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Statistical physics — the mathematical study of the rela­
tionship between microscopic and macroscopic proper­
ties of physical systems composed by many parts — has 
found a role in recent decades in investigating such 
relationships in social and economic systems1–5. This 
Review focuses on the study of complex networks and 
their applications to economics and finance6–12. Such 
studies are inherently interdisciplinary, positioned at 
the frontier of graph theory, statistical physics of net­
works and financial economics. The units of observation 
(that is, financial actors) belong, by their nature, to the 
domain of economics and finance, as do areas of appli­
cations such as the analysis of corporate influence and 
systemic risk.

In the field of financial networks, the application of 
physics to social systems has successfully led to results 
and impact13–19. Statistical tools and analytical models 
have helped to characterize financial risk by account­
ing for the complexity and the interconnectedness 
of the financial system. The key contributions to this 
endeavour are demonstrated by the adoption of con­
cepts and metrics by practitioners and policymakers in 
the financial sector20–22 and by scholars in the econom­
ics profession23–25. The aim of this Review is to present 
the main research questions and results, and the future  
avenues of research in this field.

Modelling the financial system as a network is a 
precondition to understanding and managing a wide 
range of phenomena that are relevant not just to finance 
professionals or economists but also to researchers in 

many other disciplines, as well as ordinary citizens, 
public agencies and governments26,27. This view is 
widely recognized today and reflected in the policy 
actions and discourse of financial authorities in both 
the USA28 and the EU29. Indeed, network effects of vari­
ous kinds had a key role in the 2007–2008 financial  
crisis30, the impact of which persists after more than  
a decade31.

The discipline of financial networks has filled a sci­
entific gap by showing how many important phenomena 
in the financial system can be understood in terms of  
the interactions between financial actors. For example,  
if the price of a certain asset plummets, it affects not 
only those actors who have invested in that asset but 
also those who have invested in the obligations of those 
actors. Because of the existence of intricate chains of 
contracts and feedback mechanisms, the resulting 
effects can be much larger than the initial shocks. As in  
other domains of complex systems, the emergence of 
system-​level instabilities can only be understood from 
the interplay of the network structure (for instance, 
closed chains) and key properties of links and nodes 
(such as properties pertaining to risk propagation and 
financial leverage)32,33 (see Box 1). Traditional economic 
models have described the financial system either as an 
aggregate entity or as a collection of actors in isolation, 
failing to provide an appropriate description of these 
mechanisms and their implications for society34.

In this Review, we first define several types of 
financial networks (arising from direct, indirect or 
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higher-​order interactions) and characterize the struc­
ture of static snapshots of each of these networks. We 
then review dynamic processes taking place on financial 
networks, focusing on financial contagion, first along 
bilateral links in unipartite networks, then through 
common neighbouring nodes on bipartite networks and 
lastly on multiplex networks. Next, we review the stream 
of works constructing statistical ensembles of financial 
networks compatible with the observed data. This con­
struction entails a notion of empirically testable ther­
modynamic equilibrium for financial networks that we 
discuss in relation to the notion of economic equilib­
rium. Finally, although the study of complex systems 
across many fields has benefited from the availability of 
rich datasets, disaggregated data on financial networks 
are often not available owing to confidentiality issues. 
We discuss how statistical network ensembles allow to 
tackle this problem by estimating the structure of finan­
cial networks from partial information and identify 
early-​warning signals of instabilities through changes 
in network structure.

Network structure
The financial system can be viewed as a set of inter­
related economic agents, such as retail and investment 
banks, insurance companies, investment funds, cen­
tral banks and supervisors, fintech companies, 
non-​financial firms and households. Relationships 
between those agents are often formalized by contracts, 
such as loans (for instance, between two banks, or 
from a bank to a firm, or from a bank to a household), 

reciprocal ownerships or insurance policies. But rela­
tionships can be also implicit, such as investments in 
common assets. It is, therefore, natural to represent 
the financial system as a network in which nodes rep­
resent economic agents and edges represent the rela­
tionships between them. Between a pair of agents, there 
are typically several kinds of relationships that change 
over time. Hence, the most realistic representation of 
the financial system is a temporal multiplex network. 
However, in many cases, one focuses on individual pro­
cesses, the timescale of which is much shorter than the 
timescale over which those relationships change. This 
simplification makes it possible to represent the finan­
cial system as a single-​layer static network. Representing 
the financial system as a network enables explicit mod­
elling of the propagation of shocks between agents. The 
importance of such mechanisms was especially clear as 
the 2007–2008 financial crisis unfolded. The failure of 
some financial institutions threatened to bring down 
other institutions exposed to them: for instance, the 
failure of Lehman Brothers caused the Reserve Primary 
Fund to ‘break the buck’, which, in turn, led to a run 
on money market mutual funds, while AIG (American 
International Group) was rescued by the government 
to prevent losses that could have led to the default of its 
counterparties30.

Single-​layer networks. Although economic networks 
comprise several types of relations, such as credit lending 
or supply of goods and services, the network of owner­
ship best reflects the relations of power35,36 between 
economic and financial actors. Through chains of own­
ership, shareholders have a means to influence, inten­
tionally or not, the activities of firms owned directly and 
indirectly. Thus, one stream of research has investigated 
the structure of ownership networks and the implica­
tions of such structure. Ownership networks display 
small-​world properties37–39, are scale-​free40 and exhibit dif­
ferent concentration properties in different countries41. 
The global ownership network has a bow-​tie structure 
with a concentrated core of financial companies42 and 
a community structure that reflects geopolitical blocks43. 
The embedding in the geographical space explains  
several of its properties44. Its power structure appears  
to be very resilient, even to dramatic events like the 
2007–2008 financial crisis45.

Another stream of work has focused on the struc­
ture of networks of credit contracts between financial 
institutions. One of the first studies46 found that the 
Austrian interbank network displayed power laws for 
both weight and degree distributions, an emerging 
community structure that mirrors sectors, a cluster­
ing coefficient smaller than other real-​world networks 
and a small average path length. Shortly after, a study of 
interbank payments over the Fedwire Funds Service47 
also found power laws for both weight and degree dis­
tributions, along with a high clustering coefficient and 
degree disassortativity. These early works paved the way 
to a stream of works covering Switzerland48, Italy49–52, the 
USA53,54, Belgium55, Brazil56,57, Japan58, the Netherlands59, 
Colombia60, Germany61 and Mexico62, among others. 
Overall, the works on structure have highlighted in 

Key points

•	Modelling the financial system as a network is crucial to capture the complex 
interactions between financial institutions.

•	Such a network is naturally a time-​dependent multiplex, because relationships 
between financial institutions are of many different kinds and keep changing.

•	Models of financial contagion enable understanding of how shocks propagate from 
one financial institution to another.

•	Missing information on financial networks can be ‘reconstructed’ using maximum 
entropy approaches borrowed from statistical mechanics.

•	Techniques based on financial networks have been adopted by practitioners and 
policy institutions.
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Bipartite networks
Networks in which nodes are of 
two different types, say A and B  
(for instance, companies and 
directors), and links exist only 
between nodes of different 
type (for instance, a director 
being connected to a company 
if they sit on the board of that 
company).

Multiplex networks
Collections of networks (also 
called layers) with the same set 
of nodes, but with different 
links. In this context, multiplex 
networks are used to represent 
different kinds of linkages 
between financial institutions.

Assets
Items on the balance sheet of 
an institution that have a 
positive economic value 
because they generate present 
or future income.

Small-​world
A network structure 
characterized by a large 
clustering coefficient and  
a small average shortest  
path length.
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national banking systems the existence of some styl­
ized facts, that is, statistical features that are common 
across the different networks. These financial networks 
were found to be typically very sparse, with heavy-​tailed 
degree distributions, high clustering and short average 
path length, and disassortative.

A few studies found that financial networks are 
characterized by a core–periphery structure. This 
means that a subset of institutions — the core — is 
tightly connected and a subset of institutions — the 
periphery — are loosely connected with each other and 
often connected to the core63–67. It has been shown that 
the core–periphery topology can emerge as the con­
sequence of the imperfect competition for the bene­
fits of intermediation68. However, the core–periphery 
topology is neither ubiquitous nor robust to null model 
comparisons59 and, depending on the granularity of the  
data, other structures can better fit the data69. After  
the 2007–2008 crisis, the establishment of central clear­
ing counterparties (CCPs) has meant that many bilat­
eral contracts between clearing members were rerouted 

through a single institution (the CCP). It has been shown 
that central clearing often reduces systemic risk70–74  
but that it can also increase the demand for collateral75, 
especially when the number of CCPs is large72. It has 
also been shown that current standards for default funds  
by clearing members might not be sufficient76.

Co-​occurrence networks. In several circumstances, finan­
cial entities are not necessarily related via ‘direct’ inter­
actions (such as flows of money, holdings of shares or 
financial exposures) but via some form of co-​occurrence, 
which may be indirect, such as commonality, similarity 
or correlation. For instance, two institutions may be 
related by the fact that their boards of directors share 
one or more members (so-​called interlock relation­
ship77), or that their portfolios share one or more assets  
(co-ownership/overlap78), or that their stock prices fol­
low similar trends (price correlation79). Technically, these 
forms of co-​occurrence can be represented via bipartite 
networks and their one-mode projections. A special type 
of co-​occurrence network is a network with nodes that 
represent financial entities described by some empiri­
cal time series (for example, stocks traded in a financial 
market) and whose links are weighted by the measured 
correlation79–81 or causality82 (for instance, Granger cau­
sality) between the corresponding time series. This net­
work can be regarded as a one-​mode projection of the 
original set of multivariate time series in which the two 
types of nodes of a bipartite network represent stocks 
and time steps, respectively (Fig. 1a,b).

The analysis of these types of financial networks 
has shown that co-​occurrence can reveal higher-​order 
properties that are not immediately evident or predict­
able from the intrinsic properties of nodes. For instance, 
an analysis of the US corporate governance interlock 
network77 revealed that the most influential directors do 
not necessarily serve on the boards of large companies. 
Similarly, the analysis of correlation-​based networks 
in several financial markets has empirically identified 
groups of strongly correlated stocks79,80,83,84 and credit 
default swaps (CDSs)85 that are unpredictable from 
sector or geographical classification. Such data-​driven 
clustering of assets can improve the performance of 
standard factor models for risk modelling and portfolio 
management85. In general, because shocks on port­
folios can propagate to their owners (as we discuss in 
the section on dynamics), the existence of non-​obvious 
groups of correlated financial assets can have important  
consequences for shock propagation.

Various characteristics of co-​occurrence networks 
require special caution and can make their analysis 
more complicated than that of other types of networks. 
First, although other types of networks are typically 
sparse, one-​mode projections obtained from empiri­
cal co-​occurrence or correlation can be very dense and 
often do not contain zeros, in which case, they do not 
immediately result in a network. This property has led to 
the introduction of several filtering techniques aimed at 
sparsifying those matrices while retaining the ‘strongest’ 
connections.

Second, in the presence of heterogeneous entities, 
the same measured value of similarity (for instance, 

Community structure
A network characterization in 
which nodes can be grouped 
into sets such that each set of 
nodes is densely connected 
internally.

Path
On a network, a sequence of 
consecutive edges connecting 
a sequence of distinct nodes. 
The shortest path between two 
nodes is the path of minimal 
length connecting them.

Disassortativity
The tendency of nodes to be 
linked to other nodes with 
dissimilar degrees. Conversely, 
assortativity is the tendency 
for nodes to be linked to other 
nodes with similar degrees.

Box 1 | Leverage

Investors are said to be leveraged when they borrow money to invest. For instance,  
we use leverage when we get a mortgage to buy a house. If we put a capital of £40,000 
as a down payment and we borrow £160,000 to buy a house worth £200,000, then 
our leverage is equal to 5: the value of our assets (the house) divided by our capital. 
Leverage is related to risk, because it amplifies our gains and losses. If the value of the 
house increases to £220,000, we could sell it, pay back our debt (let us assume for 
simplicity there is no interest rate) and we would have gained £20,000. We see, then, 
that an increase of 10% in the value of the house translates into an increase of 50% of 
our initial capital. The same is, however, true if the house is devalued: a devaluation of 
10% would lead to a 50% reduction of our initial capital (from £40,000 to £20,000). More 
generally, if our leverage is equal to λ, a 1% change in the value of the house translates 
into a λ% change of our capital. The same applies to all leveraged investors. Leverage  
λ is defined in general for any investor or institution as the ratio between assets and 
equity. The figure shows the stylized representation of a balance sheet of an investor 
with λ = 2. When the assets are devalued by 25% (right part of the figure), the equity lost 
is 50%, equal to the asset devaluation multiplied by leverage: the higher leverage,  
the higher the amplification of losses, the higher the risk of the investor.

So far, we have considered an isolated investor, but the concept of leverage as an 
amplifier of losses can be generalized to the context of a network of interconnected 
balance sheets. For instance, when banks lend money to each other, the interbank 
assets of a bank correspond to the interbank liabilities of other banks. When a bank  
is under stress, the value of the interbank assets associated with its liabilities are 
devalued, which puts its creditors under stress, and so on. It can be shown that the 
propagation of shocks within the network is governed by a matrix, called the matrix  
of interbank leverage, the leading eigenvalue of which determines the level of 
endogenous amplification of exogenous shocks32.
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correlation) might correspond to very different levels 
of statistical significance for distinct pairs of nodes. For 
this reason, simply imposing a common global threshold 
on all correlations is inadequate, and alternative filtering 
techniques that project the original correlation matrix 
onto minimum spanning trees79, maximally planar 
graphs80 or more general manifolds86 have been intro­
duced (Fig. 1c). These approaches found that financial 
entities belonging to the same nominal category can 
have very different connectivity properties (such as 
centrality, number and strength of relevant connections) 
in the network87,88. An open question is the theoretical 
justification for the choice of the embedding geometry 
wherein the network is constructed.

Third, in general, all entries of empirical similarity 
matrices tend to be shifted towards large values, as a 
result of an overall relatedness existing across all nodes, 
as, for example, a common market trend. This ‘global’ 
or ‘market’ mode83,89–91 obscures the genuine dyadic 
dependencies that any network representation aims to 
portray.

Finally, the measurement of correlation (or 
co-​occurrence) networks is intrinsically prone to the 

curse of dimensionality. With n the number of time 
series and m the length of those time series, to meas­
ure with statistical robustness the n(n − 1)/2 entries of 
a correlation or similarity matrix one needs m ≥ n, that 
is, a sufficiently large number of temporal observations 
(or nodes in the other layer of the bipartite network) 
in the original data to avoid dependency and statisti­
cal noise. Unfortunately, increasing m for a given set of 
n nodes is often not possible in practice, for instance, 
because one would need to consider a time span so long 
that non-​stationarities would unavoidably kick in, mak­
ing the measured correlation unstable and not properly 
interpretable.

The above complications lead to the requirement of 
a comparison with a proper null hypothesis that con­
trols simultaneously for node heterogeneity, for a pos­
sible ‘obfuscating’ global mode and for ‘cursed’ noisy 
measurements. An important caveat here is that, in 
co-​occurrence networks, even the null model necessarily 
has mutually dependent links. This key difference with 
respect to single-​layer networks arises from the fact that, 
if node i is positively correlated with (or co-​occurring 
with) node j, which is, in turn, positively correlated with  

a  Time series b  Correlation matrix

e  Community detection

(Anti)correlated
modules

Hierarchical modular structure

c  Network projection

Threshold on
correlations

Minimum
spanning tree

d  Random matrix theory

λ

λ

p(
λ)

p(
λ)

1

0
0 100 200

Fig. 1 | Correlation-based networks from multivariate time series. a ∣ The original data consist of n time series 
extending over m time steps. b ∣ The data are converted into an n × n correlation matrix C, where the entry cij is the 
correlation coefficient between the ith and the jth time series. c–e ∣ The correlation matrix C can be used to produce 
different types of network structures on the original n objects, either by directly creating a network formed by links 
connecting pairs of nodes with correlation cij exceeding a given threshold87 or by belonging to some imposed structure  
in an embedding geometry (such as minimum spanning tree79 or maximally planar graph80) (part c), or by comparing the 
empirical distribution of eigenvalues of C (blue line) with the expected, so-​called Marchenko–Pastur density (red line) 
exhibited by a random correlation matrix (Wishart ensemble in random matrix theory93,94) (part d) to filter out both noisy 
and global components89–91 and, subsequently, identify (possibly hierarchical) communities of time series that are internally 
maximally correlated and mutually maximally anticorrelated83–85 (part e). The networks in parts c and e are obtained 
starting from time series of stocks in the S&P 500 market (reproduced from refs83,87) and different colours represent 
different sectors to which stocks belong: in all cases, the sectors are not predictive of the network structure, indicating 
that the network structure encodes higher-​order information with respect to the standard classification. Part c adapted 
with permission from refs83,87. Part d adapted with permission from ref.85. Part e adapted with permission from ref.83.

One-mode projections
A one-mode projection of a 
bipartite network contains only 
nodes of one type (say A) and 
any two such nodes are 
connected to each other with 
an intensity proportional to the 
number of their common 
neighbours of the other type in 
the original bipartite network 
(for instance, two directors are 
connected by a link indicating 
the number of common boards 
on which they sit).
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node k, then nodes i and k are typically also positively 
correlated. This ‘metric’ constraint survives also in 
the null hypothesis of random correlations, whereas it 
does not apply in the usual null models developed for 
single-​layer networks. Therefore, naively using those 
null models introduces severe biases in the statistical 
analysis of co-​occurrence networks.

Fortunately, the statistical physics literature has con­
tributed adequate null models defined in terms of a 
random correlation matrix83,89–92 (technically, a Wishart 
matrix93), the entries of which are automatically depend­
ent on each other in the desired way. Indeed, random 
matrix theory93,94 has become a key tool in the analysis 
of correlation matrices. A successful use of this theory 
is in comparing the spectra of a measured correlation 
matrix with random correlation matrices to select the 
empirically deviating eigenvalues, in order to construct 
the filtered (non-​random) component of the measured 
matrix83 (Fig. 1d). This filtered matrix enables the detec­
tion of patterns such as communities (Fig. 1e) and the 
identification, in a purely data-​driven fashion, of empir­
ical dependencies that, again, are unpredictable a priori 
from the nominal classification or taxonomy of nodes. 
Research in this direction is active85,92,95,96 and more gen­
eral matrix ensembles have been recently studied using 
notions from supersymmetry92 to further refine the  
analytical characterization of the null hypothesis.

Multiplex and higher-​order networks. The examples of 
financial networks discussed so far condense all the infor­
mation about the relationships between a pair of finan­
cial institutions into one (possibly weighted) edge. This 
is often a useful abstraction, but, in reality, many of those 
relationships are more complex, and this complexity  
can have consequences for the propagation of risk.

For instance, pairs of financial entities can be con­
nected by multiple types of relationships, each cap­
turing a different ‘layer’ of interaction. Multiplex 
networks97,98 provide a natural framework to describe 
such relationships. Empirical case studies of financial 
multiplexes include: credit and liquidity exposures in 
the UK interbank market99; payments and exposures 
in the Mexican banking system62; the Mexican inter­
bank market100; the Italian interbank market101; cor­
relation of returns in the stock and foreign exchange 
markets102,103; correlation of returns in the stock market 
and news sentiments104; Colombian financial institu­
tions and market infrastructures105; the EU derivatives 
market21; the UK interest rate, foreign exchange and 
credit derivatives market106; and corporate networks107. 
Such studies of financial multiplexes have found that 
the network structure of different layers can be very 
different62,99,101, that links in distinct layers do not have 
the same persistence100,101 and that overlaps between dif­
ferent layers are not trivial106,107. Compared with simpler 
single-​layer networks, multiplex networks can give rise 
to a richer phenomenology when dynamic processes, 
such as financial contagion, take place on them. Several 
generalizations of financial contagion to multiplex  
networks are discussed later in this Review.

Another fruitful area of investigation has been the 
network implied by the derivative market. Owing to 

data availability, most early studies have focused on 
CDSs, which are derivative contracts in which an insti­
tution offers to insure another institution over the default 
of a third institution. As such, they are an example of 
three-​body interactions in financial networks, similar to  
models in physics108. CDSs should allow institutions  
to hedge their risks and provide a solid market valua­
tion of the financial risk of different market players. 
Nevertheless, as shown in a series of studies21,108–110, 
the contagion can propagate in the CDS market when 
CDS insurers absorb too much risk upon themselves111. 
Moreover, it has been shown112 that, under certain cir­
cumstances, the presence of CDS contracts can make it 
impossible to determine which institutions are in default 
and that removing such ambiguity can be computationally  
unfeasible113,114.

Dynamics of financial networks
Direct contagion via solvency and liquidity channels. 
In this section, we review models of financial contagion 
that focus on bilateral relationships between financial 
institutions (for brevity, referred to as ‘banks’ in the fol­
lowing), which are one of the most common examples of 
financial networks. Most models can be grouped under 
the general framework30 illustrated in the top panel of 
Fig. 2. The idea is that with each bank are associated 
some dynamic state variables that represent key quan­
tities in their balance sheet. Those variables are updated 
via dynamic equations that depend strongly on the  
relationships between banks, which are typically static.

The balance sheet that represents a bank consists of 
an asset side (things that generate income for the bank, 
such as loans extended to households, to other banks or 
to firms) and a liability side (claims of other economic 
agents towards that bank), such as customer deposits, 
funds borrowed from other banks or firms, bonds and 
shares issued. The balance sheet identity prescribes that 
the sum of assets of each bank is equal to the sum of its 
liabilities. Liabilities have different priorities (also known 
as seniorities). If a bank fails, its assets are liquidated and 
its liabilities are paid back, starting from those with a 
higher priority. The liability with the lowest priority is 
the equity, which corresponds to the residual claim of 
shareholders after all other liabilities have been paid 
back. Therefore, it measures the bank’s net worth. Both 
assets and liabilities can be split according to the market 
to which they belong, in particular, it is customary to  
distinguish between interbank (or network) and exter­
nal assets and liabilities. The interbank liabilities of 
bank i are the obligations that i has to other banks in the  
system, such as payments to be made imminently or loans,  
which correspond to payments to be made in the future. 
Similarly, the interbank assets of bank i are the obli­
gations that other banks in the system have towards i.  
To each interbank liability (for instance, of i towards j), 
there corresponds an interbank asset (of j towards i). 
Hence, interbank assets and liabilities are equivalent rep­
resentations of the obligations between pairs of banks. 
The network is built simply by associating to each bank 
one node and to each interbank liability (or asset) one 
link. Those networks are directed (obligations are not 
necessarily symmetrical), weighted (by the monetary 

Filtered matrix
Matrix, for instance 
representing correlations, that 
has been statistically validated 
(or otherwise processed to 
eliminate the effects of noise) 
so that, ideally, only 
statistically significant 
information is retained.

Liquidity
Refers to the case in which the 
liquid assets (such as cash) of 
one institution are larger than 
its short-​term liabilities (such 
as loans to be paid back 
overnight).

Liabilities
Items on the balance sheet of 
an institution that have a 
negative economic value 
because they represent debt  
to be repaid, potentially at 
different times (or maturities) 
in the future.

Equity
In accounting, equity is defined 
by the balance sheet identity 
as the difference between 
assets and liabilities. Therefore, 
it represents the net worth of 
the institution.
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amount of the obligation) and without loops (banks 
do not make payments to themselves). For the sake of 
brevity, here, we have considered the case in which all 
obligations between each pair of banks are aggregated 
into one single interbank liability (or asset). More gran­
ular models based on multiplex networks can overcome 
this limitation, as discussed below.

The usual approach followed in modelling studies is 
to hit one or more banks with an exogenous shock, for 
example, by reducing the value of their external assets, 
and to propagate the shock across the network, not 
unlike an epidemic. Formally, this propagation corre­
sponds to a dynamic process (triggered by an external 
shock) on the network that allows balance sheet vari­
ables to evolve. This approach is conceptually similar 
to the stress tests of the banking sector as implemented 
worldwide by regulators after the 2007–2008 financial 
crisis. However, those usually consider banks in isolation 
and neglect interactions between them. Therefore, the 
natural policy application of these models has been to 

incorporate network effects into more traditional stress 
testing models.

Although models differ in their implementation 
details, they describe only a handful of basic shock 
propagation mechanisms. One is liquidity contagion.  
In this case, the relevant balance sheet quantities are inter­
bank liabilities, which represent payments to be deliv­
ered imminently, and liquid assets, which are a subset of 
external assets and consist of cash or assets that can read­
ily be converted into cash. For example, let us imagine 
that all banks in Fig. 2 have one unit of cash and that their 
payment obligations (that is, the interbank liabilities) are 
as follows: L13 = 2, L21 = 1 and L32 = 2. Payments happen 
in subsequent rounds. In the first round of payments, 
each bank relies only on their cash. Bank 1 pays one unit 
to bank 3, bank 2 pays one unit to bank 1 and bank 3  
pays one unit to bank 2. Bank 2 has, therefore, paid its 
obligation in full. In the second round of payments, 
banks 1 and 3 can use the payments received in the first 
round to fully pay their obligations to banks 3 and 2, 
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Fig. 2 | Interbank networks and their dynamics. a ∣ A stylized interbank network consisting of three banks, each 
represented by its balance sheet. On the asset side is the interbank assets Ai

ib, further broken down in individual exposures 
(for instance, A12 is the exposure of bank 1 to bank 2), and external assets Ai

e (broken down as A, B,…). On the liability  
side are interbank liabilities Li

ib, similarly broken down, external liabilities Li
e and equity Ei. b–e ∣ Solvency contagion via 

revaluation of interbank assets. An exogenous shock ΔA1
e hits the external assets of bank 1 (part b) and is absorbed  

by bank 1’s equity (part c). Because bank 3 is exposed to bank 1, it revaluates its interbank asset A31 (part d). The exact 
valuation method depends on the specific model. Finally, the reduction in bank 3’s assets is absorbed by its equity (part e). 
f–i ∣ Contagion via overlapping portfolios. Bank 1 sells assets A and B, for example, to meet its leverage target (part f). 
Doing so causes A and B to depreciate. Asset values of banks 1 and 2, which hold A and B, are reduced (part g). As a 
consequence, bank 2 now needs to deleverage and sells assets A and C (part h). Those assets depreciate and asset values 
of banks 1, 2 and 3 are reduced (part i).
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respectively. This toy example mimics the iterative solu­
tion of the Eisenberg–Noe model115, in which banks use 
both their liquid assets and the partial (proportional) 
payments received by other banks to meet their pay­
ment obligations. The Eisenberg–Noe model has been 
extended to the case in which banks that are not able to  
fully pay their obligations face bankruptcy costs116,  
to the case in which payment obligations depend on 
other variables117 and to the case in which banks do not 
make partial payments at all118, as well as to continuous 
time119. In the Eisenberg–Noe model, contagion spreads 
when there are banks that would have been able to meet 
their own obligations if they had received their incoming 
payments. However, if some of those payments were not 
(or were only partially) delivered, the banks are not able 
to fully deliver their own payments, potentially putting 
banks on the receiving end of their payments in the same 
situation. The initial shock is normally an unforeseen 
payment obligation, such as a margin call due to price 
movements in the derivative markets71,120,121.

Another shock propagation mechanism is solvency 
contagion, which occurs when the insolvency or the 
reduction in creditworthiness of a bank has an effect on 
its creditors. The simplest form of solvency contagion 
is known as contagion on default. In this case, as long 
as bank i’s equity is larger than zero, i’s creditors take 
their interbank assets towards i at face value. However, 
when bank i’s equity becomes smaller than or equal  
to zero, i’s creditors write off their interbank assets 
towards i because they do not expect to be fully paid 
back. (Negative equity is a common sufficient condition 
for insolvency or default. However, resolution frame­
works put in place after the 2007–2008 financial crisis 
imply that banks can be wound down when they fail to 
comply with regulatory requirements, even though their 
equity is positive.)

In the most conservative case, i’s creditors set the 
value of the corresponding interbank assets to zero, 
as they expect to recover nothing from the defaulted 
bank122. In general, they discount their interbank assets 
by a coefficient between zero and one known as recov­
ery rate, such as in ref.123. When j, one of i’s creditors, 
writes off its interbank assets, the total value of j’s assets 
is reduced and, via the balance sheet identity, so is the 
total value of j’s liabilities. Because it has the lowest pri­
ority, in the first instance, it is j’s equity that must absorb 
the losses. However, if j’s equity is not large enough, it 
will default too, thereby, triggering write-​offs by its own 
creditors. The spreading of defaults across the finan­
cial network is known as a default cascade or a domino 
effect.

For example, let us imagine that, for banks in Fig. 2, 
we have A31 > E3 and A23 < E2 (where Aij is the expo­
sure of bank i to bank j and Ei is the equity of bank i) 
and that the recovery rate is equal to zero. If the initial 
shock to bank 1’s equity is large enough to make bank 1  
default, that is, E1 ≤ 0, then bank 3 will fully write off its 
interbank asset A31 and, because the corresponding loss 
is larger than its equity, it will default as well, that is, 
E3 < 0. Therefore, bank 2 will also fully write off its inter­
bank asset A23, but because its equity is larger than the  
corresponding loss, it will not default.

These models are mathematically similar to linear  
threshold models and are, therefore, amenable to analy­
tical treatment13, for example, to derive the size of the  
cascade of defaults124,125. In more general models, 
write-offs are triggered not only by defaults but also by 
increases in probabilities of default. This is the approach 
followed by the family of DebtRank models15,126,127, by 
empirical models128 or by valuation models129–132 (see the 
middle panel of Fig. 2). The mechanism of these general 
models mimics the accounting requirement of marking 
assets to market, which has been a large source of losses 
during the 2007–2008 financial crisis133. Interestingly, it 
has been shown131 that several contagion models (such 
as the aforementioned Eisenberg–Noe, the contagion on 
default and DebtRank) are special cases of a more gen­
eral valuation model. Solvency contagion is the conta­
gion channel that has been probed empirically the most. 
The risk of systemic events has been found to be gener­
ally small123,129,134–136 or at least to have sharply decreased 
since the 2007–2008 financial crisis132. Nevertheless, 
systemic events can be severe129 and risks appear to be 
heavily concentrated in a few key institutions122,128, which 
are not necessarily the largest ones. This finding points 
to the important role played by network structure137 and 
challenges the ‘too big to fail’ paradigm15,122.

Another type of contagion is funding contagion, 
which occurs when banks that have previously lent 
to bank i decide not to renew their loans once they 
expire138,139. Similarly to solvency contagion, the deci­
sion can be triggered by a change in the creditworthiness 
of bank i. Reference140 reports a model that integrates  
solvency and funding contagion.

Models of bilateral exposures have also been used 
to investigate the relationship between the underlying 
topology of the network and its stability. Early works141,142, 
following standard economic theory, show that more 
diversified (and, therefore, more interconnected) net­
works are more resilient, as shocks are dispersed across 
more banks. However, it has been shown143,144 that the 
relationship between systemic risk and diversification 
is non-​monotonic, in the presence of mechanisms that 
can amplify losses (for example, creditors’ reactions). 
Moreover a more interconnected network is more resil­
ient for small shocks and less resilient for large shocks145, 
in line with the intuition that financial networks might 
be ‘robust-​yet-​fragile’27. Similarly, it has been shown146 
that, although the probability of widespread contagion 
can be small, systemic events can be severe. It has been  
shown24,147 that diversification does not have a mono­
tonous effect on the extent of default cascades. In addi­
tion, the role of the topology is crucial148,149, with no single 
network architecture being superior to the others150.  
In ref.32, the instability of the contagion dynamics (see 
also ref.151) is linked to the presence of specific topo­
logical structures (unstable cycles), which are likely 
to appear in a more diversified network. A different 
approach is followed by refs152,153, in which the rela­
tionship between interconnectedness and resilience 
is investigated with minimal information about the  
network structure.

Yet another stream of the literature looks at assessing 
and designing (optimal) policies. For example, it has 

Solvency
Solvency refers to the case  
in which the assets of one 
institution are larger than its 
liabilities and, therefore,  
its equity is positive.
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been shown154 that limits on exposures often, but not 
always, reduce systemic risk and a toolkit136 has been 
developed to test the impact of bail-​ins. Several stud­
ies focus on the impact on public finances: it has been 
shown155 that resolution frameworks can be effective in 
reducing bail-​out, centrality-​based bail-​outs have been 
investigated156 and conditions for optimal bail-​outs have 
been determined157–159. Closely related are the studies on 
optimal repair strategies160 and on the controllability of 
financial networks161,162, aimed at reducing systemic risk, 
by approaches such as targeted taxes163, requiring banks to 
disclose their systemic impact164 or explicitly optimizing  
the exposures165.

Indirect contagion via overlapping portfolios. Shocks can 
propagate between banks even if they are not directly 
connected through a contract. This happens if they are 
indirectly connected through some co-​occurrence rela­
tionship (as discussed above), for instance, when they 
invest in common assets. If one institution is in trouble, 
it may sell some of its assets. Doing so causes the deval­
uation of those assets and, therefore, losses for the other 
banks that had invested in them. This devaluation may 
cause these banks to sell their assets in turn, and so on. 
Although this type of contagion is mediated by the mar­
ket through price, interactions can still be modelled as a 
network of overlapping portfolios. This network is bipar­
tite, with two types of nodes representing banks and 
assets, and links connecting banks to the assets in their 
portfolio (see the section on co-​occurrence networks and 
the bottom panel of Fig. 2). In the figure, bank 1 is not 
directly exposed to bank 2, yet, contagion from bank 1  
to bank 2 can occur because they both invest in asset A.  
The same figure is useful to introduce the concept of 
indirect exposure, that is, the fact that, through the net­
work of overlapping portfolios, banks may be effectively 
(and unknowingly) exposed to assets they are not invest­
ing in. For instance, although bank 1 has no direct expo­
sure to asset C, it is indirectly exposed to it through the 
overlap between its portfolio and that of bank 2.

As in the case of direct exposures, the goal is to under­
stand how the properties of the network of overlapping 
portfolios affects its stability, and under what conditions 
the system is able to either absorb or amplify exogenous 
shocks78,166–170. To model the dynamics of shock propa­
gation on this network, one needs to specify how banks 
react to losses in their portfolios (for instance, how they 
readjust their portfolios to manage risk) and how asset 
prices react to the trading activity of banks. The response 
of prices to liquidation is typically implemented by 
means of a market impact function171 that links the 
liquidation volume of an asset to its price: the more an 
asset is being liquidated, the greater its devaluation. Most 
of the literature considers market impact functions that 
are linear in returns or log-​returns, but consideration 
has also been given to more complex forms that account 
for the fact that, when an asset is largely devalued, other 
investors would step in, attempting to buy the asset at a 
cheap price170.

Concerning the dynamics of banks, the simplest 
choice is that of a linear threshold model172, in which a 
bank is passive as long as its losses remain below a given 

threshold (typically chosen to be equal to its equity), and 
liquidates its entire portfolio otherwise78,166. Under this 
assumption, the dynamics can be approximated by a 
multi-​type branching process and it is possible to derive 
analytical results for the case of random networks166. 
When the branching process is supercritical, even a 
small exogenous shock can propagate throughout the 
network. Using this approximation, it is possible to 
identify regions in the parameter space — typical para­
meters are the average degree of banks and assets in the 
network, strength of market impact, leverage — where 
cascades of defaults occur, and to show that increas­
ing diversification, which reduces the risk of individ­
ual institutions, does not necessarily increase systemic 
stability166. In fact, as in the case of counterparty default 
contagion146, the probability of observing a cascade of 
defaults is non-​monotonic with respect to the average 
diversification of banks (their average degree in the 
network).

The study of random networks is important from 
the theoretical point of view, but the ultimate goal of 
contagion models is to characterize the stability of real­
istic systems. For instance, stress testing has been per­
formed using numerical simulations on the network of 
overlapping portfolios between US commercial banks 
in 2007 (ref.78). These simulations reveal the existence 
of phase-​transition-​like phenomena between stable and 
unstable regimes. Comparing the banks that the model 
predicts should default with the list of actual defaults 
observed between 2008 and 2011 shows that the model 
identifies defaults significantly better than a random 
classifier does, and it identifies commercial real estate 
loans as the likely trigger of the observed defaults. The 
capability of network models of contagion due to over­
lapping portfolios to correctly identify defaults asso­
ciated with the crisis is further confirmed in ref.173, in 
which the analysis of ref.78 is extended to a wider range 
of behavioural assumptions for the response of banks to 
the devaluation of their assets. The model of ref.78 has 
also been used to study the Japanese banking crisis of the 
late 1990s174,175, and, more recently, to test potential strat­
egies to mitigate the occurrence of cascades of defaults176. 
Reference176 considers, in particular, an application to 
the bipartite network of European banks and sovereign 
bonds, and shows that the stability of the system can be 
improved by protecting a small fraction of nodes.

Although the assumption of a passive investor is a 
useful benchmark against which to assess the effect of 
active risk management — and it may be realistic dur­
ing a fast-​developing crisis in which banks do not have 
time to react before they default — in practice, banks 
would react to changing market conditions by actively 
rebalancing their portfolios. This happens because of  
internal risk management procedures or because of regu­
latory constraints that need to be satisfied177. Active 
risk management is typically modelled by means of 
leverage-​targeting dynamics166–169. In these models, 
banks that experience losses liquidate a fraction of 
their investment in an attempt to keep their leverage 
constant. In fact, it can be shown that leverage target­
ing is the optimal strategy of an investor that tries to 
maximize its expected return on equity while being 
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subject to a value-​at-​risk (VaR) or expected shortfall (ES) 
constraint178.

A dynamic in between thresholding and leverage 
targeting has also been considered170, in which banks do 
not react until their losses exceed a given threshold, after 
which they target leverage. Using this dynamic, a stress 
testing exercise on a network of overlapping portfolios 
between European banks was performed, considering 
the overlap between their investment in sovereign and 
corporate bonds of different countries, and the amount 
of indirect exposures induced by the network was com­
puted. This analysis shows, for example, that, in spite 
of having small investments in mortgage of foreign 
countries, banks are effectively exposed to foreign real 
estate markets via the network of overlapping portfolios.  
For instance, the indirect exposures of banks of nor­
thern European countries to the real estate market of 
southern European ones are estimated to be, on aver­
age, almost twice as much as their nominal exposure. 
Although these estimates depend on many assump­
tions on the model and its calibration, they, nonethe­
less, provide a good argument that network effects 
can be significant. Moreover, by introducing two 
indicators of exposures to indirect contagion due to 
overlapping portfolios, it has also been shown179 that a 
bank’s size does not necessarily determine its systemic  
importance.

Contagion due to overlapping portfolios also affects 
financial institutions other than banks. In the past few 
years, studies have focused on funds that also actively 
manage their portfolios by liquidating assets in times 
of distress. For instance, refs180,181 provide empirical 
characterizations of the network of overlapping portfolios  
between funds, and refs182–184 introduce stress testing 
frameworks to study the stability of US mutual funds, 
European investment funds and German funds. A study 
of US mutual funds shows that the vulnerability of the 
network is large compared with the benchmark of 
random networks in which the degrees of nodes are  
preserved185.

Most of the work so far has focused on specific sectors 
of the financial system (for instance, focusing on rela­
tionships between banks or between funds), but some 
effort has been directed towards the development of 
system-​wide stress testing frameworks that also account 
for the existence of portfolio overlaps between differ­
ent sectors186,187. Reference186 presents a system-​wide 
stress testing framework of the European financial sys­
tem. The paper considers different types of contagion 
mechanisms and different risk management constraints, 
thereby allowing for the modelling of different institu­
tions such as banks, hedge funds, investment funds and 
insurers. The models are built using granular data for the  
banking sector and a set of representative agents for 
non-​bank institutions, and it is shown that accounting 
for non-​banks in the models leads to increased shock 
amplification. The importance of accounting for the 
existence of portfolio overlaps between different sectors 
is confirmed in ref.187, which reports a more granular 
model of the UK financial system in which each indi­
vidual non-​bank institution is modelled explicitly, rather 
than through a representative agent.

Contagion on multiplex networks. As mentioned in 
the section on multiplex and higher-​order networks, 
granular models in which exposures are disaggregated, 
either by maturity188, seniority130 or asset class189, can 
be represented by multiplex networks. Similarly, as 
described above, there are different contagion channels 
through which stress can propagate between financial 
institutions. Because each channel can be represented 
as a network, a complete characterization of financial 
contagion should consider multiple contagion channels 
simultaneously on a multiplex network. In principle, 
risks associated with different layers could either offset 
or reinforce each other. Indeed, the stability properties 
of the system depend on the interplay of the conta­
gion processes across layers, which can differ in nature 
depending on the type of layer. By looking at a single 
layer at a time, one can fail to detect instability and fail 
to identify the possible contagion channels.

It has been shown190 that, when two layers are coupled 
weakly, systemic risk is smaller in a multiplex network 
than in the aggregated single-​layer network. Moreover, 
the sharp phase transition in the size of the cascade is 
more pronounced in the multiplex network. It has also 
been shown191 that mixing debts of different seniority 
levels makes the system more stable. Reference192 reports 
on a multiplex representation of the Mexican banking 
system between 2007 and 2013. Crucially, it is shown 
that focusing on a single layer can underestimate the 
total systemic risk by up to 90% and that risks generated 
by individual layers cannot be simply summed but inter­
act with each other in a non-​linear fashion. A similar 
result is found in ref.193, which reports an agent-​based 
model of the multiplex interbank network for large 
EU banks. Reference194 outlines the possible interplay 
between layers corresponding to short-​term funding, 
assets and collateral flows, clarifying how risk propagates 
from one layer to another using the case of Bear Stearns 
during the 2007–2008 financial crisis.

Some early works on financial contagion due to 
counterparty risk13,146,147,195 consider the effects of fire 
sales by assuming the existence of one asset that is com­
mon to all banks and is liquidated when banks default, 
but their focus remains on understanding how the topol­
ogy of the interbank exposures network affects its sta­
bility. More recently, by using data on direct interbank 
exposures between Austrian banks and also by assuming 
the existence of a common asset between banks, it has 
been suggested196 that the interaction between contagion 
channels can significantly contribute to aggregate losses. 
These findings are confirmed in ref.197, which reports 
using detailed data on direct exposures and overlap­
ping portfolios between Mexican banks. Similarly, 
a system-​wide stress test for the European financial sys­
tem has been used to show186 that interacting contagion 
channels can lead to five times more bank failures than 
the same channels acting in isolation.

Statistical physics of financial networks
Both the structural and the dynamic approaches dis­
cussed above are based on a static snapshot of the net­
work or a temporal sequence of snapshots over which 
the same analyses are repeated. As such, they take as 

Value-​at-​risk
(VaR). Risk measure defined as 
a (typically) large quantile of 
the probability distribution  
of losses. For example, when 
the quantile is 0.99 and the 
distribution of losses is over  
a time horizon of 1 year, it is 
interpreted as the loss that 
occurs once every 100 years.

Expected shortfall
(ES). Risk measure defined as 
the mean loss exceeding a 
(typically) large quantile of the 
probability distribution of 
losses. It is always larger than 
the value-​at-​risk at the same 
quantile.
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input all the microscopic details of a specific network 
configuration — that is, the exact position and magni­
tude of all links. However, as in the analysis of all large 
systems, one may take a statistical physics perspective 
and wonder whether not all the microscopic details are 
relevant in order to produce the observed structural 
and dynamic patterns, in other words, whether it is 
sufficient to specify only certain ‘key’ network features 
and let the rest of the architecture follow from these. 
From a data science perspective, this question is equiv­
alent to wondering whether modelling a specific net­
work configuration (for instance, an interbank network 
observed at a given time and/or in a given geographical 

location) suffers from the problem of overfitting.  
In other words, are the results of such a model still use­
ful when different configurations of the same type of  
network, for instance, at a different time or location, 
are considered?

This problem can be addressed via the introduction 
of statistical ensembles of network configurations that 
have certain features in common with the empirical 
network, but are otherwise random198. This methodol­
ogy is illustrated in Box 2 and Fig. 3. Technically, such 
ensembles are constructed by looking for the probability 
distribution of graphs (defined over the allowed config­
urations) that maximizes an entropy functional, subject 
to a set of constraints that represent the key topological 
properties that one wants to enforce. This statistical 
physics construction effectively produces an energy 
function, or Hamiltonian, which is a linear combina­
tion of the specified constraints. Different configura­
tions that have the same value of the constraints have 
the same ‘energy’ and occur with the same probability 
in the ensemble.

This procedure naturally defines a notion of net­
works at thermodynamic (or statistical) equilibrium: 
if a real-​world network is consistent with the ensem­
ble specified by a certain set of constraints, then those 
constraints capture robust or conserved properties (like 
the total energy in physics) in the real-​world network199. 
Importantly, it has been found that the constraints that 
replicate several empirical structural properties (there­
fore, suggesting a consistency between real networks 
and equilibrium ensembles) are local, that is, they 
include the degrees (and possibly the strengths) of all 
nodes198,200. If only global properties are enforced (such 
as the total number of links or the total weight of all 
connections), the resulting networks are completely 
homogeneous and very different from the observed 
ones.

It is important to stress that, in general, this notion of 
thermodynamic equilibrium is not related to that of eco­
nomic equilibrium, which is, instead, based on matching 
demand and supply (market clearing) and usually entails 
the maximization of some postulated utility function for 
each financial institution201–203. However, a connection 
between the two notions can be established204 by con­
sidering that, if the observed network was the outcome 
of economic equilibrium, then all alternative config­
urations that matched the same supply and demand 
levels of all nodes would be equally viable. Indeed, 
according to Walrasian theory in economics, agents in 
an exchange economy care only about final allocations 
and are indifferent with respect to different market con­
figurations that realize the same allocations. So, if the 
real network is at economic equilibrium, then any other 
configuration that realizes the same supply and demand 
constraints of all nodes should also be at economic equi­
librium. Therefore, the maximum entropy ensemble 
constructed using the supply and demand of each node 
as constraints should provide a thermodynamic con­
struction of Walrasian equilibrium204. Interestingly, this 
theoretical expectation leads to the identification of local 
(node-​specific) network properties as candidates for 
the constraints that characterize Walrasian equilibrium, 

Box 2 | Maximum entropy ensembles of networks

According to the principle of maximum entropy, the unbiased probability distribution 
P(G) of a graph configuration G is found by imposing a set of structural properties (C) 
chosen as constraints and maximizing the uncertainty about everything else198. 
The constraints C can be a set of properties C(G*) measured on a specific real-​world 
network G*, in which case the distribution P(G) generates an ensemble of randomized 
counterparts of G*. This ensemble can serve as a null model for G*, which is useful to 
detect empirical deviations of G* — if the topology of the latter is completely known — 
from its randomized counterpart. Alternatively, the ensemble is an unbiased ‘best 
guess’ for the structure of G* from partial information, which is useful to statistically 
reconstruct G* — if the topology of the latter is not completely known — from the 
available properties C(G*). This construction is illustrated in Fig. 3.

Quantitatively, P(G) is found by maximizing Shannon entropy, which is the functional

∈∑= − ΩS P P PG G[ ] ( )ln ( ), (1)G

where Ω is a certain set of graphs (for instance, all graphs with the same number N  
of nodes as G*), subject to the normalization condition ∑G∈ΩP(G) = 1 and to the 
condition that the chosen constraints C must be realized213. As in traditional statistical 
physics, the latter condition can be enforced either as a hard constraint on each 
realization (the microcanonical ensemble), that is, C(G) = C(G*) for each allowed G,  
or as a soft constraint on the ensemble average (the canonical ensemble), that is, 
∑G∈ΩP(G)C(G) = C(G*). In the microcanonical ensemble, the maximum entropy 
probability is uniform over the configurations that realize the hard constraint.  
In the canonical ensemble, the probability takes the parametric form
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where H(G, θ) = θ ⋅ C(G) is the Hamiltonian (a linear combination of the enforced 
properties), θ is the set of Lagrange multipliers associated with the constraints and 
Z(θ) = ∑G∈Ωe−H(G, θ) is the partition function. Importantly, P(G∣θ) depends on G only through 
the vector of enforced quantities C(G), which is the sufficient statistics. When G* is only 
partially observed and C(G*) is the available information about it, constructing the 
maximum entropy distribution P(G∣θ) provides a statistical physics route to network 
reconstruction from partial information. This canonical ensemble coincides with the 
so-​called exponential random graph model198,210,211,262 and ensures that P(G∣θ) is the least 
biased towards the properties that are not enforced through the constraints213.
Note that Eq. (2) only specifies the functional form of the probability distribution 

defining the canonical ensemble, while leaving the Lagrange multipliers (numerically) 
undetermined. Although it is possible to draw the Lagrange multipliers from some ad 
hoc probability density function to induce archetypal toy models of networks (such as 
homogeneous graphs, scale-​free networks or block models)210, in the analysis of 
real-​world networks, it is crucial to fit these parameters to the actual network.  
To do so, the maximum likelihood principle prescribes maximizing the function198,211

θ θ θ θ= | = − −L * *P H ZG G( ) ln ( ) ( , ) ln ( ) (3)

with respect to θ. This maximization retrieves the specific values θ* that ensure 
∑G∈ΩP(G∣θ*)C(G) = C(G*), implying that the ensemble average of each constraint 
matches its empirical value as desired.

Constraints
Quantities representing the 
structural properties either to 
be enforced in the network 
reconstruction process or to  
be discounted in the network 
validation process.
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consistent with the aforementioned empirical result that 
local properties are the effective constraints to use in the 
maximum entropy construction.

Thus, in a certain sense, the notion of economic equi­
librium should, in principle, try to explain the realized 
values of the supply and demand constraints observed 
in real-​world financial networks, whereas the notion 
of thermodynamic equilibrium should, in principle, 
try to explain, given those values, the typical network 
properties arising from the multiplicity of market 
configurations consistent with (Walrasian) economic 
equilibrium. With these considerations in mind, we 

discuss the possible applications of statistical ensembles 
of financial networks to network reconstruction and  
pattern detection.

Networks at equilibrium and reconstruction. The 
approaches discussed above assume that the presence 
and magnitude of relationships between financial insti­
tutions is known. Unfortunately, owing to confiden­
tiality issues, that information is often only accessible 
to regulators. Even then, regulators only have a partial 
view of the financial network, typically limited to their 
jurisdiction. Therefore, there are problems relating to the 

Statistical ensemble of networks
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(e.g. degrees or strengths) 
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Fig. 3 | Construction of statistical ensembles of financial networks and application to network reconstruction and 
pattern detection. Starting from a real-​world network G* (part a), a set C(G*) of structural properties are chosen as 
constraints — for instance, the degrees and/or strengths of all nodes (part b). Then, a canonical ensemble of networks  
is constructed by calculating the probability distribution P(G∣θ) that maximizes the Shannon entropy under the chosen 
constraints, and the parameters θ* that maximize the likelihood198,211 (part c). This construction ensures that the expected 
values of the constraints match the empirical ones. The ensemble can be used as a method for network reconstruction  
if C(G*) is the only information available about the original network G* and the latter is believed to be at the thermo­
dynamic equilibrium induced by the chosen constraints205, for example (part d). Alternatively, the ensemble serves as a null 
model to detect empirical deviations of G* from equilibrium, for instance, systematic changes in the occurrence of small 
subgraphs (dyads or triads) that may even act as early-​warning signals of major transitions in network structure199 (part e). 
In the example shown, changes in the statistical significance of cycles of order 2 and 3 in the Dutch interbank network turn 
out to be early-​warning signals of the 2008 crisis59. Figure adapted with permission from refs59,127.
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observability of financial networks and the reproducibility  
of the results obtained on a specific network.

The problem of missing data in complex networks 
is very general and has led to the birth of a research 
field known as network reconstruction. Because of the 
relevance of the problem, many reconstruction algo­
rithms have been proposed in the context of financial 
(mainly interbank) networks205 (see Table 1 for a list of 
the most relevant techniques). Roughly, these methods 
can be classified as either deterministic or probabilistic, 
depending on the result of the reconstruction procedure. 
Deterministic methods include the popular MaxEnt134 
(this approach should not be confused with the maxi­
mum entropy ensembles described above, as it imple­
ments a conceptually different optimization procedure) 
and iterative proportional fitting135,206 algorithms. These 
methods produce a single instance of reconstructed net­
work. Although apparently more intuitive, they suffer 
from the limitation of assigning zero probability to any 
other network configuration, including (almost cer­
tainly) the true unobserved one207. The same limitation 
affects methods that combine a probabilistic approach 
for estimating the network topology (that is, for deter­
mining the presence of links) with a deterministic recipe 
for estimating link weights208,209.

Probabilistic methods overcome this limitation by 
generating an ensemble of reconstructed networks, 
each with its own probability to be the true network. 
This class of methods includes the network recon­
struction methods rooted in the maximum entropy 
ensembles described above205,210,211 (see Box 2). From 
an information-​theoretical perspective, the maxi­
mum entropy approach to inference minimizes the 

unsupported assumptions about the true distribution of 
the unobserved (that is, confidential) data212,213 and states 
that the probability distribution that best describes the 
state of knowledge about a system is the one with largest 
entropy, constrained to satisfy the available information 
on the system itself12,210. Analogously to the application 
in statistical mechanics, one can derive the probability 
distribution of the unobserved individual exposures 
constrained by the observed total exposures — typically 
the aggregate interbank lending (assets) and borrowing 
(liabilities) of each bank. Uncertainty maximization is 
carried out by maximizing the Shannon entropy, and the  
available information is included as constraints in  
the optimization procedure. The underlying rationale  
is that of obtaining reconstructed networks with pro­
perties that are a consequence of the imposed constraints. 
In other words, this approach avoids making assump­
tions that are not supported by the available information  
and that would otherwise bias the entire estimation pro­
cedure. Maximum entropy inference is, thus, maximally 
‘indifferent’ towards the network properties that are not 
accessible.

The first entropy-​based algorithms were based on the 
assumption that the constraints concerning the binary 
and the weighted network structure jointly determine 
the reconstruction output. This approach is taken in the 
enhanced configuration model, which simultaneously 
constrains the degrees and the strengths of nodes200,214. 
However, the inaccessibility of empirical degrees (in 
other words, number of lenders or borrowers of each 
bank) makes these methods inapplicable for recon­
structing interbank networks. This difficulty has led 
to the introduction of two-​step algorithms17,215 that, in 

Table 1 | Overview of the network reconstruction methods that can be found in the literature

Name ME Density Category Brief description Ref.

MaxEnt ✓ Dense Deterministic Maximizes Shannon entropy on network entries by 
constraining marginals

134,253

IPF ✓ Tunable Deterministic Minimizes the KL divergence from MaxEnt 254

Copula approach × Dense Deterministic Generates a network via a copula function of the 
marginals

255

MECAPM ✓ Dense Probabilistic Constrains matrix entries to match, on average, 
MaxEnt values

256

Drehmann and Tarashev ✓ Tunable Probabilistic Randomly perturbs the MaxEnt reconstruction 257

Mastromatteo et al. ✓ Tunable Probabilistic Explores the space of network structures with the 
message-​passing algorithm

258

Moussa ✓ Tunable Probabilistic Implements IPF on non-​trivial topologies 259

Fitness-​induced ERG ✓ Tunable Probabilistic Uses the fitness ansatz to inform an ERG model 17,215

Gandy and Veraart × Tunable Probabilistic Implements an adjustable Bayesian reconstruction 209

Montagna and Lux × Tunable Probabilistic Assumes ad hoc connection probabilities 
depending on marginals

260

Hałaj and Kok × Sparse Probabilistic Uses external information to define a 
(geographical) probability map

261

Minimum-​density × Sparse Probabilistic Minimizes the network density while satisfying the 
marginals

208

‘ME’ indicates whether the method is based on maximum entropy, ‘Density’ denotes the density of the reconstructed network and 
‘Category’ is either deterministic or probabilistic, depending on whether the method generates a single network instance or an 
ensemble. ERG, exponential random graph; IPF, iterative proportional fitting; KL, Kullback–Leibler; MECAPM, maximum entropy 
capital asset pricing model.

Shannon entropy
Functional quantifying the 
amount of uncertainty 
associated with a probability 
distribution (see Box 2).  
Its maximum is attained for  
a uniform distribution.
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order to overcome the lack of binary information, per­
form a preliminary estimation of the node degrees using 
the fitness model216. This idea of estimating the weighted 
network structure conditional on the preliminary esti­
mation of the binary structure is properly formalized 
by maximization of the conditional Shannon entropy, 
using as constraints the weighted available information 
and as prior information the topological structure of the 
network — be it empirical or inferred207.

Belonging to this class of two-​step maximum entropy 
models, the density-​corrected gravity method has been 
found to systematically outperform competing recon­
struction methods by generating networks similar to 
the empirical ones in terms of topological and systemic 
risk properties. This evidence comes from four inde­
pendent ‘horse races’ or comparative studies, carried 
out by researchers in academia and central banks217–220. 
One key ingredient for the effectiveness of the method 
is the ability to reproduce the density of the network to 
be reconstructed. However, such density can also be 
tuned, thus allowing the method to generate extreme  
scenarios of very dense or very sparse networks, analo­
gously to fully connected134 and minimum density208 
methods. However, as discussed in the previous section, 
it is not clear what the relationship is between density 
and stability of a financial network, hence, identifying 
the best-​case and worst-​case network structure a priori 
is not possible in general.

For a maximum entropy method, the agreement 
between the reconstructed network and empirical 
data requires certain conditions, as highlighted by 
the information-​theoretical formulation of statistical 
mechanics. First, the network to be reconstructed is 
close to the average (equilibrium) configuration of the 
canonical ensemble defined by the imposed constraints 
(see Fig. 3 for a schematic of this concept). Second, the 
network evolution, if supposed to be driven by the evolu­
tion of the constraints themselves, is quasi-​stationary199. 
The consequence is that the network at hand is char­
acterized by smooth structural changes rather than 
abrupt transitions. Whereas smooth changes charac­
terizing quasi-​equilibrium networks can generally be 
controlled for, it is not possible to do so in the case of 
abrupt transitions, which characterize non-​stationary  
networks.

As illustrative examples, we consider two systems,  
an economic and a financial one. The first example is  
the International Trade Network (ITN), the nodes of 
which represent world economies and links represent 
export relationships between them221–226. Many prop­
erties of the ITN change considerably over time (for 
instance, the total number of nodes doubled from 1950 
to 2000 (ref.227), as countries gained independence), 
hence, this network is an ideal test bench for its (out-​of-)
equilibrium character. Indeed, for each time slice of the 
data, the binary structure of the ITN is accurately repro­
duced by maximum entropy models199. This happens 
despite the imposed constraints varying considerably 
across the time span of the dataset (presumably because 
of exogenous effects, such as the creation or recogni­
tion of new countries): deviations from the model expec­
tations are bounded and systematic, thus making the 

ITN a quasi-​equilibrium network. The second example 
is the Dutch Interbank Network (DIN)59. Unlike the ITN, 
the DIN is compatible with maximum entropy models 
only during certain time periods (in particular, far away 
from financial crises), hinting at its out-​of-​equilibrium  
character. It is, therefore, natural to question the useful­
ness of the maximum entropy formalism in the case of 
non-​stationary networks. The next section is devoted to 
this question.

Networks out of equilibrium and validation. As clar­
ified in the previous section, achieving a success­
ful reconstruction requires a network to be at the 
(information-​theoretical or, equivalently, thermody­
namic) equilibrium implied by the imposed constraints. 
When full information on the empirical network is avail­
able, the entropy-​based framework can be used to build 
null models and to check whether an empirical network 
is compatible with them. Unlike the reconstruction 
task, in which the constraints are defined by the avail­
able information, in this case, the imposed constraints 
are assumed to be the only explanatory variables for the 
network at hand (this is precisely the null hypothesis of 
any maximum entropy model). Therefore, if the empir­
ical network is described accurately by the null model, 
the null hypothesis it embodies cannot be rejected. 
When this does not happen, it means that the chosen 
constraints do not lead to an exhaustive description of 
the empirical network (Fig. 3). In this sense, the empirical 
network is ‘out of equilibrium’.

An example may be useful to clarify the discussion. 
We consider again the DIN59, for which full informa­
tion is available. For this network, the fraction of recip­
rocated links (that is, the number of bank pairs that lend 
money to each other) drops dramatically at the onset of 
the 2007–2008 financial crisis. Such a measure could be 
considered as a proxy of how much banks (do not) trust 
each other and hedge against each other’s perceived risk 
by creating contracts pointing in opposite directions. In 
a sense, the change in the trend pointed to the erosion of 
such trust during the crisis. The picture changes by using 
an entropy-​based null model (defined by constraining 
the number of borrowers and lenders of each bank) to 
highlight the properties that are out of equilibrium or, 
in other words, not compatible with the model itself. 
Significant deviations of the empirical reciprocity from 
the null model are observed in correspondence with the 
crisis — but also in the preceding 4 years. This result 
indicates that the system was already experiencing a 
decreasing phase, in terms of trust between banks, a few 
years before the crisis. This pattern emerges only after 
comparison with an entropy-​based null model (Fig. 3). 
Such patterns can be considered as early-​warning sig­
nals: before a drastic change in the structure of the 
network, it is still possible to detect smooth changes, 
which can be highlighted by observing the disagreement 
between a proper null model and the real system. Similar 
patterns were observed for other quantities, such as the 
cyclic motif (three banks involved in a cycling lend­
ing pattern), whose presence increases even before the 
pre-​crisis period (Fig. 3), becoming statistically significant  
before the crisis hits.

Density
The fraction of possible 
connections that are actually 
realized in a network.
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The same framework has been used to analyse 
the patterns of common asset holdings by financial 
institutions228, with the idea that the portfolio overlaps 
that are not compatible with an entropy-​based null model 
are carrying the highest risk for liquidation in fire sales. 
In this case, the null model is built by constraining the 
diversification of portfolios and the number of investors 
of each security, in order to account for the heterogene­
ity of actors in the system229,230. The analysis reveals that 
portfolio similarity significantly increases long before the 
2007–2008 financial crisis, and peaked at its onset, in a 
way not compatible with the null model. In other words, 
the properties of the system are not explainable just by 
looking at the heterogeneity of portfolios and securi­
ties: the system is strongly out of equilibrium and the 
observation of significant portfolio overlaps is carrying  
extra information.

Null models are routinely used as benchmarks to 
extract significant information for a variety of systems. 
The entropy-​based null models discussed above are 
characterized by soft constraints. That is, the constraints 
are satisfied on average over a suitably specified ensem­
ble of networks. Alternatively, one can build null models 
characterized by hard constraints. In this case, the cor­
responding ensemble contains only the networks that 
individually satisfy the constraints. Null models with 
soft constraints correspond to the canonical ensemble, 
which is used to describe a physical system in which 
the average energy is specified. By contrast, null models 
with hard constraints correspond to the microcanonical 
ensemble, which is used to describe a physical system in 
which the energy is specified and does not fluctuate. As 
in traditional statistical physics, microcanonical mod­
els are typically much harder to approach analytically 
and, thus, it is often necessary to resort to fixed-​point 
approximations or numerical sampling97,231–239 (see also 
ref.12 for more details).

Conclusions and perspectives
In the aftermath of the 2007–2008 financial crisis, the 
policy community and academia became widely aware 
that understanding and managing risk in the financial 
system required modelling it in terms of financial net­
works. In particular, recognition of the importance of 
network effects has led to key conceptual developments 
in policy. Microprudential regulation (in the finance 
policy jargon, an approach to regulation focusing on 
banks individually) has since been complemented by 
macroprudential regulation, which looks at the finan­
cial system as a whole (that is, as a network of financial  
institutions154,240,241) and seeks to limit the impact of 
financial shocks to the real economy. The latter approach 
recognizes that interconnectedness (modelled through 
networks) can have procyclical impact (that is, serve as 
positive feedback) on asset prices or, in other words,  
it can amplify risk.

Over the past decade, financial network models 
have been increasingly used by institutions, including: 
the European Central Bank to assess systemic risk20; the  
European Systemic Risk Board to characterize the deriv­
ative market21,109 and the network of insurers242; the 
Office of Financial Research194; and the Bank of England 

to capture feedback mechanisms in stress tests22 that 
arise from solvency contagion243,244, funding contagion 
or overlapping portfolios244. Furthermore, the Bank 
for International Settlements (the institution coordi­
nating banking regulation worldwide) has included 
interconnectedness among the criteria used to identify  
systemically important banks245.

We now briefly discuss some of the key open chal­
lenges. First, despite increasing efforts to build models  
with multiple channels of financial contagion (as dis­
cussed above), there are general aspects that have not 
been sufficiently explored. For example, it is often 
unclear how to integrate different contagion channels 
that operate at the same timescale. Furthermore, models 
with both amplifying and dampening mechanisms tend 
to be less amenable to analytical treatment.

Second, whereas many models consider the relation­
ships between financial actors as static, in reality, such 
relationships might change, sometimes suddenly. In a 
sense, most models make the implicit assumption that 
the timescale over which relationships change is much 
longer than the characteristic timescale of the model 
dynamics. Further empirical research is needed to estab­
lish when this assumption holds. When it is not the case, 
one needs to develop models that also account for how 
those relationships might form246–248 and dissolve.

Third, many models are calibrated using a very small 
fraction of the vast data that financial markets generate 
daily. Indeed, regulatory data are often reported quar­
terly or annually, allowing only for the analysis of tempo­
ral snapshots that could be too far apart to detect rapid 
buildups of risk. We expect this issue to be partially alle­
viated by the increased availability of transaction-​level 
datasets that capture market activity at the most granular 
timescale. Crucially, most datasets cover only individual 
jurisdictions, meaning that a comprehensive analysis of 
the global financial network remains out of reach.

Fourth, financial networks often include only one 
kind of financial institution (typically banks) and are 
decoupled from the rest of the economy. However, differ­
ent kinds of financial institutions can play different roles 
in financial markets, which can only be accounted for in 
system-​wide models with heterogeneous institutions186. 
The interactions between the financial system and the 
rest of the economy create a two-​way feedback loop. 
Although there have been attempts to model those feed­
backs with bank–firm networks249–251, a more systematic 
approach would require embedding financial networks 
in a fully fledged macroeconomic model.

Finally, there is growing awareness of climate-​related 
financial risks and of the key role of financial network 
models for climate stress tests252. A transition to a 
low-​carbon economy can have implications for financial 
stability, if it is delayed and occurs in a disorderly man­
ner. In fact, a substantial devaluation of carbon-​intensive 
assets — which become ‘stranded’ — can impact the bal­
ance sheet of institutions holding those assets. Therefore, 
mapping the network of exposures of financial insti­
tutions to different sectors can help to identify and  
mitigate those risks.
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