an elliptic curve over Q may be written as an Euler product

L(E, s) =
∏

p prime
Lp(E, s)−1,
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where Lp(E, s) ∈ Z[p−s] has degree ≤ 2. If E has good reduction at a prime p, then

Lp(E, s) = 1 − ap(E)p−s + p1−2s,

where ap(E) = p + 1 − #E(Fp), and #E(Fp) is the number of points of E over Fp.
Many fundamental invariants of E are connected to analytic properties of L(E, s). For example, the conductor of E appears in

the functional equation for L(E, s). Most importantly, the (weak) BSD conjecture predicts that the rank of E is equal to the order of
vanishing for L(E, s) at s = 1.

In this paper, we study the average value of ap(E), as E varies over the set of elliptic curves over Q with fixed rank and conductor
in a specified range. In this introduction we provide a flavor of the resulting images from Section 4.3, with complete details given
therein.

Enumerating the primes in ascending order yields the sequence p1 = 2, p2 = 3, p3 = 5, . . . . Given an elliptic curve E, we will
refer to the sequence (api(E))∞i=1 as the ap-coefficients for E. We are interested in the following function of n ∈ Z≥1:

fr(n) = 1
#Er[N1, N2]

∑

E∈Er[N1,N2]
apn(E), (1.1)

where N1 < N2 ∈ Z>0, and Er[N1, N2] is the set of (representatives for the isogeny classes of) elliptic curves over Q with rank r and
conductor in range [N1, N2].
Example 1. We have p1000 = 7919. Using [14, Elliptic curves over Q], we see that

#E0[7500, 10000] = 4328, #E1[7500, 10000] = 5194,

#E0[5000, 10000] = 8536, #E2[5000, 10000] = 1380.

For 1 ≤ n ≤ 1000 (i.e., for primes 2 ≤ p ≤ 7919), plotting the points (n, fr(n)) for r ∈ {0, 1} and [N1, N2] = [7500, 10000] (resp.
r ∈ {0, 2} and [N1, N2] = [5000, 10000]), yields the top (resp. bottom) image in Figure 1, in which blue and red (resp. blue and green)
dots represent f0(n) and f1(n) (resp. f0(n) and f2(n)), respectively.

To the best knowledge of the authors, this oscillating behavior for the average values of ap has never been reported in the literature.
Moreover, varying the rank yields strikingly distinctive patterns, which we believe may be exploited to advance our understanding of
the ranks of elliptic curves.

There is nothing special about the intervals [N1, N2] used in Example 1. The only requirement is that they are neither too narrow
nor too wide compared to the primes p. Indeed, as shown in Section 4.5, similar patterns may be observed for other choices. Moreover,
as observed by Sutherland, there is a certain invariance to the oscillations as the intervals are scaled to include larger conductors [19].

Figure 1. (Top) Plots of the functions f0(n) (blue) and f1(n) (red) for 1 ≤ n ≤ 1000 and [N1, N2] = [7500, 10000]. (Bottom) Plots of the functions f0(n) (blue) and f2(n)

(green) for 1 ≤ n ≤ 1000 and [N1, N2] = [5000, 10000]. Further details are given in Example 1.
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This so-called scale invariance is treated systematically in [11], which also explores the average values of ap-coefficients attached to
modular forms and genus 2 curves.

Though the average in equation (1.1) was first explored from a data scientific perspective—wherein the primes were simply a list
of features indexed by n—the overwhelming weight of theoretical and experimental evidence suggests an underlying mathematical
structure. From an arithmetic perspective, it is more natural to view the average as a function of the primes p, rather than the prime
index n, though the prime number theorem implies that pn is asymptotic to n log(n) and so this distinction yields only a logarithmic
difference. With this in mind, in Section 4.5, we consider the functions

gr(p) = 1
#Er[N1, N2]

∑

E∈Er[N1,N2]
ap(E), (1.2)

and investigate the oscillations of gr(p) for several conductor ranges. We then fit the oscillations with curves of the form

y = Axα sin
(
Bxβ

)

by determining numerical values for the parameters A, B, α, β which minimize the mean squared error.
This paper is a continuation of the recent work [8–10] by the first three authors, where they applied machine-learning techniques

to distinguish arithmetic curves and number fields according to standard invariants such as rank, Sato–Tate group, class number, and
Galois group. The experimental results clearly show that these number theoretic objects can be classified by machine-learning with
high accuracy (often > 97%) once they are presented appropriately, and demonstrate the capacity of machine-learning to predict
basic invariants of objects in algebraic number theory. In particular, in [10], an elliptic curve E of rank 0 or 1 is presented by the
500-dimensional vector whose nth co-ordinate is apn(E). Vectors corresponding to curves of different ranks were distinguished by
logistic regression with accuracy > 97%.

As was pointed out by several experts after [10] was posted, the parity conjecture implies that the distinction between rank 0 and
rank 1 could be made by observing the sign (i.e. root number) in the functional equation. Whilst this is true, it is not clear how one
can compute the root number from only finitely many ap(E). Moreover, parity does not distinguish curves between rank 0 from rank
2. In this paper, we show that the distinction of rank 0 and rank 2 can also be made through logistic regression with high accuracy,
and apply PCA to see clustering of elliptic curves of rank 0, 1, and 2. One can see that Figure 1 already explains why logistic regression
is so efficient. Namely, for small p, the values of ap(E) behave quite differently (on average), depending on the rank of E.

We conclude this introduction with an overview of what is to come. In Section 2 we review some basic theory of elliptic curves. In
Section 3, we describe some data-scientific concepts utilized in the sequel, for example, point clouds, logistic regression, and principal
component analysis (PCA). In Section 4 we describe our experimental results, including curve fitting. In Section 5, we develop a
heuristic formula for distinguishing curves of rank < 2 from those of rank ≥ 2. In Section 6, we discuss possible extensions of our
work, both theoretical and experimental.

2. Elliptic curves

In this section we review the necessary mathematical background. Let X be a smooth, projective, geometrically connected curve of
genus g defined over Q. We say that a prime number p is a good prime for X if there exists an integral model for X whose reduction
modulo p defines a smooth variety of the same dimension. In this work, we will focus on the case that X = E is an elliptic curve
defined over Q. In particular, we have g = 1. If p is a good prime for E, then we introduce the polynomial:

Lp(E, T) = 1 − ap(E)T + pT2, (p good), (2.3)

where

ap(E) = p + 1 − #E
(
Fp

)
. (2.4)

If p is a bad prime for E, the analogue of equation (2.3) is Lp(E, T) = 1 − ap(E)T with ap(E) ∈ {−1, 0, 1}, depending on the reduction
type. If E is given in Weierstrass form, then equation (2.4) is valid for all p, good or bad. More information can be found, e.g., in [18,
Appendix C.16]. The L-function of E is defined by

L(E, s) =
∏

p prime
Lp(E, p−s)−1.

By the Mordell–Weil Theorem, the set of rational points E(Q) of an elliptic curve E defined over Q forms a finitely generated abelian
group and thus decomposes into a product of the torsion part E(Q)tor and the free part:

E(Q) ∼= E(Q)tor × ZrE .

The rank rE of the free part is called the rank of the elliptic curve E.
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The rank has been a focal point of extensive studies on elliptic curves, but there still remain important open problems. In particular,
we do not know whether the set of ranks is bounded or not.

In fact, the largest known-rank, established by Noam Elkies [6] in 2006, is (expected to be) 28, and the boundedness of the average
rank of elliptic curves was proved by Bhargava and Shankar [1, 2] in 2015. As mentioned in the introduction, the celebrated Birch
and Swinnerton-Dyer (BSD) conjecture predicts that the rank of E is equal to the order of vanishing of L(E, s) at s = 1. For rank 0
and 1, this conjecture is known to be true by the work of Kolyvagin [13] and the modularity theorem [3, 20].

As for the Riemann ζ -function, the L-function L(E, s) may be completed to a function �(E, s) = π−s�( s
2 )�( s+1

2 )Ns/2
E L(E, s)

which admits analytic continuation to C and satisfies a functional equation

�(E, 2 − s) = w(E)�(E, 2),

where NE ∈ Z is the conductor of E (see [18, Section VII.11]) and w(E) = ±1 is the root number. Assuming that the BSD conjecture
is true, the parity conjecture asserts that:

(−1)rE = w(E). (2.5)

For elliptic curves of ranks 0 and 1, equation (2.5) is a theorem. Thus, if rE ∈ {0, 1}, then we can determine the rank rE by looking at
the root number w(E). However, the same argument would not work, for example, if rE ∈ {0, 2}.

3. Datasets and strategies

In this section, we explain how to make our datasets of elliptic curves and give an overview of the machine-learning strategies used.

3.1. Point clouds of elliptic curves

For i ∈ Z>0, let pi denote the ith prime. In particular, p1 = 2 and p1000 = 7919. For an elliptic curve E, we introduce the vector:

vL(E) = (
ap1(E), . . . , ap1000(E)

) ∈ Z1000, (3.6)

where ap(E) is defined in (2.4).
One could implement what follows with any dimension d in place of 1000. For example, in [10], the first three authors implemented

similar experiments with d ∈ {100, 200, 300, 500}∗. Furthermore, in Section 5, we will develop classifiers in much lower dimensions
(namely d = 10). Naively, one might expect that using a larger value for d may increase the accuracy of the classifiers, though, as
shown in [4], this matter is somewhat subtle. As for the oscillatory behavior of the functions fr(n) defined in (1.1), we need to have d
reasonably big and comparable with the conductor ranges. See figures in Section 4.

In our dataset, an elliptic curve E is represented by the vector vL(E) ∈ R1000 and we study the properties of the collection of vectors
{vL(E)}E ⊂ R1000. In the parlance of data science, we investigate {vL(E)} as a point cloud. Each point may be further labeled with
properties of E such as its rank rE, or conductor NE. Various investigations of machine-learning on this dataset was performed in
[10], including classification of elliptic curves of rank 0 and 1.

We use Cremona’s database [5] of elliptic curves, which can also be accessed through [14]. The completeness of the database is
discussed in [14, Completeness of elliptic curve data over Q].

Using [16], apn(E) can be calculated for each E and n. For example, when E is given by label “37a1”, it is defined by y2 +y = x3 −x,
and we can get its rank and apn for n = 15 as follows:

sage: E=EllipticCurve(’37a1’); n=15
sage: r=E.rank()
sage: v=E.aplist(Primes ()[n-1])
sage: E, r, v
(Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field ,
1,
[-2, -3, -2, -1, -5, -2, 0, 0, 2, 6, -4, -1, -9, 2, -9])

More details can be found in [17, Elliptic curves over the rational numbers]. In this way, we obtain our datasets consisting of vL(E)

labeled according to rank for various ranges of conductors NE.
We note that the Hasse–Weil L-function L(E, s) of an elliptic curve E is an invariant of its isogeny class, and our datasets actually

have only one representative curve for each isogeny class.

∗We caution the reader that, in [10], the letter N is used instead of d. In the present text, the letter N is reserved for the conductor of an elliptic curve.
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3.2. Averaging

The size of the set Er[N1, N2] varies with the parameters r, N1, and N2. In this article, we will choose the parameters so that Er[N1, N2]
has order approximately k × 103 for 1 < k < 10. By averaging (arithmetic mean), we construct a single value fr(n), representative
of the set of values {apn(E) : E ∈ Er[N1, N2]}. It seems unlikely that any genuine elliptic curve could have apn staying near fr(n) for
all n. One may consider the geometric mean; however, we do not observe any interesting features in its distribution. The standard
deviation of apn is asymptotically equal to √pn for any r and will not play any role in our discussion.

3.3. Logistic regression

The binary logistic regression classifier is a strategy for supervised machine-learning based upon the logistic sigmoid function

σ : R → (0, 1), σ(x) = 1
1 + e−x .

In multi-class logistic regression, its generalization, called the softmax function, is used. Further details may be found in [7,
Sections 4.4, 11.3].

In Section 4.1 we present various binary and ternary experiments involving elliptic curves of rank rE ∈ {0, 1, 2}. Recall from
Section 3.1 that each elliptic curve defines a vector vL(E) ∈ R1000. A binary logistic regression classifier works by finding a single
vector w ∈ R1000 and number b ∈ R so that

σ(vL(E) · w + b)

is a predictor for the rank rE of E where vL(E) · w ∈ R denotes the dot product of vL(E) and w. In each experiment, the vectors w and
numbers b are calculated by numerical means, and we do not make them explicit. The multi-class case is similar with σ replaced by
the softmax function.

An explicit binary logistic regression experiment is presented in Section 5, and involves two sets of elliptic curves with conductors
in a specified range: those with rank rE < 2 and those with rank rE ≥ 2. This time, we present each elliptic curve by the 10-dimensional
vector a = a(E) = (ap1 , . . . , ap10) = (a2, . . . , a29) ∈ R10 (a projection of vL(E)). We find an explicit vector w ∈ R10 and b ∈ R such
that

σ(a · w + b)

predicts whether the rank is < 2 or ≥ 2.

3.4. Principal component analysis

Principal component analysis (PCA) is an unsupervised machine-learning strategy for dimensionality reduction. In our case, we
represent labeled elliptic curves as vectors in R1000, and PCA constructs a map R1000 → R2, the image of which groups curves
according to their label. The axes of this image are given by the principal components PC1 and PC2 of the dataset, from which the
method takes its name. A principal component is evaluated by

∑1000
n=1 cnapn for cn ∈ R, and we call cn the weight of apn in the principal

component.

4. Experimental results and observations

We now describe our new experimental results for elliptic curves defined over Q.

4.1. Logistic regression for ranks 0, 1, and 2

Logistic regression is discussed in Section 3.3. In the previous paper [10], it is demonstrated that logistic regression can distinguish
elliptic curves of rank 0 from those of rank 1 with high accuracy based on their ap-coefficients. With equation (2.5), that is, the parity
conjecture, which is a theorem for curves of rank rE ∈ {0, 1}, in mind, one may wonder whether the classification is achieved through
learning the parity of the root number w(E). As mentioned in the Introduction, it is not completely clear how to extract the root
number w(E) from (a finite sequence of) the ap-coefficients of an elliptic curve E.

To determine any possible role of the parity conjecture in the classification, we consider elliptic curves of rank rE ∈ {0, 1, 2}, and
perform logistic regressions for the datasets of elliptic curves with rE ∈ {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}, respectively. The curves in the
datasets are all in the conductor range [1, 1 × 105], and a sample of 20, 000 curves are randomly chosen from each rank to make
balanced datasets.

The results of our experiments are summarized in Table 1. We see that all the accuracies are all over 0.96, and sometimes over 0.99.
In particular, classification of rank 0 and 2 curves has accuracy 0.996 and shows that it is not through recognizing the parity of w(E).
(Here we assume that the parity conjecture is true for rank ≤ 2.) The even higher accuracy 0.9998 in the case of rank 1 and 2 tells us
that rank 2 elliptic curves clearly distinguish themselves from those of rank 0 and 1 by way of the ap-coefficients, and we will see it
more clearly in the following subsections.
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Table 1. A table recording the results of logistic regression experiments
for elliptic curve rank. The first three rows after the header shows the
precision and confidence (Matthews correlation coefficient) of a logistic
regression binary classifier when asked to distinguish elliptic curves over
Q by their rank. In the final row, we use a multinomial logistic regression
classifier to distinguish all three ranks simultaneously. All of these exper-
iments used a random sample of 2.0 × 104 curves for each rank, all with
conductor NE in the range [1, 1 × 105].

NE range rE |Data| = #{E} Precision Confidence

[1, 1 × 105] {0, 1} 2.0 × 104 (×2) 0.961 0.92
” {0,2} ” 0.996 0.99
” {1,2} ” 0.999 0.99
” {0, 1, 2} 2.0 × 104 (×3) 0.975 0.96

Figure 2. A plot of PC1 (x-axis) against PC2 (y-axis) for elliptic curves in the balanced dataset of 36,000 randomly chosen elliptic curves with rank rE ∈ {0, 1, 2} and conductor
NE ∈ [10000, 40000]. The blue (resp. red, green) points are the images of the vectors vL(E) corresponding to the elliptic curves in our dataset with rank 0 (resp. 1, 2) under a
map R1000 → R2 constructed using PCA.

Figure 3. A plot of n (x-axis) against the weight of apn (y-axis) in PC1 for the balanced dataset of 36,000 randomly chosen elliptic curves with rank rE ∈ {0, 1, 2} and conductor
NE ∈ [10000, 40000] used in this Section.

4.2. PCA for ranks 0, 1, and 2

PCA is discussed in Section 3.4. We begin with PCA applied to a balanced dataset of 36,000 randomly selected elliptic curves, each
of which has rank rE ≤ 2 and conductor NE ∈ [1 × 104, 4 × 104]. In particular, we plot these elliptic curves according to their PC1
and PC2 scores. The result is depicted in Figure 2, which shows a clear separation of all three ranks, with some overlap between rank
0 (blue) and rank 1 (red) curves.

We can better understand this separation by looking at the weights of ap in the principal components. Since the ranks are only
separated along PC1, we will look only at the weights of this component. It is clear from Figure 3 that the first hundred or so ap are
the most important for this classification. Here we enumerate primes as p1 = 2, p2 = 3, p3 = 5, . . . and the x-axis represents the
indices 1 ≤ n ≤ 1000 for primes with p1000 = 7919.

We may further investigate the separation between rank 0 and rank 1 by removing the rank 2 data. In order to connect our
observations to the oscillations in the average values of ap that have been presented in the introductio,n and are to be considered in
the next subsection, we restrict the conductor interval to [7500, 10000]. This reduces our dataset to just 4300 curves per rank. The
result of PCA is shown in Figure 4.

With this narrower conductor range, the separation of rank 0 and rank 1 according to PC1 is significantly better. We also see a
fundamental difference in the PC1 from this dataset, as shown in Figure 5. In particular, the weights of ap seem to follow a smooth,
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Figure 4. A plot of PC1 against PC2 for the balanced dataset of 8600 randomly chosen elliptic curves with rank rE ∈ {0, 1} and conductor NE ∈ [7500, 10000]. The blue (resp.
red) points correspond to curves with rank 0 (resp. 1).

Figure 5. A plot of n (x-axis) against the weight of apn in PC1 (y-axis) for the balanced dataset of 8600 randomly chosen elliptic curves with rank rE ∈ {0, 1} and conductor
NE ∈ [7500, 10000].

Figure 6. Plots of the functions f0(n) (blue) and f1(n) (red) for 1 ≤ n ≤ 1000 and [N1, N2] = [7500, 10000].

decaying oscillation. This indicates that there is an interesting structure in the datasets of ap which separates rank 0 and rank 1. In the
following subsection, we will find such a structure in a statistical relationship between p and ap for a fixed rank and conductor range.

4.3. Averages of ap-coefficients

In this subsection, we plot the averages of the ap-coefficients to reveal surprising features that seem unknown in the literature.
Let us begin by studying f0(n) and f1(n) for NE ∈ [7500, 10000], where fr(n) is defined as in equation (1.1), which we repeat here

for convenience:

fr(n) = 1
#Er[N1, N2]

∑

E∈Er[N1,N2]
apn(E), (4.7)

where pn is the nth prime, and N1, N2 ∈ Z>0 satisfy N1 < N2, and Er[N1, N2] is the set of (representatives of the isogeny classes of)
elliptic curves over Q with rank r and conductor in range [N1, N2]. The expression in equation (4.7) is simply the arithmetic mean of
each ap over a set of elliptic curves with fixed rank and conductor range.

In Figure 6, we present a plot for these functions. Observe that the values of f0(n) and f1(n) appear to follow an oscillation whose
amplitude and period both grow with n. Moreover, these oscillations appear to mirror each other. Also note that the frequency of
this oscillation matches that of the PC1 components in Figure 5 of the previous section in the sense that the oscillations attain 0
approximately at the same n.
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Figure 7. Plots of the functions f0(n) (blue) and f2(n) (green) for 1 ≤ n ≤ 1000 and [N1, N2] = [5000, 10000].

Figure 8. A plot of fr(n) for r ∈ {0, 1, 2, 3} and NE ∈ [1, 1 × 105]. The blue (resp. red, green, yellow) points correspond to curves of rank 0 (resp. 1, 2, 3).

Figure 9. (Left to right) Histograms of ã11, ã13, ã17, ã19 for curves of rank 0.

We see a similar oscillation when looking at f2(n), although the pattern breaks for first several primes p. In Figure 7, we expand the
conductor range to [5000, 10000] in order to increase the number of rank 2 curves available. Even with this increase, we only have 1380
curves. The comparatively low number of curves likely contributes to the less concentrated distribution. Note that including smaller
conductor curves has slightly increased the frequency of oscillation. Indeed, we observe that as we look at elliptic curve sets of larger
conductors, the frequency of oscillation becomes lower. We will further study the relationship between conductor and frequency in
Section 4.5.

In Figure 8, we plot fr(n) for r ∈ {0, 1, 2, 3} and NE ∈ [1, 1 × 105]. While taking the average over such a large conductor range
makes the oscillation much less apparent, it is worth noting that the average apn for n ≤ 20 (i.e., p ≤ 73) distinguish all four ranks
across this entire conductor range. Here, the yellow points correspond to average ap of rank 3 curves. Also, note that we only have
531 rank 3 curves, whereas the other ranks are all plotted using a random sample of 20,000 curves.

4.4. Histograms of ap distributions

In this section, we will look at the distribution of the normalized ap coefficient:

ãp = ap

2√p
(4.8)

for fixed p, and for elliptic curves with NE ∈ [7500, 10000] and rank rE ∈ {0, 1, 2}. In equation (4.8) we normalize ap by the Hasse
bound so that ãp ∈ [−1, 1] for all p. In Figure 9 (resp. 10, 11), we present the distributions of ãp for curves of rank 0 (resp. 1, 2) and
p ∈ {11, 13, 17, 19}.

Whilst the rank 2 distributions are generally quite different, we note that the rank 0 and rank 1 distributions exhibit many
similarities. One exception is that rank 0 has a slight left skew and rank 1 has a slight right skew. Based on the oscillation we see
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Figure 10. (Left to right) Histograms of ã11, ã13, ã17, ã19 for curves of rank 1.

Figure 11. (Left to right) Histograms of ã11, ã13, ã17, ã19 for curves of rank 2.

Figure 12. (Left to right) Histograms of ã397, ã1151, ã1787, ã2731 for curves of rank rE ∈ {0, 1}. In blue (resp. red), we have curves of rank 0 (resp. 1), and, in purple, the
distributions overlap.

in Figure 6, we expect that the rank 0 and rank 1 distributions will grow more skew until about p = 397, return to symmetric at about
p = 1151, then become skewed in the opposite direction at around p = 1787, and finally return to symmetric at around p = 2731.
In Figure 12, we present histograms of ãp, p ∈ {397, 1151, 1787, 2731}, for curves of rank 0 and rank 1 to see this phenomenon. Note
that the purple shows where the distributions overlap.

We conclude this subsection by discussing the relationship these distributions have with the classification problem in Section 4.1.
For a fixed conductor range and a fixed p, these distributions are dependent on the rank of the curves from which they were generated.
Moreover, each elliptic curve is associated to a specific infinite sequence of (apn)n≥1 which are essentially drawn at random from these
distributions. By looking at sufficiently many of these draws, the classifier can predict with high accuracy whether they came from a
sequence of rank 0, rank 1, or rank 2 distributions. The overwhelming overlap of the rank 0 and rank 1 distributions explain why this is
the most difficult binary classification problem of the three, and why significantly more ap are required. In particular, as demonstrated
in Section 5, using just (apn)

10
n=1, we can distinguish rank 2 from rank 0 or rank 1 with ≈ 0.97 accuracy. In distinguishing rank 0 from

rank 1, the accuracy is roughly 0.7 with 10 ap-coefficients, depending on the sample.

4.5. Curve fitting for the averages of ap

Next, we turn to the question of curve fitting for the average ap plots presented in Section 4.3. Actually, we slightly modify
equation (1.1) and introduce the following function of primes p ∈ Z≥1 (instead of the nth prime pn):

gr(p) = 1
#Er[N1, N2]

∑

E∈Er[N1,N2]
ap(E), (4.9)

where N1 < N2 ∈ Z>0, and Er[N1, N2] is the set of (representatives of the isogeny classes of) elliptic curves over Q with rank r and
conductor in range [N1, N2]. In particular, we want to find a curve which best approximates g0(p) and g1(p).

Plotting points (p, gr(p)) yields an oscillation with increasing amplitude and period, and so trigonometric polynomial of a linear
argument seems inadequate. Motivated by this observation, we will look at curves of the form

y = Axα sin
(
Bxβ

)
, (4.10)
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Figure 13. Plot of g0(p) (res. g1(p)) in blue (resp. red) for elliptic curves with conductor NE ∈ [5000, 6000]. The solid curve is the corresponding curve of best fit
0.5398x0.1980 sin(0.1255x0.5272) (resp. −0.4875x0.2215 sin(0.1239x0.5288)), which has mean squared error 7.4768 (resp. 5.4605).

Figure 14. Plot of g0(p) (res. g1(p)) in blue (resp. red) for elliptic curves with conductor NE ∈ [8000, 9000]. The solid curve is the corresponding curve of best fit
0.5243x0.2004 sin(0.0948x0.5331) (resp. −0.2581x0.2828 sin(0.0994x0.5277)), which has mean squared error 7.3044 (resp. 6.4967).

Figure 15. Plot of g0(p) (res. g1(p)) in blue (resp. red) for elliptic curves with conductor NE ∈ [11000, 12000]. The solid curve is the corresponding curve of best fit
0.4273x0.2160 sin(0.0835x0.5291) (resp. −0.5400x0.1934 sin(0.0871x0.5246)), which has mean squared error 7.3127 (resp. 5.8253).

Figure 16. Plot of g0(p) (res. g1(p)) in blue (resp. red) for elliptic curves with conductor NE ∈ [14000, 15000]. The solid curve is the corresponding curve of best fit
0.2273x0.2884 sin(0.0727x0.5308) (resp. −0.2013x0.3048 sin(0.0863x0.5131)), which has mean squared error 7.1645 (resp. 6.09544).

where the parameters A, α, B, β are tuned to minimize the mean squared error. In Figure 13 (resp. 14, 15, 16), we plot g0(p) and g1(p)

along with the curve of best fit for conductor range [5000, 6000] (resp. [8000, 9000], [11000, 12000], [14000, 15000]).
Note that the aforementioned relationship between conductor and frequency can be clearly observed both in these pictures and

in the parameter B. However, it is difficult to make this relationship more rigorous when β , which also effects frequency, is not held
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Table 2. Table recording best fit parameters for the functions g0(p) and g1(p) and
the mean squared errors (MSEs) for elliptic curves in the specified conductor range.
Numerical values are rounded to two decimal places.

rE = 0 rE = 1

NE range (A, α, B, β) MSE (A, α, B, β) MSE

[5000, 6000] (0.54, 0.20, 0.13, 0.53) 7.48 (−0.47, 0.22, 0.12, 0.53) 5.46
[6000, 7000] (0.74, 0.16, 0.11, 0.53) 7.80 (−0.50, 0.21, 0.11, 0.53) 5.51
[7000, 8000] (0.55, 0.19, 0.11, 0.52) 7.46 (−0.39, 0.24, 0.11, 0.52) 6.30
[8000, 9000] (0.52, 0.20, 0.09, 0.53) 7.30 (−0.26, 0.28, 0.10, 0.53) 6.50
[9000, 10000] (0.36, 0.24, 0.08, 0.54) 6.96 (−0.30, 0.27, 0.09, 0.53) 6.29
[10000, 11000] (0.32, 0.25, 0.08, 0.54) 7.83 (−0.46, 0.21, 0.08, 0.54) 5.61
[11000, 12000] (0.43, 0.22, 0.08, 0.53) 7.31 (−0.54, 0.19, 0.09, 0.52) 5.83
[12000, 13000] (0.42, 0.22, 0.09, 0.52) 7.49 (−0.39, 0.23, 0.09, 0.51) 5.75
[13000, 14000] (0.55, 0.19, 0.08, 0.52) 7.03 (−0.31, 0.23, 0.09, 0.51) 6.12
[14000, 15000] (0.23, 0.29, 0.07, 0.53) 7.16 (−0.20, 0.30, 0.09, 0.51) 6.10

constant. It is also worth noting that β ≈ 0.5 in all the fits we have tried. In Table 2, we record numerical values for (A, α, B, β) and
mean squared errors (MSEs) to two decimal places for several conductor ranges.

Remark 1. The function gr(p) depends not only on p, but also the conductor range [N1, N2] and the rank r. Looking at Table 2, it
seems that the error does not vary much with the conductor range, but does vary with the rank (and rank 1 errors seem to be smaller).

Remark 2. On first glance, it might appear that equation (4.10) suggests the average value of ap grows like O(pα), and Table 2 suggests
that α is very roughly 1/5. The Ramanujan conjecture, which is a theorem in this case, implies that ap = O(p1/2). In the absence of
bounds for the error, we make no precise claims about the average growth of ap.

5. Heuristic classification

In this section we will present a heuristic function for binary classification of elliptic curves of rank ≤ 1 and of rank ≥ 2 for a fixed
conductor range. The function will be heuristic in the sense that it is a simple function which approximates the classification. More
precisely, the value of the function represents the probability of an elliptic having rank ≥ 2 as a result of machine learning. Applying
a threshold of 0.5, this leads to a binary classification that achieves high accuracy.

We offer some motivation for the heuristic function developed here as follows. The vast majority of elliptic curves have rank equal
to 0 or 1. Empirically, on the LMFDB, of the 16,494 curves with conductor between 7500 and 10,000, there are 15,538 with rank 0 or 1.
In an asymptotic sense, it is conjectured that 50% of all elliptic curves over Q have rank 0 and 50% have rank 1 (for further discussion
of the origins of this conjecture, see [1, Introduction]). It might therefore be natural to separate the task of rank classification into
first distinguishing ranks ≥ 2 from those ≤ 1. Since our heuristic function is very simple, it can be readily used to get the probability
for a given curve to have rank ≥ 2. An alternative approach to classifying higher rank curves was developed in [12].

From Figure 8, it is clear that the first several ap-coefficients (on average) distinguish the case of rank ≤ 1 from that of rank ≥ 2.
This observation suggests that we use only the first 10 or so ap-coefficients to perform logistic regression for fixed conductor ranges.
Indeed, using just (ap1 , ap2 , . . . , ap10) = (a2, a3, . . . , a29), we were able to distinguish curves of rank < 2 from curves of rank ≥ 2
in the conductor range [10000, 20000] with accuracy ≈ 0.95. This was done on a balanced dataset of 3400 curves of each class. By
reducing the conductor range to [1, 10000] and to a dataset of 1970 curves of each class, we obtained accuracy ≈ 0.97.

For a := (a2, a3, a5, . . . , a29), a heuristic function for conductor range [10000, 20000] can be defined by

r(a) = 1
1 + e−(w·a+b)

,

where (w; b) = (w1, w2, . . . , w10; b) is determined by logistic regression and has entries

(−1.1198144, −1.12733444, −0.98921727, −0.87923555, −0.57809252, −0.51279302,
−0.32884407, −0.3539072, −0.24136925, −0.19393439; −5.62771169) .

Here b corresponds to a bias and we use 0.5 as a threshold.

Example 2. Consider the elliptic curve given by
y2 + xy + y = x3 − 150508x + 13027931.

This curve has rank 1, conductor 15015 and a = (1, 1, 1, 1, −1, 1, 2, −4, −4, 6). Then we obtain r(a) = 0.00011 < 0.5. On the other
hand, if we consider the elliptic curve given by

y2 = x3 + x2 − 436x − 336,
it has rank 2, conductor 15080 and a = (0, −2, −1, −4, 0, 1, 0, −8, 0, −1). For this curve, we get r(a) = 0.97456 > 0.5. In this way,
we can distinguish two cases heuristically with high accuracy.
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For the conductor range [1, 10000], the vector (w; b) can be taken to be

(−1.41299148, −1.77879752, −1.38817256, −1.03428287, −0.71286324, −0.59119957,
−0.40613106, −0.39675042, −0.2878296, −0.22388697; −8.77332846) .

In [15], the fourth author offered a more systematic investigation into the relationship between a conductor range and a number of
ap-coefficients required to attain high accuracy in heuristic classification.

6. Conclusions and outlook

In practical terms, the experimental results presented in this article further demonstrate the utility of data-scientific approaches
in arithmetic classification problems. Of course, these experiments can be generalized in several directions, for example, replacing
elliptic curves by rational modular forms of weight > 2 or arithmetic curves of genus > 1; replacing the base field Q by number
fields of larger degree; or replacing the rank by other invariants of interest such as the Tate–Shafarevich group order. The successful
implementation of basic machine-learning strategies is a continuation of the theme developed in [8–10].

On the other hand, one might seek to generalize the methodology, for example, incorporating more unsupervised machine-
learning techniques, or possibly applying methods of reinforcement learning. Whilst the application of modern approaches into
a classical subject such as number theory is interesting, perhaps more exciting in this article is the appearance of seemingly new
mathematical structures within the data.

In particular, we highlight the unexpected and striking behavior of function fr(n) introduced in equation (1.1). In Section 4.2, it
was noted that PCA can shed some light through weights on the oscillations observed. That said, several immediate questions remain.
For example, one might seek to quantify the error of the approximations developed in Sections 4.5 in terms of p, and subsequently
explore new implications for the variation of ap in families of elliptic curves. Furthermore, whilst the Sato–Tate conjecture asserts
that the average value of ap cannot grow monotonically with p, it is completely mysterious that the value should oscillate in such a
notable manner. These questions, and several others, may be formulated in mathematical terms, but the answers may involve some
interplay with machine-learning techniques.
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